![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ismir | Structured version Visualization version GIF version |
Description: Property of the image by the point inversion function. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.) |
Ref | Expression |
---|---|
mirval.p | β’ π = (BaseβπΊ) |
mirval.d | β’ β = (distβπΊ) |
mirval.i | β’ πΌ = (ItvβπΊ) |
mirval.l | β’ πΏ = (LineGβπΊ) |
mirval.s | β’ π = (pInvGβπΊ) |
mirval.g | β’ (π β πΊ β TarskiG) |
mirval.a | β’ (π β π΄ β π) |
mirfv.m | β’ π = (πβπ΄) |
mirfv.b | β’ (π β π΅ β π) |
ismir.1 | β’ (π β πΆ β π) |
ismir.2 | β’ (π β (π΄ β πΆ) = (π΄ β π΅)) |
ismir.3 | β’ (π β π΄ β (πΆπΌπ΅)) |
Ref | Expression |
---|---|
ismir | β’ (π β πΆ = (πβπ΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . . 3 β’ π = (BaseβπΊ) | |
2 | mirval.d | . . 3 β’ β = (distβπΊ) | |
3 | mirval.i | . . 3 β’ πΌ = (ItvβπΊ) | |
4 | mirval.l | . . 3 β’ πΏ = (LineGβπΊ) | |
5 | mirval.s | . . 3 β’ π = (pInvGβπΊ) | |
6 | mirval.g | . . 3 β’ (π β πΊ β TarskiG) | |
7 | mirval.a | . . 3 β’ (π β π΄ β π) | |
8 | mirfv.m | . . 3 β’ π = (πβπ΄) | |
9 | mirfv.b | . . 3 β’ (π β π΅ β π) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mirfv 27945 | . 2 β’ (π β (πβπ΅) = (β©π§ β π ((π΄ β π§) = (π΄ β π΅) β§ π΄ β (π§πΌπ΅)))) |
11 | ismir.2 | . . 3 β’ (π β (π΄ β πΆ) = (π΄ β π΅)) | |
12 | ismir.3 | . . 3 β’ (π β π΄ β (πΆπΌπ΅)) | |
13 | ismir.1 | . . . 4 β’ (π β πΆ β π) | |
14 | 1, 2, 3, 6, 9, 7 | mirreu3 27943 | . . . 4 β’ (π β β!π§ β π ((π΄ β π§) = (π΄ β π΅) β§ π΄ β (π§πΌπ΅))) |
15 | oveq2 7419 | . . . . . . 7 β’ (π§ = πΆ β (π΄ β π§) = (π΄ β πΆ)) | |
16 | 15 | eqeq1d 2734 | . . . . . 6 β’ (π§ = πΆ β ((π΄ β π§) = (π΄ β π΅) β (π΄ β πΆ) = (π΄ β π΅))) |
17 | oveq1 7418 | . . . . . . 7 β’ (π§ = πΆ β (π§πΌπ΅) = (πΆπΌπ΅)) | |
18 | 17 | eleq2d 2819 | . . . . . 6 β’ (π§ = πΆ β (π΄ β (π§πΌπ΅) β π΄ β (πΆπΌπ΅))) |
19 | 16, 18 | anbi12d 631 | . . . . 5 β’ (π§ = πΆ β (((π΄ β π§) = (π΄ β π΅) β§ π΄ β (π§πΌπ΅)) β ((π΄ β πΆ) = (π΄ β π΅) β§ π΄ β (πΆπΌπ΅)))) |
20 | 19 | riota2 7393 | . . . 4 β’ ((πΆ β π β§ β!π§ β π ((π΄ β π§) = (π΄ β π΅) β§ π΄ β (π§πΌπ΅))) β (((π΄ β πΆ) = (π΄ β π΅) β§ π΄ β (πΆπΌπ΅)) β (β©π§ β π ((π΄ β π§) = (π΄ β π΅) β§ π΄ β (π§πΌπ΅))) = πΆ)) |
21 | 13, 14, 20 | syl2anc 584 | . . 3 β’ (π β (((π΄ β πΆ) = (π΄ β π΅) β§ π΄ β (πΆπΌπ΅)) β (β©π§ β π ((π΄ β π§) = (π΄ β π΅) β§ π΄ β (π§πΌπ΅))) = πΆ)) |
22 | 11, 12, 21 | mpbi2and 710 | . 2 β’ (π β (β©π§ β π ((π΄ β π§) = (π΄ β π΅) β§ π΄ β (π§πΌπ΅))) = πΆ) |
23 | 10, 22 | eqtr2d 2773 | 1 β’ (π β πΆ = (πβπ΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 β!wreu 3374 βcfv 6543 β©crio 7366 (class class class)co 7411 Basecbs 17146 distcds 17208 TarskiGcstrkg 27716 Itvcitv 27722 LineGclng 27723 pInvGcmir 27941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-trkgc 27737 df-trkgb 27738 df-trkgcb 27739 df-trkg 27742 df-mir 27942 |
This theorem is referenced by: mirmir 27951 mireq 27954 mirinv 27955 miriso 27959 mirmir2 27963 mirauto 27973 colmid 27977 krippenlem 27979 midexlem 27981 mideulem2 28023 opphllem 28024 midcom 28071 trgcopyeulem 28094 |
Copyright terms: Public domain | W3C validator |