| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ismir | Structured version Visualization version GIF version | ||
| Description: Property of the image by the point inversion function. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.) |
| Ref | Expression |
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
| mirval.d | ⊢ − = (dist‘𝐺) |
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
| mirfv.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| ismir.1 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| ismir.2 | ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐴 − 𝐵)) |
| ismir.3 | ⊢ (𝜑 → 𝐴 ∈ (𝐶𝐼𝐵)) |
| Ref | Expression |
|---|---|
| ismir | ⊢ (𝜑 → 𝐶 = (𝑀‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mirval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | mirval.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 3 | mirval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 5 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 6 | mirval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | mirval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 8 | mirfv.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐴) | |
| 9 | mirfv.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mirfv 28581 | . 2 ⊢ (𝜑 → (𝑀‘𝐵) = (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))) |
| 11 | ismir.2 | . . 3 ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐴 − 𝐵)) | |
| 12 | ismir.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐶𝐼𝐵)) | |
| 13 | ismir.1 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 14 | 1, 2, 3, 6, 9, 7 | mirreu3 28579 | . . . 4 ⊢ (𝜑 → ∃!𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) |
| 15 | oveq2 7411 | . . . . . . 7 ⊢ (𝑧 = 𝐶 → (𝐴 − 𝑧) = (𝐴 − 𝐶)) | |
| 16 | 15 | eqeq1d 2737 | . . . . . 6 ⊢ (𝑧 = 𝐶 → ((𝐴 − 𝑧) = (𝐴 − 𝐵) ↔ (𝐴 − 𝐶) = (𝐴 − 𝐵))) |
| 17 | oveq1 7410 | . . . . . . 7 ⊢ (𝑧 = 𝐶 → (𝑧𝐼𝐵) = (𝐶𝐼𝐵)) | |
| 18 | 17 | eleq2d 2820 | . . . . . 6 ⊢ (𝑧 = 𝐶 → (𝐴 ∈ (𝑧𝐼𝐵) ↔ 𝐴 ∈ (𝐶𝐼𝐵))) |
| 19 | 16, 18 | anbi12d 632 | . . . . 5 ⊢ (𝑧 = 𝐶 → (((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)) ↔ ((𝐴 − 𝐶) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝐶𝐼𝐵)))) |
| 20 | 19 | riota2 7385 | . . . 4 ⊢ ((𝐶 ∈ 𝑃 ∧ ∃!𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) → (((𝐴 − 𝐶) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝐶𝐼𝐵)) ↔ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = 𝐶)) |
| 21 | 13, 14, 20 | syl2anc 584 | . . 3 ⊢ (𝜑 → (((𝐴 − 𝐶) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝐶𝐼𝐵)) ↔ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = 𝐶)) |
| 22 | 11, 12, 21 | mpbi2and 712 | . 2 ⊢ (𝜑 → (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = 𝐶) |
| 23 | 10, 22 | eqtr2d 2771 | 1 ⊢ (𝜑 → 𝐶 = (𝑀‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃!wreu 3357 ‘cfv 6530 ℩crio 7359 (class class class)co 7403 Basecbs 17226 distcds 17278 TarskiGcstrkg 28352 Itvcitv 28358 LineGclng 28359 pInvGcmir 28577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-trkgc 28373 df-trkgb 28374 df-trkgcb 28375 df-trkg 28378 df-mir 28578 |
| This theorem is referenced by: mirmir 28587 mireq 28590 mirinv 28591 miriso 28595 mirmir2 28599 mirauto 28609 colmid 28613 krippenlem 28615 midexlem 28617 mideulem2 28659 opphllem 28660 midcom 28707 trgcopyeulem 28730 |
| Copyright terms: Public domain | W3C validator |