Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ismir | Structured version Visualization version GIF version |
Description: Property of the image by the point inversion function. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
mirfv.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
ismir.1 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
ismir.2 | ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐴 − 𝐵)) |
ismir.3 | ⊢ (𝜑 → 𝐴 ∈ (𝐶𝐼𝐵)) |
Ref | Expression |
---|---|
ismir | ⊢ (𝜑 → 𝐶 = (𝑀‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | mirval.d | . . 3 ⊢ − = (dist‘𝐺) | |
3 | mirval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
5 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
6 | mirval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | mirval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
8 | mirfv.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐴) | |
9 | mirfv.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mirfv 27017 | . 2 ⊢ (𝜑 → (𝑀‘𝐵) = (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))) |
11 | ismir.2 | . . 3 ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐴 − 𝐵)) | |
12 | ismir.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐶𝐼𝐵)) | |
13 | ismir.1 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
14 | 1, 2, 3, 6, 9, 7 | mirreu3 27015 | . . . 4 ⊢ (𝜑 → ∃!𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) |
15 | oveq2 7283 | . . . . . . 7 ⊢ (𝑧 = 𝐶 → (𝐴 − 𝑧) = (𝐴 − 𝐶)) | |
16 | 15 | eqeq1d 2740 | . . . . . 6 ⊢ (𝑧 = 𝐶 → ((𝐴 − 𝑧) = (𝐴 − 𝐵) ↔ (𝐴 − 𝐶) = (𝐴 − 𝐵))) |
17 | oveq1 7282 | . . . . . . 7 ⊢ (𝑧 = 𝐶 → (𝑧𝐼𝐵) = (𝐶𝐼𝐵)) | |
18 | 17 | eleq2d 2824 | . . . . . 6 ⊢ (𝑧 = 𝐶 → (𝐴 ∈ (𝑧𝐼𝐵) ↔ 𝐴 ∈ (𝐶𝐼𝐵))) |
19 | 16, 18 | anbi12d 631 | . . . . 5 ⊢ (𝑧 = 𝐶 → (((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)) ↔ ((𝐴 − 𝐶) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝐶𝐼𝐵)))) |
20 | 19 | riota2 7258 | . . . 4 ⊢ ((𝐶 ∈ 𝑃 ∧ ∃!𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) → (((𝐴 − 𝐶) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝐶𝐼𝐵)) ↔ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = 𝐶)) |
21 | 13, 14, 20 | syl2anc 584 | . . 3 ⊢ (𝜑 → (((𝐴 − 𝐶) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝐶𝐼𝐵)) ↔ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = 𝐶)) |
22 | 11, 12, 21 | mpbi2and 709 | . 2 ⊢ (𝜑 → (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = 𝐶) |
23 | 10, 22 | eqtr2d 2779 | 1 ⊢ (𝜑 → 𝐶 = (𝑀‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃!wreu 3066 ‘cfv 6433 ℩crio 7231 (class class class)co 7275 Basecbs 16912 distcds 16971 TarskiGcstrkg 26788 Itvcitv 26794 LineGclng 26795 pInvGcmir 27013 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-trkgc 26809 df-trkgb 26810 df-trkgcb 26811 df-trkg 26814 df-mir 27014 |
This theorem is referenced by: mirmir 27023 mireq 27026 mirinv 27027 miriso 27031 mirmir2 27035 mirauto 27045 colmid 27049 krippenlem 27051 midexlem 27053 mideulem2 27095 opphllem 27096 midcom 27143 trgcopyeulem 27166 |
Copyright terms: Public domain | W3C validator |