MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-mir Structured version   Visualization version   GIF version

Definition df-mir 27893
Description: Define the point inversion ("mirror") function. Definition 7.5 of [Schwabhauser] p. 49. See mirval 27895 and ismir 27899. (Contributed by Thierry Arnoux, 30-May-2019.)
Assertion
Ref Expression
df-mir pInvG = (𝑔 ∈ V ↦ (π‘š ∈ (Baseβ€˜π‘”) ↦ (π‘Ž ∈ (Baseβ€˜π‘”) ↦ (℩𝑏 ∈ (Baseβ€˜π‘”)((π‘š(distβ€˜π‘”)𝑏) = (π‘š(distβ€˜π‘”)π‘Ž) ∧ π‘š ∈ (𝑏(Itvβ€˜π‘”)π‘Ž))))))
Distinct variable group:   π‘Ž,𝑏,𝑔,π‘š

Detailed syntax breakdown of Definition df-mir
StepHypRef Expression
1 cmir 27892 . 2 class pInvG
2 vg . . 3 setvar 𝑔
3 cvv 3474 . . 3 class V
4 vm . . . 4 setvar π‘š
52cv 1540 . . . . 5 class 𝑔
6 cbs 17140 . . . . 5 class Base
75, 6cfv 6540 . . . 4 class (Baseβ€˜π‘”)
8 va . . . . 5 setvar π‘Ž
94cv 1540 . . . . . . . . 9 class π‘š
10 vb . . . . . . . . . 10 setvar 𝑏
1110cv 1540 . . . . . . . . 9 class 𝑏
12 cds 17202 . . . . . . . . . 10 class dist
135, 12cfv 6540 . . . . . . . . 9 class (distβ€˜π‘”)
149, 11, 13co 7405 . . . . . . . 8 class (π‘š(distβ€˜π‘”)𝑏)
158cv 1540 . . . . . . . . 9 class π‘Ž
169, 15, 13co 7405 . . . . . . . 8 class (π‘š(distβ€˜π‘”)π‘Ž)
1714, 16wceq 1541 . . . . . . 7 wff (π‘š(distβ€˜π‘”)𝑏) = (π‘š(distβ€˜π‘”)π‘Ž)
18 citv 27673 . . . . . . . . . 10 class Itv
195, 18cfv 6540 . . . . . . . . 9 class (Itvβ€˜π‘”)
2011, 15, 19co 7405 . . . . . . . 8 class (𝑏(Itvβ€˜π‘”)π‘Ž)
219, 20wcel 2106 . . . . . . 7 wff π‘š ∈ (𝑏(Itvβ€˜π‘”)π‘Ž)
2217, 21wa 396 . . . . . 6 wff ((π‘š(distβ€˜π‘”)𝑏) = (π‘š(distβ€˜π‘”)π‘Ž) ∧ π‘š ∈ (𝑏(Itvβ€˜π‘”)π‘Ž))
2322, 10, 7crio 7360 . . . . 5 class (℩𝑏 ∈ (Baseβ€˜π‘”)((π‘š(distβ€˜π‘”)𝑏) = (π‘š(distβ€˜π‘”)π‘Ž) ∧ π‘š ∈ (𝑏(Itvβ€˜π‘”)π‘Ž)))
248, 7, 23cmpt 5230 . . . 4 class (π‘Ž ∈ (Baseβ€˜π‘”) ↦ (℩𝑏 ∈ (Baseβ€˜π‘”)((π‘š(distβ€˜π‘”)𝑏) = (π‘š(distβ€˜π‘”)π‘Ž) ∧ π‘š ∈ (𝑏(Itvβ€˜π‘”)π‘Ž))))
254, 7, 24cmpt 5230 . . 3 class (π‘š ∈ (Baseβ€˜π‘”) ↦ (π‘Ž ∈ (Baseβ€˜π‘”) ↦ (℩𝑏 ∈ (Baseβ€˜π‘”)((π‘š(distβ€˜π‘”)𝑏) = (π‘š(distβ€˜π‘”)π‘Ž) ∧ π‘š ∈ (𝑏(Itvβ€˜π‘”)π‘Ž)))))
262, 3, 25cmpt 5230 . 2 class (𝑔 ∈ V ↦ (π‘š ∈ (Baseβ€˜π‘”) ↦ (π‘Ž ∈ (Baseβ€˜π‘”) ↦ (℩𝑏 ∈ (Baseβ€˜π‘”)((π‘š(distβ€˜π‘”)𝑏) = (π‘š(distβ€˜π‘”)π‘Ž) ∧ π‘š ∈ (𝑏(Itvβ€˜π‘”)π‘Ž))))))
271, 26wceq 1541 1 wff pInvG = (𝑔 ∈ V ↦ (π‘š ∈ (Baseβ€˜π‘”) ↦ (π‘Ž ∈ (Baseβ€˜π‘”) ↦ (℩𝑏 ∈ (Baseβ€˜π‘”)((π‘š(distβ€˜π‘”)𝑏) = (π‘š(distβ€˜π‘”)π‘Ž) ∧ π‘š ∈ (𝑏(Itvβ€˜π‘”)π‘Ž))))))
Colors of variables: wff setvar class
This definition is referenced by:  mirval  27895
  Copyright terms: Public domain W3C validator