Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-mndtc Structured version   Visualization version   GIF version

Definition df-mndtc 49610
Description: Definition of the function converting a monoid to a category. Example 3.3(4.e) of [Adamek] p. 24.

The definition of the base set is arbitrary. The whole extensible structure becomes the object here (see mndtcbasval 49612), instead of just the base set, as is the case in Example 3.3(4.e) of [Adamek] p. 24.

The resulting category is defined entirely, up to isomorphism, by mndtcbas 49613, mndtchom 49616, mndtcco 49617. Use those instead.

See example 3.26(3) of [Adamek] p. 33 for more on isomorphism.

"MndToCat" was taken instead of "MndCat" because the latter might mean the category of monoids. (Contributed by Zhi Wang, 22-Sep-2024.) (New usage is discouraged.)

Assertion
Ref Expression
df-mndtc MndToCat = (𝑚 ∈ Mnd ↦ {⟨(Base‘ndx), {𝑚}⟩, ⟨(Hom ‘ndx), {⟨𝑚, 𝑚, (Base‘𝑚)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}⟩})

Detailed syntax breakdown of Definition df-mndtc
StepHypRef Expression
1 cmndtc 49609 . 2 class MndToCat
2 vm . . 3 setvar 𝑚
3 cmnd 18637 . . 3 class Mnd
4 cnx 17099 . . . . . 6 class ndx
5 cbs 17115 . . . . . 6 class Base
64, 5cfv 6476 . . . . 5 class (Base‘ndx)
72cv 1540 . . . . . 6 class 𝑚
87csn 4571 . . . . 5 class {𝑚}
96, 8cop 4577 . . . 4 class ⟨(Base‘ndx), {𝑚}⟩
10 chom 17167 . . . . . 6 class Hom
114, 10cfv 6476 . . . . 5 class (Hom ‘ndx)
127, 5cfv 6476 . . . . . . 7 class (Base‘𝑚)
137, 7, 12cotp 4579 . . . . . 6 class 𝑚, 𝑚, (Base‘𝑚)⟩
1413csn 4571 . . . . 5 class {⟨𝑚, 𝑚, (Base‘𝑚)⟩}
1511, 14cop 4577 . . . 4 class ⟨(Hom ‘ndx), {⟨𝑚, 𝑚, (Base‘𝑚)⟩}⟩
16 cco 17168 . . . . . 6 class comp
174, 16cfv 6476 . . . . 5 class (comp‘ndx)
187, 7, 7cotp 4579 . . . . . . 7 class 𝑚, 𝑚, 𝑚
19 cplusg 17156 . . . . . . . 8 class +g
207, 19cfv 6476 . . . . . . 7 class (+g𝑚)
2118, 20cop 4577 . . . . . 6 class ⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩
2221csn 4571 . . . . 5 class {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}
2317, 22cop 4577 . . . 4 class ⟨(comp‘ndx), {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}⟩
249, 15, 23ctp 4575 . . 3 class {⟨(Base‘ndx), {𝑚}⟩, ⟨(Hom ‘ndx), {⟨𝑚, 𝑚, (Base‘𝑚)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}⟩}
252, 3, 24cmpt 5167 . 2 class (𝑚 ∈ Mnd ↦ {⟨(Base‘ndx), {𝑚}⟩, ⟨(Hom ‘ndx), {⟨𝑚, 𝑚, (Base‘𝑚)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}⟩})
261, 25wceq 1541 1 wff MndToCat = (𝑚 ∈ Mnd ↦ {⟨(Base‘ndx), {𝑚}⟩, ⟨(Hom ‘ndx), {⟨𝑚, 𝑚, (Base‘𝑚)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}⟩})
Colors of variables: wff setvar class
This definition is referenced by:  mndtcval  49611
  Copyright terms: Public domain W3C validator