Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndtcco Structured version   Visualization version   GIF version

Theorem mndtcco 45809
Description: The composition of the category built from a monoid is the monoid operation. (Contributed by Zhi Wang, 22-Sep-2024.)
Hypotheses
Ref Expression
mndtcbas.c (𝜑𝐶 = (MndToCat‘𝑀))
mndtcbas.m (𝜑𝑀 ∈ Mnd)
mndtcbas.b (𝜑𝐵 = (Base‘𝐶))
mndtchom.x (𝜑𝑋𝐵)
mndtchom.y (𝜑𝑌𝐵)
mndtcco.z (𝜑𝑍𝐵)
mndtcco.o (𝜑· = (comp‘𝐶))
Assertion
Ref Expression
mndtcco (𝜑 → (⟨𝑋, 𝑌· 𝑍) = (+g𝑀))

Proof of Theorem mndtcco
StepHypRef Expression
1 mndtcco.o . . . 4 (𝜑· = (comp‘𝐶))
2 mndtcbas.c . . . . . 6 (𝜑𝐶 = (MndToCat‘𝑀))
3 mndtcbas.m . . . . . 6 (𝜑𝑀 ∈ Mnd)
42, 3mndtcval 45804 . . . . 5 (𝜑𝐶 = {⟨(Base‘ndx), {𝑀}⟩, ⟨(Hom ‘ndx), {⟨𝑀, 𝑀, (Base‘𝑀)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}⟩})
5 catstr 17325 . . . . 5 {⟨(Base‘ndx), {𝑀}⟩, ⟨(Hom ‘ndx), {⟨𝑀, 𝑀, (Base‘𝑀)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}⟩} Struct ⟨1, 15⟩
6 ccoid 16786 . . . . 5 comp = Slot (comp‘ndx)
7 snsstp3 4703 . . . . 5 {⟨(comp‘ndx), {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}⟩} ⊆ {⟨(Base‘ndx), {𝑀}⟩, ⟨(Hom ‘ndx), {⟨𝑀, 𝑀, (Base‘𝑀)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}⟩}
8 snex 5295 . . . . . 6 {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩} ∈ V
98a1i 11 . . . . 5 (𝜑 → {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩} ∈ V)
10 eqid 2738 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
114, 5, 6, 7, 9, 10strfv3 16628 . . . 4 (𝜑 → (comp‘𝐶) = {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩})
121, 11eqtrd 2773 . . 3 (𝜑· = {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩})
13 mndtcbas.b . . . . 5 (𝜑𝐵 = (Base‘𝐶))
14 mndtchom.x . . . . 5 (𝜑𝑋𝐵)
152, 3, 13, 14mndtcob 45807 . . . 4 (𝜑𝑋 = 𝑀)
16 mndtchom.y . . . . 5 (𝜑𝑌𝐵)
172, 3, 13, 16mndtcob 45807 . . . 4 (𝜑𝑌 = 𝑀)
1815, 17opeq12d 4766 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ = ⟨𝑀, 𝑀⟩)
19 mndtcco.z . . . 4 (𝜑𝑍𝐵)
202, 3, 13, 19mndtcob 45807 . . 3 (𝜑𝑍 = 𝑀)
2112, 18, 20oveq123d 7185 . 2 (𝜑 → (⟨𝑋, 𝑌· 𝑍) = (⟨𝑀, 𝑀⟩{⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}𝑀))
22 df-ov 7167 . . 3 (⟨𝑀, 𝑀⟩{⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}𝑀) = ({⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}‘⟨⟨𝑀, 𝑀⟩, 𝑀⟩)
23 df-ot 4522 . . . 4 𝑀, 𝑀, 𝑀⟩ = ⟨⟨𝑀, 𝑀⟩, 𝑀
2423fveq2i 6671 . . 3 ({⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}‘⟨𝑀, 𝑀, 𝑀⟩) = ({⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}‘⟨⟨𝑀, 𝑀⟩, 𝑀⟩)
25 otex 5320 . . . 4 𝑀, 𝑀, 𝑀⟩ ∈ V
26 fvex 6681 . . . 4 (+g𝑀) ∈ V
2725, 26fvsn 6947 . . 3 ({⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}‘⟨𝑀, 𝑀, 𝑀⟩) = (+g𝑀)
2822, 24, 273eqtr2i 2767 . 2 (⟨𝑀, 𝑀⟩{⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}𝑀) = (+g𝑀)
2921, 28eqtrdi 2789 1 (𝜑 → (⟨𝑋, 𝑌· 𝑍) = (+g𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2113  Vcvv 3397  {csn 4513  {ctp 4517  cop 4519  cotp 4521  cfv 6333  (class class class)co 7164  1c1 10609  5c5 11767  cdc 12172  ndxcnx 16576  Basecbs 16579  +gcplusg 16661  Hom chom 16672  compcco 16673  Mndcmnd 18020  MndToCatcmndtc 45802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-ot 4522  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-1st 7707  df-2nd 7708  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-er 8313  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-nn 11710  df-2 11772  df-3 11773  df-4 11774  df-5 11775  df-6 11776  df-7 11777  df-8 11778  df-9 11779  df-n0 11970  df-z 12056  df-dec 12173  df-uz 12318  df-fz 12975  df-struct 16581  df-ndx 16582  df-slot 16583  df-base 16585  df-hom 16685  df-cco 16686  df-mndtc 45803
This theorem is referenced by:  mndtcco2  45810  mndtccatid  45811
  Copyright terms: Public domain W3C validator