Step | Hyp | Ref
| Expression |
1 | | cmir 27892 |
. 2
class
pInvG |
2 | | vg |
. . 3
setvar π |
3 | | cvv 3474 |
. . 3
class
V |
4 | | vm |
. . . 4
setvar π |
5 | 2 | cv 1540 |
. . . . 5
class π |
6 | | cbs 17140 |
. . . . 5
class
Base |
7 | 5, 6 | cfv 6540 |
. . . 4
class
(Baseβπ) |
8 | | va |
. . . . 5
setvar π |
9 | 4 | cv 1540 |
. . . . . . . . 9
class π |
10 | | vb |
. . . . . . . . . 10
setvar π |
11 | 10 | cv 1540 |
. . . . . . . . 9
class π |
12 | | cds 17202 |
. . . . . . . . . 10
class
dist |
13 | 5, 12 | cfv 6540 |
. . . . . . . . 9
class
(distβπ) |
14 | 9, 11, 13 | co 7405 |
. . . . . . . 8
class (π(distβπ)π) |
15 | 8 | cv 1540 |
. . . . . . . . 9
class π |
16 | 9, 15, 13 | co 7405 |
. . . . . . . 8
class (π(distβπ)π) |
17 | 14, 16 | wceq 1541 |
. . . . . . 7
wff (π(distβπ)π) = (π(distβπ)π) |
18 | | citv 27673 |
. . . . . . . . . 10
class
Itv |
19 | 5, 18 | cfv 6540 |
. . . . . . . . 9
class
(Itvβπ) |
20 | 11, 15, 19 | co 7405 |
. . . . . . . 8
class (π(Itvβπ)π) |
21 | 9, 20 | wcel 2106 |
. . . . . . 7
wff π β (π(Itvβπ)π) |
22 | 17, 21 | wa 396 |
. . . . . 6
wff ((π(distβπ)π) = (π(distβπ)π) β§ π β (π(Itvβπ)π)) |
23 | 22, 10, 7 | crio 7360 |
. . . . 5
class
(β©π
β (Baseβπ)((π(distβπ)π) = (π(distβπ)π) β§ π β (π(Itvβπ)π))) |
24 | 8, 7, 23 | cmpt 5230 |
. . . 4
class (π β (Baseβπ) β¦ (β©π β (Baseβπ)((π(distβπ)π) = (π(distβπ)π) β§ π β (π(Itvβπ)π)))) |
25 | 4, 7, 24 | cmpt 5230 |
. . 3
class (π β (Baseβπ) β¦ (π β (Baseβπ) β¦ (β©π β (Baseβπ)((π(distβπ)π) = (π(distβπ)π) β§ π β (π(Itvβπ)π))))) |
26 | 2, 3, 25 | cmpt 5230 |
. 2
class (π β V β¦ (π β (Baseβπ) β¦ (π β (Baseβπ) β¦ (β©π β (Baseβπ)((π(distβπ)π) = (π(distβπ)π) β§ π β (π(Itvβπ)π)))))) |
27 | 1, 26 | wceq 1541 |
1
wff pInvG =
(π β V β¦ (π β (Baseβπ) β¦ (π β (Baseβπ) β¦ (β©π β (Baseβπ)((π(distβπ)π) = (π(distβπ)π) β§ π β (π(Itvβπ)π)))))) |