| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ismir | Structured version Visualization version GIF version | ||
| Description: Property of the image by the point inversion function. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.) |
| Ref | Expression |
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
| mirval.d | ⊢ − = (dist‘𝐺) |
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
| mirfv.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| ismir.1 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| ismir.2 | ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐴 − 𝐵)) |
| ismir.3 | ⊢ (𝜑 → 𝐴 ∈ (𝐶𝐼𝐵)) |
| Ref | Expression |
|---|---|
| ismir | ⊢ (𝜑 → 𝐶 = (𝑀‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mirval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | mirval.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 3 | mirval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 5 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 6 | mirval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | mirval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 8 | mirfv.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐴) | |
| 9 | mirfv.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mirfv 28601 | . 2 ⊢ (𝜑 → (𝑀‘𝐵) = (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))) |
| 11 | ismir.2 | . . 3 ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐴 − 𝐵)) | |
| 12 | ismir.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐶𝐼𝐵)) | |
| 13 | ismir.1 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 14 | 1, 2, 3, 6, 9, 7 | mirreu3 28599 | . . . 4 ⊢ (𝜑 → ∃!𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) |
| 15 | oveq2 7357 | . . . . . . 7 ⊢ (𝑧 = 𝐶 → (𝐴 − 𝑧) = (𝐴 − 𝐶)) | |
| 16 | 15 | eqeq1d 2731 | . . . . . 6 ⊢ (𝑧 = 𝐶 → ((𝐴 − 𝑧) = (𝐴 − 𝐵) ↔ (𝐴 − 𝐶) = (𝐴 − 𝐵))) |
| 17 | oveq1 7356 | . . . . . . 7 ⊢ (𝑧 = 𝐶 → (𝑧𝐼𝐵) = (𝐶𝐼𝐵)) | |
| 18 | 17 | eleq2d 2814 | . . . . . 6 ⊢ (𝑧 = 𝐶 → (𝐴 ∈ (𝑧𝐼𝐵) ↔ 𝐴 ∈ (𝐶𝐼𝐵))) |
| 19 | 16, 18 | anbi12d 632 | . . . . 5 ⊢ (𝑧 = 𝐶 → (((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)) ↔ ((𝐴 − 𝐶) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝐶𝐼𝐵)))) |
| 20 | 19 | riota2 7331 | . . . 4 ⊢ ((𝐶 ∈ 𝑃 ∧ ∃!𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) → (((𝐴 − 𝐶) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝐶𝐼𝐵)) ↔ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = 𝐶)) |
| 21 | 13, 14, 20 | syl2anc 584 | . . 3 ⊢ (𝜑 → (((𝐴 − 𝐶) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝐶𝐼𝐵)) ↔ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = 𝐶)) |
| 22 | 11, 12, 21 | mpbi2and 712 | . 2 ⊢ (𝜑 → (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = 𝐶) |
| 23 | 10, 22 | eqtr2d 2765 | 1 ⊢ (𝜑 → 𝐶 = (𝑀‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃!wreu 3341 ‘cfv 6482 ℩crio 7305 (class class class)co 7349 Basecbs 17120 distcds 17170 TarskiGcstrkg 28372 Itvcitv 28378 LineGclng 28379 pInvGcmir 28597 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-trkgc 28393 df-trkgb 28394 df-trkgcb 28395 df-trkg 28398 df-mir 28598 |
| This theorem is referenced by: mirmir 28607 mireq 28610 mirinv 28611 miriso 28615 mirmir2 28619 mirauto 28629 colmid 28633 krippenlem 28635 midexlem 28637 mideulem2 28679 opphllem 28680 midcom 28727 trgcopyeulem 28750 |
| Copyright terms: Public domain | W3C validator |