Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-mndtc Structured version   Visualization version   GIF version

Definition df-mndtc 49567
Description: Definition of the function converting a monoid to a category. Example 3.3(4.e) of [Adamek] p. 24.

The definition of the base set is arbitrary. The whole extensible structure becomes the object here (see mndtcbasval 49569), instead of just the base set, as is the case in Example 3.3(4.e) of [Adamek] p. 24.

The resulting category is defined entirely, up to isomorphism, by mndtcbas 49570, mndtchom 49573, mndtcco 49574. Use those instead.

See example 3.26(3) of [Adamek] p. 33 for more on isomorphism.

"MndToCat" was taken instead of "MndCat" because the latter might mean the category of monoids. (Contributed by Zhi Wang, 22-Sep-2024.) (New usage is discouraged.)

Assertion
Ref Expression
df-mndtc MndToCat = (𝑚 ∈ Mnd ↦ {⟨(Base‘ndx), {𝑚}⟩, ⟨(Hom ‘ndx), {⟨𝑚, 𝑚, (Base‘𝑚)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}⟩})

Detailed syntax breakdown of Definition df-mndtc
StepHypRef Expression
1 cmndtc 49566 . 2 class MndToCat
2 vm . . 3 setvar 𝑚
3 cmnd 18661 . . 3 class Mnd
4 cnx 17163 . . . . . 6 class ndx
5 cbs 17179 . . . . . 6 class Base
64, 5cfv 6511 . . . . 5 class (Base‘ndx)
72cv 1539 . . . . . 6 class 𝑚
87csn 4589 . . . . 5 class {𝑚}
96, 8cop 4595 . . . 4 class ⟨(Base‘ndx), {𝑚}⟩
10 chom 17231 . . . . . 6 class Hom
114, 10cfv 6511 . . . . 5 class (Hom ‘ndx)
127, 5cfv 6511 . . . . . . 7 class (Base‘𝑚)
137, 7, 12cotp 4597 . . . . . 6 class 𝑚, 𝑚, (Base‘𝑚)⟩
1413csn 4589 . . . . 5 class {⟨𝑚, 𝑚, (Base‘𝑚)⟩}
1511, 14cop 4595 . . . 4 class ⟨(Hom ‘ndx), {⟨𝑚, 𝑚, (Base‘𝑚)⟩}⟩
16 cco 17232 . . . . . 6 class comp
174, 16cfv 6511 . . . . 5 class (comp‘ndx)
187, 7, 7cotp 4597 . . . . . . 7 class 𝑚, 𝑚, 𝑚
19 cplusg 17220 . . . . . . . 8 class +g
207, 19cfv 6511 . . . . . . 7 class (+g𝑚)
2118, 20cop 4595 . . . . . 6 class ⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩
2221csn 4589 . . . . 5 class {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}
2317, 22cop 4595 . . . 4 class ⟨(comp‘ndx), {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}⟩
249, 15, 23ctp 4593 . . 3 class {⟨(Base‘ndx), {𝑚}⟩, ⟨(Hom ‘ndx), {⟨𝑚, 𝑚, (Base‘𝑚)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}⟩}
252, 3, 24cmpt 5188 . 2 class (𝑚 ∈ Mnd ↦ {⟨(Base‘ndx), {𝑚}⟩, ⟨(Hom ‘ndx), {⟨𝑚, 𝑚, (Base‘𝑚)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}⟩})
261, 25wceq 1540 1 wff MndToCat = (𝑚 ∈ Mnd ↦ {⟨(Base‘ndx), {𝑚}⟩, ⟨(Hom ‘ndx), {⟨𝑚, 𝑚, (Base‘𝑚)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}⟩})
Colors of variables: wff setvar class
This definition is referenced by:  mndtcval  49568
  Copyright terms: Public domain W3C validator