| Step | Hyp | Ref
| Expression |
| 1 | | mirval.s |
. . 3
⊢ 𝑆 = (pInvG‘𝐺) |
| 2 | | df-mir 28632 |
. . . 4
⊢ pInvG =
(𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ (𝑦 ∈ (Base‘𝑔) ↦ (℩𝑧 ∈ (Base‘𝑔)((𝑥(dist‘𝑔)𝑧) = (𝑥(dist‘𝑔)𝑦) ∧ 𝑥 ∈ (𝑧(Itv‘𝑔)𝑦)))))) |
| 3 | | fveq2 6876 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) |
| 4 | | mirval.p |
. . . . . 6
⊢ 𝑃 = (Base‘𝐺) |
| 5 | 3, 4 | eqtr4di 2788 |
. . . . 5
⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃) |
| 6 | | fveq2 6876 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝐺 → (dist‘𝑔) = (dist‘𝐺)) |
| 7 | | mirval.d |
. . . . . . . . . . 11
⊢ − =
(dist‘𝐺) |
| 8 | 6, 7 | eqtr4di 2788 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (dist‘𝑔) = − ) |
| 9 | 8 | oveqd 7422 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (𝑥(dist‘𝑔)𝑧) = (𝑥 − 𝑧)) |
| 10 | 8 | oveqd 7422 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (𝑥(dist‘𝑔)𝑦) = (𝑥 − 𝑦)) |
| 11 | 9, 10 | eqeq12d 2751 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → ((𝑥(dist‘𝑔)𝑧) = (𝑥(dist‘𝑔)𝑦) ↔ (𝑥 − 𝑧) = (𝑥 − 𝑦))) |
| 12 | | fveq2 6876 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝐺 → (Itv‘𝑔) = (Itv‘𝐺)) |
| 13 | | mirval.i |
. . . . . . . . . . 11
⊢ 𝐼 = (Itv‘𝐺) |
| 14 | 12, 13 | eqtr4di 2788 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (Itv‘𝑔) = 𝐼) |
| 15 | 14 | oveqd 7422 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (𝑧(Itv‘𝑔)𝑦) = (𝑧𝐼𝑦)) |
| 16 | 15 | eleq2d 2820 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (𝑥 ∈ (𝑧(Itv‘𝑔)𝑦) ↔ 𝑥 ∈ (𝑧𝐼𝑦))) |
| 17 | 11, 16 | anbi12d 632 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (((𝑥(dist‘𝑔)𝑧) = (𝑥(dist‘𝑔)𝑦) ∧ 𝑥 ∈ (𝑧(Itv‘𝑔)𝑦)) ↔ ((𝑥 − 𝑧) = (𝑥 − 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦)))) |
| 18 | 5, 17 | riotaeqbidv 7365 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (℩𝑧 ∈ (Base‘𝑔)((𝑥(dist‘𝑔)𝑧) = (𝑥(dist‘𝑔)𝑦) ∧ 𝑥 ∈ (𝑧(Itv‘𝑔)𝑦))) = (℩𝑧 ∈ 𝑃 ((𝑥 − 𝑧) = (𝑥 − 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦)))) |
| 19 | 5, 18 | mpteq12dv 5207 |
. . . . 5
⊢ (𝑔 = 𝐺 → (𝑦 ∈ (Base‘𝑔) ↦ (℩𝑧 ∈ (Base‘𝑔)((𝑥(dist‘𝑔)𝑧) = (𝑥(dist‘𝑔)𝑦) ∧ 𝑥 ∈ (𝑧(Itv‘𝑔)𝑦)))) = (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝑥 − 𝑧) = (𝑥 − 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))))) |
| 20 | 5, 19 | mpteq12dv 5207 |
. . . 4
⊢ (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔) ↦ (𝑦 ∈ (Base‘𝑔) ↦ (℩𝑧 ∈ (Base‘𝑔)((𝑥(dist‘𝑔)𝑧) = (𝑥(dist‘𝑔)𝑦) ∧ 𝑥 ∈ (𝑧(Itv‘𝑔)𝑦))))) = (𝑥 ∈ 𝑃 ↦ (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝑥 − 𝑧) = (𝑥 − 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦)))))) |
| 21 | | mirval.g |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| 22 | 21 | elexd 3483 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ V) |
| 23 | 4 | fvexi 6890 |
. . . . . 6
⊢ 𝑃 ∈ V |
| 24 | 23 | mptex 7215 |
. . . . 5
⊢ (𝑥 ∈ 𝑃 ↦ (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝑥 − 𝑧) = (𝑥 − 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))))) ∈ V |
| 25 | 24 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝑃 ↦ (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝑥 − 𝑧) = (𝑥 − 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))))) ∈ V) |
| 26 | 2, 20, 22, 25 | fvmptd3 7009 |
. . 3
⊢ (𝜑 → (pInvG‘𝐺) = (𝑥 ∈ 𝑃 ↦ (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝑥 − 𝑧) = (𝑥 − 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦)))))) |
| 27 | 1, 26 | eqtrid 2782 |
. 2
⊢ (𝜑 → 𝑆 = (𝑥 ∈ 𝑃 ↦ (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝑥 − 𝑧) = (𝑥 − 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦)))))) |
| 28 | | simpll 766 |
. . . . . . . 8
⊢ (((𝑥 = 𝐴 ∧ 𝑦 ∈ 𝑃) ∧ 𝑧 ∈ 𝑃) → 𝑥 = 𝐴) |
| 29 | 28 | oveq1d 7420 |
. . . . . . 7
⊢ (((𝑥 = 𝐴 ∧ 𝑦 ∈ 𝑃) ∧ 𝑧 ∈ 𝑃) → (𝑥 − 𝑧) = (𝐴 − 𝑧)) |
| 30 | 28 | oveq1d 7420 |
. . . . . . 7
⊢ (((𝑥 = 𝐴 ∧ 𝑦 ∈ 𝑃) ∧ 𝑧 ∈ 𝑃) → (𝑥 − 𝑦) = (𝐴 − 𝑦)) |
| 31 | 29, 30 | eqeq12d 2751 |
. . . . . 6
⊢ (((𝑥 = 𝐴 ∧ 𝑦 ∈ 𝑃) ∧ 𝑧 ∈ 𝑃) → ((𝑥 − 𝑧) = (𝑥 − 𝑦) ↔ (𝐴 − 𝑧) = (𝐴 − 𝑦))) |
| 32 | 28 | eleq1d 2819 |
. . . . . 6
⊢ (((𝑥 = 𝐴 ∧ 𝑦 ∈ 𝑃) ∧ 𝑧 ∈ 𝑃) → (𝑥 ∈ (𝑧𝐼𝑦) ↔ 𝐴 ∈ (𝑧𝐼𝑦))) |
| 33 | 31, 32 | anbi12d 632 |
. . . . 5
⊢ (((𝑥 = 𝐴 ∧ 𝑦 ∈ 𝑃) ∧ 𝑧 ∈ 𝑃) → (((𝑥 − 𝑧) = (𝑥 − 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦)) ↔ ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))) |
| 34 | 33 | riotabidva 7381 |
. . . 4
⊢ ((𝑥 = 𝐴 ∧ 𝑦 ∈ 𝑃) → (℩𝑧 ∈ 𝑃 ((𝑥 − 𝑧) = (𝑥 − 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))) = (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))) |
| 35 | 34 | mpteq2dva 5214 |
. . 3
⊢ (𝑥 = 𝐴 → (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝑥 − 𝑧) = (𝑥 − 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦)))) = (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))))) |
| 36 | 35 | adantl 481 |
. 2
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝑥 − 𝑧) = (𝑥 − 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦)))) = (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))))) |
| 37 | | mirval.a |
. 2
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| 38 | 23 | mptex 7215 |
. . 3
⊢ (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))) ∈ V |
| 39 | 38 | a1i 11 |
. 2
⊢ (𝜑 → (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))) ∈ V) |
| 40 | 27, 36, 37, 39 | fvmptd 6993 |
1
⊢ (𝜑 → (𝑆‘𝐴) = (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))))) |