Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-mndtc Structured version   Visualization version   GIF version

Definition df-mndtc 49403
Description: Definition of the function converting a monoid to a category. Example 3.3(4.e) of [Adamek] p. 24.

The definition of the base set is arbitrary. The whole extensible structure becomes the object here (see mndtcbasval 49405), instead of just the base set, as is the case in Example 3.3(4.e) of [Adamek] p. 24.

The resulting category is defined entirely, up to isomorphism, by mndtcbas 49406, mndtchom 49409, mndtcco 49410. Use those instead.

See example 3.26(3) of [Adamek] p. 33 for more on isomorphism.

"MndToCat" was taken instead of "MndCat" because the latter might mean the category of monoids. (Contributed by Zhi Wang, 22-Sep-2024.) (New usage is discouraged.)

Assertion
Ref Expression
df-mndtc MndToCat = (𝑚 ∈ Mnd ↦ {⟨(Base‘ndx), {𝑚}⟩, ⟨(Hom ‘ndx), {⟨𝑚, 𝑚, (Base‘𝑚)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}⟩})

Detailed syntax breakdown of Definition df-mndtc
StepHypRef Expression
1 cmndtc 49402 . 2 class MndToCat
2 vm . . 3 setvar 𝑚
3 cmnd 18710 . . 3 class Mnd
4 cnx 17210 . . . . . 6 class ndx
5 cbs 17226 . . . . . 6 class Base
64, 5cfv 6530 . . . . 5 class (Base‘ndx)
72cv 1539 . . . . . 6 class 𝑚
87csn 4601 . . . . 5 class {𝑚}
96, 8cop 4607 . . . 4 class ⟨(Base‘ndx), {𝑚}⟩
10 chom 17280 . . . . . 6 class Hom
114, 10cfv 6530 . . . . 5 class (Hom ‘ndx)
127, 5cfv 6530 . . . . . . 7 class (Base‘𝑚)
137, 7, 12cotp 4609 . . . . . 6 class 𝑚, 𝑚, (Base‘𝑚)⟩
1413csn 4601 . . . . 5 class {⟨𝑚, 𝑚, (Base‘𝑚)⟩}
1511, 14cop 4607 . . . 4 class ⟨(Hom ‘ndx), {⟨𝑚, 𝑚, (Base‘𝑚)⟩}⟩
16 cco 17281 . . . . . 6 class comp
174, 16cfv 6530 . . . . 5 class (comp‘ndx)
187, 7, 7cotp 4609 . . . . . . 7 class 𝑚, 𝑚, 𝑚
19 cplusg 17269 . . . . . . . 8 class +g
207, 19cfv 6530 . . . . . . 7 class (+g𝑚)
2118, 20cop 4607 . . . . . 6 class ⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩
2221csn 4601 . . . . 5 class {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}
2317, 22cop 4607 . . . 4 class ⟨(comp‘ndx), {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}⟩
249, 15, 23ctp 4605 . . 3 class {⟨(Base‘ndx), {𝑚}⟩, ⟨(Hom ‘ndx), {⟨𝑚, 𝑚, (Base‘𝑚)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}⟩}
252, 3, 24cmpt 5201 . 2 class (𝑚 ∈ Mnd ↦ {⟨(Base‘ndx), {𝑚}⟩, ⟨(Hom ‘ndx), {⟨𝑚, 𝑚, (Base‘𝑚)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}⟩})
261, 25wceq 1540 1 wff MndToCat = (𝑚 ∈ Mnd ↦ {⟨(Base‘ndx), {𝑚}⟩, ⟨(Hom ‘ndx), {⟨𝑚, 𝑚, (Base‘𝑚)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}⟩})
Colors of variables: wff setvar class
This definition is referenced by:  mndtcval  49404
  Copyright terms: Public domain W3C validator