MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismir Structured version   Visualization version   GIF version

Theorem ismir 26704
Description: Property of the image by the point inversion function. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
mirfv.b (𝜑𝐵𝑃)
ismir.1 (𝜑𝐶𝑃)
ismir.2 (𝜑 → (𝐴 𝐶) = (𝐴 𝐵))
ismir.3 (𝜑𝐴 ∈ (𝐶𝐼𝐵))
Assertion
Ref Expression
ismir (𝜑𝐶 = (𝑀𝐵))

Proof of Theorem ismir
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mirval.p . . 3 𝑃 = (Base‘𝐺)
2 mirval.d . . 3 = (dist‘𝐺)
3 mirval.i . . 3 𝐼 = (Itv‘𝐺)
4 mirval.l . . 3 𝐿 = (LineG‘𝐺)
5 mirval.s . . 3 𝑆 = (pInvG‘𝐺)
6 mirval.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 mirval.a . . 3 (𝜑𝐴𝑃)
8 mirfv.m . . 3 𝑀 = (𝑆𝐴)
9 mirfv.b . . 3 (𝜑𝐵𝑃)
101, 2, 3, 4, 5, 6, 7, 8, 9mirfv 26701 . 2 (𝜑 → (𝑀𝐵) = (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))))
11 ismir.2 . . 3 (𝜑 → (𝐴 𝐶) = (𝐴 𝐵))
12 ismir.3 . . 3 (𝜑𝐴 ∈ (𝐶𝐼𝐵))
13 ismir.1 . . . 4 (𝜑𝐶𝑃)
141, 2, 3, 6, 9, 7mirreu3 26699 . . . 4 (𝜑 → ∃!𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))
15 oveq2 7199 . . . . . . 7 (𝑧 = 𝐶 → (𝐴 𝑧) = (𝐴 𝐶))
1615eqeq1d 2738 . . . . . 6 (𝑧 = 𝐶 → ((𝐴 𝑧) = (𝐴 𝐵) ↔ (𝐴 𝐶) = (𝐴 𝐵)))
17 oveq1 7198 . . . . . . 7 (𝑧 = 𝐶 → (𝑧𝐼𝐵) = (𝐶𝐼𝐵))
1817eleq2d 2816 . . . . . 6 (𝑧 = 𝐶 → (𝐴 ∈ (𝑧𝐼𝐵) ↔ 𝐴 ∈ (𝐶𝐼𝐵)))
1916, 18anbi12d 634 . . . . 5 (𝑧 = 𝐶 → (((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)) ↔ ((𝐴 𝐶) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝐶𝐼𝐵))))
2019riota2 7174 . . . 4 ((𝐶𝑃 ∧ ∃!𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) → (((𝐴 𝐶) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝐶𝐼𝐵)) ↔ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = 𝐶))
2113, 14, 20syl2anc 587 . . 3 (𝜑 → (((𝐴 𝐶) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝐶𝐼𝐵)) ↔ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = 𝐶))
2211, 12, 21mpbi2and 712 . 2 (𝜑 → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = 𝐶)
2310, 22eqtr2d 2772 1 (𝜑𝐶 = (𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  ∃!wreu 3053  cfv 6358  crio 7147  (class class class)co 7191  Basecbs 16666  distcds 16758  TarskiGcstrkg 26475  Itvcitv 26481  LineGclng 26482  pInvGcmir 26697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-trkgc 26493  df-trkgb 26494  df-trkgcb 26495  df-trkg 26498  df-mir 26698
This theorem is referenced by:  mirmir  26707  mireq  26710  mirinv  26711  miriso  26715  mirmir2  26719  mirauto  26729  colmid  26733  krippenlem  26735  midexlem  26737  mideulem2  26779  opphllem  26780  midcom  26827  trgcopyeulem  26850
  Copyright terms: Public domain W3C validator