MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismir Structured version   Visualization version   GIF version

Theorem ismir 26924
Description: Property of the image by the point inversion function. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
mirfv.b (𝜑𝐵𝑃)
ismir.1 (𝜑𝐶𝑃)
ismir.2 (𝜑 → (𝐴 𝐶) = (𝐴 𝐵))
ismir.3 (𝜑𝐴 ∈ (𝐶𝐼𝐵))
Assertion
Ref Expression
ismir (𝜑𝐶 = (𝑀𝐵))

Proof of Theorem ismir
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mirval.p . . 3 𝑃 = (Base‘𝐺)
2 mirval.d . . 3 = (dist‘𝐺)
3 mirval.i . . 3 𝐼 = (Itv‘𝐺)
4 mirval.l . . 3 𝐿 = (LineG‘𝐺)
5 mirval.s . . 3 𝑆 = (pInvG‘𝐺)
6 mirval.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 mirval.a . . 3 (𝜑𝐴𝑃)
8 mirfv.m . . 3 𝑀 = (𝑆𝐴)
9 mirfv.b . . 3 (𝜑𝐵𝑃)
101, 2, 3, 4, 5, 6, 7, 8, 9mirfv 26921 . 2 (𝜑 → (𝑀𝐵) = (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))))
11 ismir.2 . . 3 (𝜑 → (𝐴 𝐶) = (𝐴 𝐵))
12 ismir.3 . . 3 (𝜑𝐴 ∈ (𝐶𝐼𝐵))
13 ismir.1 . . . 4 (𝜑𝐶𝑃)
141, 2, 3, 6, 9, 7mirreu3 26919 . . . 4 (𝜑 → ∃!𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))
15 oveq2 7263 . . . . . . 7 (𝑧 = 𝐶 → (𝐴 𝑧) = (𝐴 𝐶))
1615eqeq1d 2740 . . . . . 6 (𝑧 = 𝐶 → ((𝐴 𝑧) = (𝐴 𝐵) ↔ (𝐴 𝐶) = (𝐴 𝐵)))
17 oveq1 7262 . . . . . . 7 (𝑧 = 𝐶 → (𝑧𝐼𝐵) = (𝐶𝐼𝐵))
1817eleq2d 2824 . . . . . 6 (𝑧 = 𝐶 → (𝐴 ∈ (𝑧𝐼𝐵) ↔ 𝐴 ∈ (𝐶𝐼𝐵)))
1916, 18anbi12d 630 . . . . 5 (𝑧 = 𝐶 → (((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)) ↔ ((𝐴 𝐶) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝐶𝐼𝐵))))
2019riota2 7238 . . . 4 ((𝐶𝑃 ∧ ∃!𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) → (((𝐴 𝐶) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝐶𝐼𝐵)) ↔ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = 𝐶))
2113, 14, 20syl2anc 583 . . 3 (𝜑 → (((𝐴 𝐶) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝐶𝐼𝐵)) ↔ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = 𝐶))
2211, 12, 21mpbi2and 708 . 2 (𝜑 → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = 𝐶)
2310, 22eqtr2d 2779 1 (𝜑𝐶 = (𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  ∃!wreu 3065  cfv 6418  crio 7211  (class class class)co 7255  Basecbs 16840  distcds 16897  TarskiGcstrkg 26693  Itvcitv 26699  LineGclng 26700  pInvGcmir 26917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-trkgc 26713  df-trkgb 26714  df-trkgcb 26715  df-trkg 26718  df-mir 26918
This theorem is referenced by:  mirmir  26927  mireq  26930  mirinv  26931  miriso  26935  mirmir2  26939  mirauto  26949  colmid  26953  krippenlem  26955  midexlem  26957  mideulem2  26999  opphllem  27000  midcom  27047  trgcopyeulem  27070
  Copyright terms: Public domain W3C validator