MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirval Structured version   Visualization version   GIF version

Theorem mirval 28174
Description: Value of the point inversion function 𝑆. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 30-May-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
Assertion
Ref Expression
mirval (𝜑 → (𝑆𝐴) = (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐺,𝑧   𝑦,𝐼,𝑧   𝑦,𝑃,𝑧   𝜑,𝑦,𝑧   𝑦, ,𝑧
Allowed substitution hints:   𝑆(𝑦,𝑧)   𝐿(𝑦,𝑧)

Proof of Theorem mirval
Dummy variables 𝑥 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mirval.s . . 3 𝑆 = (pInvG‘𝐺)
2 df-mir 28172 . . . 4 pInvG = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ (𝑦 ∈ (Base‘𝑔) ↦ (𝑧 ∈ (Base‘𝑔)((𝑥(dist‘𝑔)𝑧) = (𝑥(dist‘𝑔)𝑦) ∧ 𝑥 ∈ (𝑧(Itv‘𝑔)𝑦))))))
3 fveq2 6891 . . . . . 6 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
4 mirval.p . . . . . 6 𝑃 = (Base‘𝐺)
53, 4eqtr4di 2789 . . . . 5 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃)
6 fveq2 6891 . . . . . . . . . . 11 (𝑔 = 𝐺 → (dist‘𝑔) = (dist‘𝐺))
7 mirval.d . . . . . . . . . . 11 = (dist‘𝐺)
86, 7eqtr4di 2789 . . . . . . . . . 10 (𝑔 = 𝐺 → (dist‘𝑔) = )
98oveqd 7429 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑥(dist‘𝑔)𝑧) = (𝑥 𝑧))
108oveqd 7429 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑥(dist‘𝑔)𝑦) = (𝑥 𝑦))
119, 10eqeq12d 2747 . . . . . . . 8 (𝑔 = 𝐺 → ((𝑥(dist‘𝑔)𝑧) = (𝑥(dist‘𝑔)𝑦) ↔ (𝑥 𝑧) = (𝑥 𝑦)))
12 fveq2 6891 . . . . . . . . . . 11 (𝑔 = 𝐺 → (Itv‘𝑔) = (Itv‘𝐺))
13 mirval.i . . . . . . . . . . 11 𝐼 = (Itv‘𝐺)
1412, 13eqtr4di 2789 . . . . . . . . . 10 (𝑔 = 𝐺 → (Itv‘𝑔) = 𝐼)
1514oveqd 7429 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑧(Itv‘𝑔)𝑦) = (𝑧𝐼𝑦))
1615eleq2d 2818 . . . . . . . 8 (𝑔 = 𝐺 → (𝑥 ∈ (𝑧(Itv‘𝑔)𝑦) ↔ 𝑥 ∈ (𝑧𝐼𝑦)))
1711, 16anbi12d 630 . . . . . . 7 (𝑔 = 𝐺 → (((𝑥(dist‘𝑔)𝑧) = (𝑥(dist‘𝑔)𝑦) ∧ 𝑥 ∈ (𝑧(Itv‘𝑔)𝑦)) ↔ ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))))
185, 17riotaeqbidv 7371 . . . . . 6 (𝑔 = 𝐺 → (𝑧 ∈ (Base‘𝑔)((𝑥(dist‘𝑔)𝑧) = (𝑥(dist‘𝑔)𝑦) ∧ 𝑥 ∈ (𝑧(Itv‘𝑔)𝑦))) = (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))))
195, 18mpteq12dv 5239 . . . . 5 (𝑔 = 𝐺 → (𝑦 ∈ (Base‘𝑔) ↦ (𝑧 ∈ (Base‘𝑔)((𝑥(dist‘𝑔)𝑧) = (𝑥(dist‘𝑔)𝑦) ∧ 𝑥 ∈ (𝑧(Itv‘𝑔)𝑦)))) = (𝑦𝑃 ↦ (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦)))))
205, 19mpteq12dv 5239 . . . 4 (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔) ↦ (𝑦 ∈ (Base‘𝑔) ↦ (𝑧 ∈ (Base‘𝑔)((𝑥(dist‘𝑔)𝑧) = (𝑥(dist‘𝑔)𝑦) ∧ 𝑥 ∈ (𝑧(Itv‘𝑔)𝑦))))) = (𝑥𝑃 ↦ (𝑦𝑃 ↦ (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))))))
21 mirval.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
2221elexd 3494 . . . 4 (𝜑𝐺 ∈ V)
234fvexi 6905 . . . . . 6 𝑃 ∈ V
2423mptex 7227 . . . . 5 (𝑥𝑃 ↦ (𝑦𝑃 ↦ (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))))) ∈ V
2524a1i 11 . . . 4 (𝜑 → (𝑥𝑃 ↦ (𝑦𝑃 ↦ (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))))) ∈ V)
262, 20, 22, 25fvmptd3 7021 . . 3 (𝜑 → (pInvG‘𝐺) = (𝑥𝑃 ↦ (𝑦𝑃 ↦ (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))))))
271, 26eqtrid 2783 . 2 (𝜑𝑆 = (𝑥𝑃 ↦ (𝑦𝑃 ↦ (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))))))
28 simpll 764 . . . . . . . 8 (((𝑥 = 𝐴𝑦𝑃) ∧ 𝑧𝑃) → 𝑥 = 𝐴)
2928oveq1d 7427 . . . . . . 7 (((𝑥 = 𝐴𝑦𝑃) ∧ 𝑧𝑃) → (𝑥 𝑧) = (𝐴 𝑧))
3028oveq1d 7427 . . . . . . 7 (((𝑥 = 𝐴𝑦𝑃) ∧ 𝑧𝑃) → (𝑥 𝑦) = (𝐴 𝑦))
3129, 30eqeq12d 2747 . . . . . 6 (((𝑥 = 𝐴𝑦𝑃) ∧ 𝑧𝑃) → ((𝑥 𝑧) = (𝑥 𝑦) ↔ (𝐴 𝑧) = (𝐴 𝑦)))
3228eleq1d 2817 . . . . . 6 (((𝑥 = 𝐴𝑦𝑃) ∧ 𝑧𝑃) → (𝑥 ∈ (𝑧𝐼𝑦) ↔ 𝐴 ∈ (𝑧𝐼𝑦)))
3331, 32anbi12d 630 . . . . 5 (((𝑥 = 𝐴𝑦𝑃) ∧ 𝑧𝑃) → (((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦)) ↔ ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))))
3433riotabidva 7388 . . . 4 ((𝑥 = 𝐴𝑦𝑃) → (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))) = (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))))
3534mpteq2dva 5248 . . 3 (𝑥 = 𝐴 → (𝑦𝑃 ↦ (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦)))) = (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))))
3635adantl 481 . 2 ((𝜑𝑥 = 𝐴) → (𝑦𝑃 ↦ (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦)))) = (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))))
37 mirval.a . 2 (𝜑𝐴𝑃)
3823mptex 7227 . . 3 (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))) ∈ V
3938a1i 11 . 2 (𝜑 → (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))) ∈ V)
4027, 36, 37, 39fvmptd 7005 1 (𝜑 → (𝑆𝐴) = (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  Vcvv 3473  cmpt 5231  cfv 6543  crio 7367  (class class class)co 7412  Basecbs 17149  distcds 17211  TarskiGcstrkg 27946  Itvcitv 27952  LineGclng 27953  pInvGcmir 28171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-mir 28172
This theorem is referenced by:  mirfv  28175  mirf  28179
  Copyright terms: Public domain W3C validator