Step | Hyp | Ref
| Expression |
1 | | mirval.s |
. . 3
⊢ 𝑆 = (pInvG‘𝐺) |
2 | | df-mir 26918 |
. . . 4
⊢ pInvG =
(𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ (𝑦 ∈ (Base‘𝑔) ↦ (℩𝑧 ∈ (Base‘𝑔)((𝑥(dist‘𝑔)𝑧) = (𝑥(dist‘𝑔)𝑦) ∧ 𝑥 ∈ (𝑧(Itv‘𝑔)𝑦)))))) |
3 | | fveq2 6756 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) |
4 | | mirval.p |
. . . . . 6
⊢ 𝑃 = (Base‘𝐺) |
5 | 3, 4 | eqtr4di 2797 |
. . . . 5
⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃) |
6 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝐺 → (dist‘𝑔) = (dist‘𝐺)) |
7 | | mirval.d |
. . . . . . . . . . 11
⊢ − =
(dist‘𝐺) |
8 | 6, 7 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (dist‘𝑔) = − ) |
9 | 8 | oveqd 7272 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (𝑥(dist‘𝑔)𝑧) = (𝑥 − 𝑧)) |
10 | 8 | oveqd 7272 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (𝑥(dist‘𝑔)𝑦) = (𝑥 − 𝑦)) |
11 | 9, 10 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → ((𝑥(dist‘𝑔)𝑧) = (𝑥(dist‘𝑔)𝑦) ↔ (𝑥 − 𝑧) = (𝑥 − 𝑦))) |
12 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝐺 → (Itv‘𝑔) = (Itv‘𝐺)) |
13 | | mirval.i |
. . . . . . . . . . 11
⊢ 𝐼 = (Itv‘𝐺) |
14 | 12, 13 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (Itv‘𝑔) = 𝐼) |
15 | 14 | oveqd 7272 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (𝑧(Itv‘𝑔)𝑦) = (𝑧𝐼𝑦)) |
16 | 15 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (𝑥 ∈ (𝑧(Itv‘𝑔)𝑦) ↔ 𝑥 ∈ (𝑧𝐼𝑦))) |
17 | 11, 16 | anbi12d 630 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (((𝑥(dist‘𝑔)𝑧) = (𝑥(dist‘𝑔)𝑦) ∧ 𝑥 ∈ (𝑧(Itv‘𝑔)𝑦)) ↔ ((𝑥 − 𝑧) = (𝑥 − 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦)))) |
18 | 5, 17 | riotaeqbidv 7215 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (℩𝑧 ∈ (Base‘𝑔)((𝑥(dist‘𝑔)𝑧) = (𝑥(dist‘𝑔)𝑦) ∧ 𝑥 ∈ (𝑧(Itv‘𝑔)𝑦))) = (℩𝑧 ∈ 𝑃 ((𝑥 − 𝑧) = (𝑥 − 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦)))) |
19 | 5, 18 | mpteq12dv 5161 |
. . . . 5
⊢ (𝑔 = 𝐺 → (𝑦 ∈ (Base‘𝑔) ↦ (℩𝑧 ∈ (Base‘𝑔)((𝑥(dist‘𝑔)𝑧) = (𝑥(dist‘𝑔)𝑦) ∧ 𝑥 ∈ (𝑧(Itv‘𝑔)𝑦)))) = (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝑥 − 𝑧) = (𝑥 − 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))))) |
20 | 5, 19 | mpteq12dv 5161 |
. . . 4
⊢ (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔) ↦ (𝑦 ∈ (Base‘𝑔) ↦ (℩𝑧 ∈ (Base‘𝑔)((𝑥(dist‘𝑔)𝑧) = (𝑥(dist‘𝑔)𝑦) ∧ 𝑥 ∈ (𝑧(Itv‘𝑔)𝑦))))) = (𝑥 ∈ 𝑃 ↦ (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝑥 − 𝑧) = (𝑥 − 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦)))))) |
21 | | mirval.g |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
22 | 21 | elexd 3442 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ V) |
23 | 4 | fvexi 6770 |
. . . . . 6
⊢ 𝑃 ∈ V |
24 | 23 | mptex 7081 |
. . . . 5
⊢ (𝑥 ∈ 𝑃 ↦ (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝑥 − 𝑧) = (𝑥 − 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))))) ∈ V |
25 | 24 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝑃 ↦ (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝑥 − 𝑧) = (𝑥 − 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))))) ∈ V) |
26 | 2, 20, 22, 25 | fvmptd3 6880 |
. . 3
⊢ (𝜑 → (pInvG‘𝐺) = (𝑥 ∈ 𝑃 ↦ (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝑥 − 𝑧) = (𝑥 − 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦)))))) |
27 | 1, 26 | syl5eq 2791 |
. 2
⊢ (𝜑 → 𝑆 = (𝑥 ∈ 𝑃 ↦ (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝑥 − 𝑧) = (𝑥 − 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦)))))) |
28 | | simpll 763 |
. . . . . . . 8
⊢ (((𝑥 = 𝐴 ∧ 𝑦 ∈ 𝑃) ∧ 𝑧 ∈ 𝑃) → 𝑥 = 𝐴) |
29 | 28 | oveq1d 7270 |
. . . . . . 7
⊢ (((𝑥 = 𝐴 ∧ 𝑦 ∈ 𝑃) ∧ 𝑧 ∈ 𝑃) → (𝑥 − 𝑧) = (𝐴 − 𝑧)) |
30 | 28 | oveq1d 7270 |
. . . . . . 7
⊢ (((𝑥 = 𝐴 ∧ 𝑦 ∈ 𝑃) ∧ 𝑧 ∈ 𝑃) → (𝑥 − 𝑦) = (𝐴 − 𝑦)) |
31 | 29, 30 | eqeq12d 2754 |
. . . . . 6
⊢ (((𝑥 = 𝐴 ∧ 𝑦 ∈ 𝑃) ∧ 𝑧 ∈ 𝑃) → ((𝑥 − 𝑧) = (𝑥 − 𝑦) ↔ (𝐴 − 𝑧) = (𝐴 − 𝑦))) |
32 | 28 | eleq1d 2823 |
. . . . . 6
⊢ (((𝑥 = 𝐴 ∧ 𝑦 ∈ 𝑃) ∧ 𝑧 ∈ 𝑃) → (𝑥 ∈ (𝑧𝐼𝑦) ↔ 𝐴 ∈ (𝑧𝐼𝑦))) |
33 | 31, 32 | anbi12d 630 |
. . . . 5
⊢ (((𝑥 = 𝐴 ∧ 𝑦 ∈ 𝑃) ∧ 𝑧 ∈ 𝑃) → (((𝑥 − 𝑧) = (𝑥 − 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦)) ↔ ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))) |
34 | 33 | riotabidva 7232 |
. . . 4
⊢ ((𝑥 = 𝐴 ∧ 𝑦 ∈ 𝑃) → (℩𝑧 ∈ 𝑃 ((𝑥 − 𝑧) = (𝑥 − 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))) = (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))) |
35 | 34 | mpteq2dva 5170 |
. . 3
⊢ (𝑥 = 𝐴 → (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝑥 − 𝑧) = (𝑥 − 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦)))) = (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))))) |
36 | 35 | adantl 481 |
. 2
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝑥 − 𝑧) = (𝑥 − 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦)))) = (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))))) |
37 | | mirval.a |
. 2
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
38 | 23 | mptex 7081 |
. . 3
⊢ (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))) ∈ V |
39 | 38 | a1i 11 |
. 2
⊢ (𝜑 → (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))) ∈ V) |
40 | 27, 36, 37, 39 | fvmptd 6864 |
1
⊢ (𝜑 → (𝑆‘𝐴) = (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))))) |