Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-mndtc Structured version   Visualization version   GIF version

Definition df-mndtc 48276
Description: Definition of the function converting a monoid to a category. Example 3.3(4.e) of [Adamek] p. 24.

The definition of the base set is arbitrary. The whole extensible structure becomes the object here (see mndtcbasval 48278), instead of just the base set, as is the case in Example 3.3(4.e) of [Adamek] p. 24.

The resulting category is defined entirely, up to isomorphism, by mndtcbas 48279, mndtchom 48282, mndtcco 48283. Use those instead.

See example 3.26(3) of [Adamek] p. 33 for more on isomorphism.

"MndToCat" was taken instead of "MndCat" because the latter might mean the category of monoids. (Contributed by Zhi Wang, 22-Sep-2024.) (New usage is discouraged.)

Assertion
Ref Expression
df-mndtc MndToCat = (𝑚 ∈ Mnd ↦ {⟨(Base‘ndx), {𝑚}⟩, ⟨(Hom ‘ndx), {⟨𝑚, 𝑚, (Base‘𝑚)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}⟩})

Detailed syntax breakdown of Definition df-mndtc
StepHypRef Expression
1 cmndtc 48275 . 2 class MndToCat
2 vm . . 3 setvar 𝑚
3 cmnd 18697 . . 3 class Mnd
4 cnx 17165 . . . . . 6 class ndx
5 cbs 17183 . . . . . 6 class Base
64, 5cfv 6549 . . . . 5 class (Base‘ndx)
72cv 1532 . . . . . 6 class 𝑚
87csn 4630 . . . . 5 class {𝑚}
96, 8cop 4636 . . . 4 class ⟨(Base‘ndx), {𝑚}⟩
10 chom 17247 . . . . . 6 class Hom
114, 10cfv 6549 . . . . 5 class (Hom ‘ndx)
127, 5cfv 6549 . . . . . . 7 class (Base‘𝑚)
137, 7, 12cotp 4638 . . . . . 6 class 𝑚, 𝑚, (Base‘𝑚)⟩
1413csn 4630 . . . . 5 class {⟨𝑚, 𝑚, (Base‘𝑚)⟩}
1511, 14cop 4636 . . . 4 class ⟨(Hom ‘ndx), {⟨𝑚, 𝑚, (Base‘𝑚)⟩}⟩
16 cco 17248 . . . . . 6 class comp
174, 16cfv 6549 . . . . 5 class (comp‘ndx)
187, 7, 7cotp 4638 . . . . . . 7 class 𝑚, 𝑚, 𝑚
19 cplusg 17236 . . . . . . . 8 class +g
207, 19cfv 6549 . . . . . . 7 class (+g𝑚)
2118, 20cop 4636 . . . . . 6 class ⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩
2221csn 4630 . . . . 5 class {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}
2317, 22cop 4636 . . . 4 class ⟨(comp‘ndx), {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}⟩
249, 15, 23ctp 4634 . . 3 class {⟨(Base‘ndx), {𝑚}⟩, ⟨(Hom ‘ndx), {⟨𝑚, 𝑚, (Base‘𝑚)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}⟩}
252, 3, 24cmpt 5232 . 2 class (𝑚 ∈ Mnd ↦ {⟨(Base‘ndx), {𝑚}⟩, ⟨(Hom ‘ndx), {⟨𝑚, 𝑚, (Base‘𝑚)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}⟩})
261, 25wceq 1533 1 wff MndToCat = (𝑚 ∈ Mnd ↦ {⟨(Base‘ndx), {𝑚}⟩, ⟨(Hom ‘ndx), {⟨𝑚, 𝑚, (Base‘𝑚)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}⟩})
Colors of variables: wff setvar class
This definition is referenced by:  mndtcval  48277
  Copyright terms: Public domain W3C validator