MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirval Structured version   Visualization version   GIF version

Theorem mirval 28631
Description: Value of the point inversion function 𝑆. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 30-May-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
Assertion
Ref Expression
mirval (𝜑 → (𝑆𝐴) = (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐺,𝑧   𝑦,𝐼,𝑧   𝑦,𝑃,𝑧   𝜑,𝑦,𝑧   𝑦, ,𝑧
Allowed substitution hints:   𝑆(𝑦,𝑧)   𝐿(𝑦,𝑧)

Proof of Theorem mirval
Dummy variables 𝑥 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mirval.s . . 3 𝑆 = (pInvG‘𝐺)
2 df-mir 28629 . . . 4 pInvG = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ (𝑦 ∈ (Base‘𝑔) ↦ (𝑧 ∈ (Base‘𝑔)((𝑥(dist‘𝑔)𝑧) = (𝑥(dist‘𝑔)𝑦) ∧ 𝑥 ∈ (𝑧(Itv‘𝑔)𝑦))))))
3 fveq2 6822 . . . . . 6 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
4 mirval.p . . . . . 6 𝑃 = (Base‘𝐺)
53, 4eqtr4di 2784 . . . . 5 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃)
6 fveq2 6822 . . . . . . . . . . 11 (𝑔 = 𝐺 → (dist‘𝑔) = (dist‘𝐺))
7 mirval.d . . . . . . . . . . 11 = (dist‘𝐺)
86, 7eqtr4di 2784 . . . . . . . . . 10 (𝑔 = 𝐺 → (dist‘𝑔) = )
98oveqd 7363 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑥(dist‘𝑔)𝑧) = (𝑥 𝑧))
108oveqd 7363 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑥(dist‘𝑔)𝑦) = (𝑥 𝑦))
119, 10eqeq12d 2747 . . . . . . . 8 (𝑔 = 𝐺 → ((𝑥(dist‘𝑔)𝑧) = (𝑥(dist‘𝑔)𝑦) ↔ (𝑥 𝑧) = (𝑥 𝑦)))
12 fveq2 6822 . . . . . . . . . . 11 (𝑔 = 𝐺 → (Itv‘𝑔) = (Itv‘𝐺))
13 mirval.i . . . . . . . . . . 11 𝐼 = (Itv‘𝐺)
1412, 13eqtr4di 2784 . . . . . . . . . 10 (𝑔 = 𝐺 → (Itv‘𝑔) = 𝐼)
1514oveqd 7363 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑧(Itv‘𝑔)𝑦) = (𝑧𝐼𝑦))
1615eleq2d 2817 . . . . . . . 8 (𝑔 = 𝐺 → (𝑥 ∈ (𝑧(Itv‘𝑔)𝑦) ↔ 𝑥 ∈ (𝑧𝐼𝑦)))
1711, 16anbi12d 632 . . . . . . 7 (𝑔 = 𝐺 → (((𝑥(dist‘𝑔)𝑧) = (𝑥(dist‘𝑔)𝑦) ∧ 𝑥 ∈ (𝑧(Itv‘𝑔)𝑦)) ↔ ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))))
185, 17riotaeqbidv 7306 . . . . . 6 (𝑔 = 𝐺 → (𝑧 ∈ (Base‘𝑔)((𝑥(dist‘𝑔)𝑧) = (𝑥(dist‘𝑔)𝑦) ∧ 𝑥 ∈ (𝑧(Itv‘𝑔)𝑦))) = (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))))
195, 18mpteq12dv 5178 . . . . 5 (𝑔 = 𝐺 → (𝑦 ∈ (Base‘𝑔) ↦ (𝑧 ∈ (Base‘𝑔)((𝑥(dist‘𝑔)𝑧) = (𝑥(dist‘𝑔)𝑦) ∧ 𝑥 ∈ (𝑧(Itv‘𝑔)𝑦)))) = (𝑦𝑃 ↦ (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦)))))
205, 19mpteq12dv 5178 . . . 4 (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔) ↦ (𝑦 ∈ (Base‘𝑔) ↦ (𝑧 ∈ (Base‘𝑔)((𝑥(dist‘𝑔)𝑧) = (𝑥(dist‘𝑔)𝑦) ∧ 𝑥 ∈ (𝑧(Itv‘𝑔)𝑦))))) = (𝑥𝑃 ↦ (𝑦𝑃 ↦ (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))))))
21 mirval.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
2221elexd 3460 . . . 4 (𝜑𝐺 ∈ V)
234fvexi 6836 . . . . . 6 𝑃 ∈ V
2423mptex 7157 . . . . 5 (𝑥𝑃 ↦ (𝑦𝑃 ↦ (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))))) ∈ V
2524a1i 11 . . . 4 (𝜑 → (𝑥𝑃 ↦ (𝑦𝑃 ↦ (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))))) ∈ V)
262, 20, 22, 25fvmptd3 6952 . . 3 (𝜑 → (pInvG‘𝐺) = (𝑥𝑃 ↦ (𝑦𝑃 ↦ (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))))))
271, 26eqtrid 2778 . 2 (𝜑𝑆 = (𝑥𝑃 ↦ (𝑦𝑃 ↦ (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))))))
28 simpll 766 . . . . . . . 8 (((𝑥 = 𝐴𝑦𝑃) ∧ 𝑧𝑃) → 𝑥 = 𝐴)
2928oveq1d 7361 . . . . . . 7 (((𝑥 = 𝐴𝑦𝑃) ∧ 𝑧𝑃) → (𝑥 𝑧) = (𝐴 𝑧))
3028oveq1d 7361 . . . . . . 7 (((𝑥 = 𝐴𝑦𝑃) ∧ 𝑧𝑃) → (𝑥 𝑦) = (𝐴 𝑦))
3129, 30eqeq12d 2747 . . . . . 6 (((𝑥 = 𝐴𝑦𝑃) ∧ 𝑧𝑃) → ((𝑥 𝑧) = (𝑥 𝑦) ↔ (𝐴 𝑧) = (𝐴 𝑦)))
3228eleq1d 2816 . . . . . 6 (((𝑥 = 𝐴𝑦𝑃) ∧ 𝑧𝑃) → (𝑥 ∈ (𝑧𝐼𝑦) ↔ 𝐴 ∈ (𝑧𝐼𝑦)))
3331, 32anbi12d 632 . . . . 5 (((𝑥 = 𝐴𝑦𝑃) ∧ 𝑧𝑃) → (((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦)) ↔ ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))))
3433riotabidva 7322 . . . 4 ((𝑥 = 𝐴𝑦𝑃) → (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))) = (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))))
3534mpteq2dva 5184 . . 3 (𝑥 = 𝐴 → (𝑦𝑃 ↦ (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦)))) = (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))))
3635adantl 481 . 2 ((𝜑𝑥 = 𝐴) → (𝑦𝑃 ↦ (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦)))) = (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))))
37 mirval.a . 2 (𝜑𝐴𝑃)
3823mptex 7157 . . 3 (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))) ∈ V
3938a1i 11 . 2 (𝜑 → (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))) ∈ V)
4027, 36, 37, 39fvmptd 6936 1 (𝜑 → (𝑆𝐴) = (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cmpt 5172  cfv 6481  crio 7302  (class class class)co 7346  Basecbs 17117  distcds 17167  TarskiGcstrkg 28403  Itvcitv 28409  LineGclng 28410  pInvGcmir 28628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-mir 28629
This theorem is referenced by:  mirfv  28632  mirf  28636
  Copyright terms: Public domain W3C validator