MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirval Structured version   Visualization version   GIF version

Theorem mirval 28681
Description: Value of the point inversion function 𝑆. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 30-May-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
Assertion
Ref Expression
mirval (𝜑 → (𝑆𝐴) = (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐺,𝑧   𝑦,𝐼,𝑧   𝑦,𝑃,𝑧   𝜑,𝑦,𝑧   𝑦, ,𝑧
Allowed substitution hints:   𝑆(𝑦,𝑧)   𝐿(𝑦,𝑧)

Proof of Theorem mirval
Dummy variables 𝑥 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mirval.s . . 3 𝑆 = (pInvG‘𝐺)
2 df-mir 28679 . . . 4 pInvG = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ (𝑦 ∈ (Base‘𝑔) ↦ (𝑧 ∈ (Base‘𝑔)((𝑥(dist‘𝑔)𝑧) = (𝑥(dist‘𝑔)𝑦) ∧ 𝑥 ∈ (𝑧(Itv‘𝑔)𝑦))))))
3 fveq2 6920 . . . . . 6 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
4 mirval.p . . . . . 6 𝑃 = (Base‘𝐺)
53, 4eqtr4di 2798 . . . . 5 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃)
6 fveq2 6920 . . . . . . . . . . 11 (𝑔 = 𝐺 → (dist‘𝑔) = (dist‘𝐺))
7 mirval.d . . . . . . . . . . 11 = (dist‘𝐺)
86, 7eqtr4di 2798 . . . . . . . . . 10 (𝑔 = 𝐺 → (dist‘𝑔) = )
98oveqd 7465 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑥(dist‘𝑔)𝑧) = (𝑥 𝑧))
108oveqd 7465 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑥(dist‘𝑔)𝑦) = (𝑥 𝑦))
119, 10eqeq12d 2756 . . . . . . . 8 (𝑔 = 𝐺 → ((𝑥(dist‘𝑔)𝑧) = (𝑥(dist‘𝑔)𝑦) ↔ (𝑥 𝑧) = (𝑥 𝑦)))
12 fveq2 6920 . . . . . . . . . . 11 (𝑔 = 𝐺 → (Itv‘𝑔) = (Itv‘𝐺))
13 mirval.i . . . . . . . . . . 11 𝐼 = (Itv‘𝐺)
1412, 13eqtr4di 2798 . . . . . . . . . 10 (𝑔 = 𝐺 → (Itv‘𝑔) = 𝐼)
1514oveqd 7465 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑧(Itv‘𝑔)𝑦) = (𝑧𝐼𝑦))
1615eleq2d 2830 . . . . . . . 8 (𝑔 = 𝐺 → (𝑥 ∈ (𝑧(Itv‘𝑔)𝑦) ↔ 𝑥 ∈ (𝑧𝐼𝑦)))
1711, 16anbi12d 631 . . . . . . 7 (𝑔 = 𝐺 → (((𝑥(dist‘𝑔)𝑧) = (𝑥(dist‘𝑔)𝑦) ∧ 𝑥 ∈ (𝑧(Itv‘𝑔)𝑦)) ↔ ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))))
185, 17riotaeqbidv 7407 . . . . . 6 (𝑔 = 𝐺 → (𝑧 ∈ (Base‘𝑔)((𝑥(dist‘𝑔)𝑧) = (𝑥(dist‘𝑔)𝑦) ∧ 𝑥 ∈ (𝑧(Itv‘𝑔)𝑦))) = (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))))
195, 18mpteq12dv 5257 . . . . 5 (𝑔 = 𝐺 → (𝑦 ∈ (Base‘𝑔) ↦ (𝑧 ∈ (Base‘𝑔)((𝑥(dist‘𝑔)𝑧) = (𝑥(dist‘𝑔)𝑦) ∧ 𝑥 ∈ (𝑧(Itv‘𝑔)𝑦)))) = (𝑦𝑃 ↦ (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦)))))
205, 19mpteq12dv 5257 . . . 4 (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔) ↦ (𝑦 ∈ (Base‘𝑔) ↦ (𝑧 ∈ (Base‘𝑔)((𝑥(dist‘𝑔)𝑧) = (𝑥(dist‘𝑔)𝑦) ∧ 𝑥 ∈ (𝑧(Itv‘𝑔)𝑦))))) = (𝑥𝑃 ↦ (𝑦𝑃 ↦ (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))))))
21 mirval.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
2221elexd 3512 . . . 4 (𝜑𝐺 ∈ V)
234fvexi 6934 . . . . . 6 𝑃 ∈ V
2423mptex 7260 . . . . 5 (𝑥𝑃 ↦ (𝑦𝑃 ↦ (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))))) ∈ V
2524a1i 11 . . . 4 (𝜑 → (𝑥𝑃 ↦ (𝑦𝑃 ↦ (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))))) ∈ V)
262, 20, 22, 25fvmptd3 7052 . . 3 (𝜑 → (pInvG‘𝐺) = (𝑥𝑃 ↦ (𝑦𝑃 ↦ (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))))))
271, 26eqtrid 2792 . 2 (𝜑𝑆 = (𝑥𝑃 ↦ (𝑦𝑃 ↦ (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))))))
28 simpll 766 . . . . . . . 8 (((𝑥 = 𝐴𝑦𝑃) ∧ 𝑧𝑃) → 𝑥 = 𝐴)
2928oveq1d 7463 . . . . . . 7 (((𝑥 = 𝐴𝑦𝑃) ∧ 𝑧𝑃) → (𝑥 𝑧) = (𝐴 𝑧))
3028oveq1d 7463 . . . . . . 7 (((𝑥 = 𝐴𝑦𝑃) ∧ 𝑧𝑃) → (𝑥 𝑦) = (𝐴 𝑦))
3129, 30eqeq12d 2756 . . . . . 6 (((𝑥 = 𝐴𝑦𝑃) ∧ 𝑧𝑃) → ((𝑥 𝑧) = (𝑥 𝑦) ↔ (𝐴 𝑧) = (𝐴 𝑦)))
3228eleq1d 2829 . . . . . 6 (((𝑥 = 𝐴𝑦𝑃) ∧ 𝑧𝑃) → (𝑥 ∈ (𝑧𝐼𝑦) ↔ 𝐴 ∈ (𝑧𝐼𝑦)))
3331, 32anbi12d 631 . . . . 5 (((𝑥 = 𝐴𝑦𝑃) ∧ 𝑧𝑃) → (((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦)) ↔ ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))))
3433riotabidva 7424 . . . 4 ((𝑥 = 𝐴𝑦𝑃) → (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))) = (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))))
3534mpteq2dva 5266 . . 3 (𝑥 = 𝐴 → (𝑦𝑃 ↦ (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦)))) = (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))))
3635adantl 481 . 2 ((𝜑𝑥 = 𝐴) → (𝑦𝑃 ↦ (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦)))) = (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))))
37 mirval.a . 2 (𝜑𝐴𝑃)
3823mptex 7260 . . 3 (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))) ∈ V
3938a1i 11 . 2 (𝜑 → (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))) ∈ V)
4027, 36, 37, 39fvmptd 7036 1 (𝜑 → (𝑆𝐴) = (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cmpt 5249  cfv 6573  crio 7403  (class class class)co 7448  Basecbs 17258  distcds 17320  TarskiGcstrkg 28453  Itvcitv 28459  LineGclng 28460  pInvGcmir 28678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-mir 28679
This theorem is referenced by:  mirfv  28682  mirf  28686
  Copyright terms: Public domain W3C validator