Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ismir | Structured version Visualization version GIF version |
Description: Property of the image by the point inversion function. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
mirfv.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
ismir.1 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
ismir.2 | ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐴 − 𝐵)) |
ismir.3 | ⊢ (𝜑 → 𝐴 ∈ (𝐶𝐼𝐵)) |
Ref | Expression |
---|---|
ismir | ⊢ (𝜑 → 𝐶 = (𝑀‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | mirval.d | . . 3 ⊢ − = (dist‘𝐺) | |
3 | mirval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
5 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
6 | mirval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | mirval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
8 | mirfv.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐴) | |
9 | mirfv.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mirfv 26921 | . 2 ⊢ (𝜑 → (𝑀‘𝐵) = (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))) |
11 | ismir.2 | . . 3 ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐴 − 𝐵)) | |
12 | ismir.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐶𝐼𝐵)) | |
13 | ismir.1 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
14 | 1, 2, 3, 6, 9, 7 | mirreu3 26919 | . . . 4 ⊢ (𝜑 → ∃!𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) |
15 | oveq2 7263 | . . . . . . 7 ⊢ (𝑧 = 𝐶 → (𝐴 − 𝑧) = (𝐴 − 𝐶)) | |
16 | 15 | eqeq1d 2740 | . . . . . 6 ⊢ (𝑧 = 𝐶 → ((𝐴 − 𝑧) = (𝐴 − 𝐵) ↔ (𝐴 − 𝐶) = (𝐴 − 𝐵))) |
17 | oveq1 7262 | . . . . . . 7 ⊢ (𝑧 = 𝐶 → (𝑧𝐼𝐵) = (𝐶𝐼𝐵)) | |
18 | 17 | eleq2d 2824 | . . . . . 6 ⊢ (𝑧 = 𝐶 → (𝐴 ∈ (𝑧𝐼𝐵) ↔ 𝐴 ∈ (𝐶𝐼𝐵))) |
19 | 16, 18 | anbi12d 630 | . . . . 5 ⊢ (𝑧 = 𝐶 → (((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)) ↔ ((𝐴 − 𝐶) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝐶𝐼𝐵)))) |
20 | 19 | riota2 7238 | . . . 4 ⊢ ((𝐶 ∈ 𝑃 ∧ ∃!𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) → (((𝐴 − 𝐶) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝐶𝐼𝐵)) ↔ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = 𝐶)) |
21 | 13, 14, 20 | syl2anc 583 | . . 3 ⊢ (𝜑 → (((𝐴 − 𝐶) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝐶𝐼𝐵)) ↔ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = 𝐶)) |
22 | 11, 12, 21 | mpbi2and 708 | . 2 ⊢ (𝜑 → (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = 𝐶) |
23 | 10, 22 | eqtr2d 2779 | 1 ⊢ (𝜑 → 𝐶 = (𝑀‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃!wreu 3065 ‘cfv 6418 ℩crio 7211 (class class class)co 7255 Basecbs 16840 distcds 16897 TarskiGcstrkg 26693 Itvcitv 26699 LineGclng 26700 pInvGcmir 26917 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-trkgc 26713 df-trkgb 26714 df-trkgcb 26715 df-trkg 26718 df-mir 26918 |
This theorem is referenced by: mirmir 26927 mireq 26930 mirinv 26931 miriso 26935 mirmir2 26939 mirauto 26949 colmid 26953 krippenlem 26955 midexlem 26957 mideulem2 26999 opphllem 27000 midcom 27047 trgcopyeulem 27070 |
Copyright terms: Public domain | W3C validator |