| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mndtcco | Structured version Visualization version GIF version | ||
| Description: The composition of the category built from a monoid is the monoid operation. (Contributed by Zhi Wang, 22-Sep-2024.) |
| Ref | Expression |
|---|---|
| mndtcbas.c | ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) |
| mndtcbas.m | ⊢ (𝜑 → 𝑀 ∈ Mnd) |
| mndtcbas.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
| mndtchom.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| mndtchom.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| mndtcco.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| mndtcco.o | ⊢ (𝜑 → · = (comp‘𝐶)) |
| Ref | Expression |
|---|---|
| mndtcco | ⊢ (𝜑 → (〈𝑋, 𝑌〉 · 𝑍) = (+g‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndtcco.o | . . . 4 ⊢ (𝜑 → · = (comp‘𝐶)) | |
| 2 | mndtcbas.c | . . . . . 6 ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) | |
| 3 | mndtcbas.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ Mnd) | |
| 4 | 2, 3 | mndtcval 49565 | . . . . 5 ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), {𝑀}〉, 〈(Hom ‘ndx), {〈𝑀, 𝑀, (Base‘𝑀)〉}〉, 〈(comp‘ndx), {〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}〉}) |
| 5 | catstr 17922 | . . . . 5 ⊢ {〈(Base‘ndx), {𝑀}〉, 〈(Hom ‘ndx), {〈𝑀, 𝑀, (Base‘𝑀)〉}〉, 〈(comp‘ndx), {〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}〉} Struct 〈1, ;15〉 | |
| 6 | ccoid 17377 | . . . . 5 ⊢ comp = Slot (comp‘ndx) | |
| 7 | snsstp3 4782 | . . . . 5 ⊢ {〈(comp‘ndx), {〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}〉} ⊆ {〈(Base‘ndx), {𝑀}〉, 〈(Hom ‘ndx), {〈𝑀, 𝑀, (Base‘𝑀)〉}〉, 〈(comp‘ndx), {〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}〉} | |
| 8 | snex 5391 | . . . . . 6 ⊢ {〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉} ∈ V | |
| 9 | 8 | a1i 11 | . . . . 5 ⊢ (𝜑 → {〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉} ∈ V) |
| 10 | eqid 2729 | . . . . 5 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 11 | 4, 5, 6, 7, 9, 10 | strfv3 17174 | . . . 4 ⊢ (𝜑 → (comp‘𝐶) = {〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}) |
| 12 | 1, 11 | eqtrd 2764 | . . 3 ⊢ (𝜑 → · = {〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}) |
| 13 | mndtcbas.b | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | |
| 14 | mndtchom.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 15 | 2, 3, 13, 14 | mndtcob 49568 | . . . 4 ⊢ (𝜑 → 𝑋 = 𝑀) |
| 16 | mndtchom.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 17 | 2, 3, 13, 16 | mndtcob 49568 | . . . 4 ⊢ (𝜑 → 𝑌 = 𝑀) |
| 18 | 15, 17 | opeq12d 4845 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 = 〈𝑀, 𝑀〉) |
| 19 | mndtcco.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 20 | 2, 3, 13, 19 | mndtcob 49568 | . . 3 ⊢ (𝜑 → 𝑍 = 𝑀) |
| 21 | 12, 18, 20 | oveq123d 7408 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉 · 𝑍) = (〈𝑀, 𝑀〉{〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}𝑀)) |
| 22 | df-ov 7390 | . . 3 ⊢ (〈𝑀, 𝑀〉{〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}𝑀) = ({〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}‘〈〈𝑀, 𝑀〉, 𝑀〉) | |
| 23 | df-ot 4598 | . . . 4 ⊢ 〈𝑀, 𝑀, 𝑀〉 = 〈〈𝑀, 𝑀〉, 𝑀〉 | |
| 24 | 23 | fveq2i 6861 | . . 3 ⊢ ({〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}‘〈𝑀, 𝑀, 𝑀〉) = ({〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}‘〈〈𝑀, 𝑀〉, 𝑀〉) |
| 25 | otex 5425 | . . . 4 ⊢ 〈𝑀, 𝑀, 𝑀〉 ∈ V | |
| 26 | fvex 6871 | . . . 4 ⊢ (+g‘𝑀) ∈ V | |
| 27 | 25, 26 | fvsn 7155 | . . 3 ⊢ ({〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}‘〈𝑀, 𝑀, 𝑀〉) = (+g‘𝑀) |
| 28 | 22, 24, 27 | 3eqtr2i 2758 | . 2 ⊢ (〈𝑀, 𝑀〉{〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}𝑀) = (+g‘𝑀) |
| 29 | 21, 28 | eqtrdi 2780 | 1 ⊢ (𝜑 → (〈𝑋, 𝑌〉 · 𝑍) = (+g‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 {csn 4589 {ctp 4593 〈cop 4595 〈cotp 4597 ‘cfv 6511 (class class class)co 7387 1c1 11069 5c5 12244 ;cdc 12649 ndxcnx 17163 Basecbs 17179 +gcplusg 17220 Hom chom 17231 compcco 17232 Mndcmnd 18661 MndToCatcmndtc 49563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-ot 4598 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-slot 17152 df-ndx 17164 df-base 17180 df-hom 17244 df-cco 17245 df-mndtc 49564 |
| This theorem is referenced by: mndtcco2 49572 mndtccatid 49573 oppgoppcco 49577 |
| Copyright terms: Public domain | W3C validator |