Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-mndtc Structured version   Visualization version   GIF version

Definition df-mndtc 49739
Description: Definition of the function converting a monoid to a category. Example 3.3(4.e) of [Adamek] p. 24.

The definition of the base set is arbitrary. The whole extensible structure becomes the object here (see mndtcbasval 49741), instead of just the base set, as is the case in Example 3.3(4.e) of [Adamek] p. 24.

The resulting category is defined entirely, up to isomorphism, by mndtcbas 49742, mndtchom 49745, mndtcco 49746. Use those instead.

See example 3.26(3) of [Adamek] p. 33 for more on isomorphism.

"MndToCat" was taken instead of "MndCat" because the latter might mean the category of monoids. (Contributed by Zhi Wang, 22-Sep-2024.) (New usage is discouraged.)

Assertion
Ref Expression
df-mndtc MndToCat = (𝑚 ∈ Mnd ↦ {⟨(Base‘ndx), {𝑚}⟩, ⟨(Hom ‘ndx), {⟨𝑚, 𝑚, (Base‘𝑚)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}⟩})

Detailed syntax breakdown of Definition df-mndtc
StepHypRef Expression
1 cmndtc 49738 . 2 class MndToCat
2 vm . . 3 setvar 𝑚
3 cmnd 18650 . . 3 class Mnd
4 cnx 17111 . . . . . 6 class ndx
5 cbs 17127 . . . . . 6 class Base
64, 5cfv 6489 . . . . 5 class (Base‘ndx)
72cv 1540 . . . . . 6 class 𝑚
87csn 4577 . . . . 5 class {𝑚}
96, 8cop 4583 . . . 4 class ⟨(Base‘ndx), {𝑚}⟩
10 chom 17179 . . . . . 6 class Hom
114, 10cfv 6489 . . . . 5 class (Hom ‘ndx)
127, 5cfv 6489 . . . . . . 7 class (Base‘𝑚)
137, 7, 12cotp 4585 . . . . . 6 class 𝑚, 𝑚, (Base‘𝑚)⟩
1413csn 4577 . . . . 5 class {⟨𝑚, 𝑚, (Base‘𝑚)⟩}
1511, 14cop 4583 . . . 4 class ⟨(Hom ‘ndx), {⟨𝑚, 𝑚, (Base‘𝑚)⟩}⟩
16 cco 17180 . . . . . 6 class comp
174, 16cfv 6489 . . . . 5 class (comp‘ndx)
187, 7, 7cotp 4585 . . . . . . 7 class 𝑚, 𝑚, 𝑚
19 cplusg 17168 . . . . . . . 8 class +g
207, 19cfv 6489 . . . . . . 7 class (+g𝑚)
2118, 20cop 4583 . . . . . 6 class ⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩
2221csn 4577 . . . . 5 class {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}
2317, 22cop 4583 . . . 4 class ⟨(comp‘ndx), {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}⟩
249, 15, 23ctp 4581 . . 3 class {⟨(Base‘ndx), {𝑚}⟩, ⟨(Hom ‘ndx), {⟨𝑚, 𝑚, (Base‘𝑚)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}⟩}
252, 3, 24cmpt 5176 . 2 class (𝑚 ∈ Mnd ↦ {⟨(Base‘ndx), {𝑚}⟩, ⟨(Hom ‘ndx), {⟨𝑚, 𝑚, (Base‘𝑚)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}⟩})
261, 25wceq 1541 1 wff MndToCat = (𝑚 ∈ Mnd ↦ {⟨(Base‘ndx), {𝑚}⟩, ⟨(Hom ‘ndx), {⟨𝑚, 𝑚, (Base‘𝑚)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}⟩})
Colors of variables: wff setvar class
This definition is referenced by:  mndtcval  49740
  Copyright terms: Public domain W3C validator