Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndtcco Structured version   Visualization version   GIF version

Theorem mndtcco 45986
Description: The composition of the category built from a monoid is the monoid operation. (Contributed by Zhi Wang, 22-Sep-2024.)
Hypotheses
Ref Expression
mndtcbas.c (𝜑𝐶 = (MndToCat‘𝑀))
mndtcbas.m (𝜑𝑀 ∈ Mnd)
mndtcbas.b (𝜑𝐵 = (Base‘𝐶))
mndtchom.x (𝜑𝑋𝐵)
mndtchom.y (𝜑𝑌𝐵)
mndtcco.z (𝜑𝑍𝐵)
mndtcco.o (𝜑· = (comp‘𝐶))
Assertion
Ref Expression
mndtcco (𝜑 → (⟨𝑋, 𝑌· 𝑍) = (+g𝑀))

Proof of Theorem mndtcco
StepHypRef Expression
1 mndtcco.o . . . 4 (𝜑· = (comp‘𝐶))
2 mndtcbas.c . . . . . 6 (𝜑𝐶 = (MndToCat‘𝑀))
3 mndtcbas.m . . . . . 6 (𝜑𝑀 ∈ Mnd)
42, 3mndtcval 45980 . . . . 5 (𝜑𝐶 = {⟨(Base‘ndx), {𝑀}⟩, ⟨(Hom ‘ndx), {⟨𝑀, 𝑀, (Base‘𝑀)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}⟩})
5 catstr 17419 . . . . 5 {⟨(Base‘ndx), {𝑀}⟩, ⟨(Hom ‘ndx), {⟨𝑀, 𝑀, (Base‘𝑀)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}⟩} Struct ⟨1, 15⟩
6 ccoid 16875 . . . . 5 comp = Slot (comp‘ndx)
7 snsstp3 4717 . . . . 5 {⟨(comp‘ndx), {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}⟩} ⊆ {⟨(Base‘ndx), {𝑀}⟩, ⟨(Hom ‘ndx), {⟨𝑀, 𝑀, (Base‘𝑀)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}⟩}
8 snex 5309 . . . . . 6 {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩} ∈ V
98a1i 11 . . . . 5 (𝜑 → {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩} ∈ V)
10 eqid 2736 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
114, 5, 6, 7, 9, 10strfv3 16714 . . . 4 (𝜑 → (comp‘𝐶) = {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩})
121, 11eqtrd 2771 . . 3 (𝜑· = {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩})
13 mndtcbas.b . . . . 5 (𝜑𝐵 = (Base‘𝐶))
14 mndtchom.x . . . . 5 (𝜑𝑋𝐵)
152, 3, 13, 14mndtcob 45983 . . . 4 (𝜑𝑋 = 𝑀)
16 mndtchom.y . . . . 5 (𝜑𝑌𝐵)
172, 3, 13, 16mndtcob 45983 . . . 4 (𝜑𝑌 = 𝑀)
1815, 17opeq12d 4778 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ = ⟨𝑀, 𝑀⟩)
19 mndtcco.z . . . 4 (𝜑𝑍𝐵)
202, 3, 13, 19mndtcob 45983 . . 3 (𝜑𝑍 = 𝑀)
2112, 18, 20oveq123d 7212 . 2 (𝜑 → (⟨𝑋, 𝑌· 𝑍) = (⟨𝑀, 𝑀⟩{⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}𝑀))
22 df-ov 7194 . . 3 (⟨𝑀, 𝑀⟩{⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}𝑀) = ({⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}‘⟨⟨𝑀, 𝑀⟩, 𝑀⟩)
23 df-ot 4536 . . . 4 𝑀, 𝑀, 𝑀⟩ = ⟨⟨𝑀, 𝑀⟩, 𝑀
2423fveq2i 6698 . . 3 ({⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}‘⟨𝑀, 𝑀, 𝑀⟩) = ({⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}‘⟨⟨𝑀, 𝑀⟩, 𝑀⟩)
25 otex 5334 . . . 4 𝑀, 𝑀, 𝑀⟩ ∈ V
26 fvex 6708 . . . 4 (+g𝑀) ∈ V
2725, 26fvsn 6974 . . 3 ({⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}‘⟨𝑀, 𝑀, 𝑀⟩) = (+g𝑀)
2822, 24, 273eqtr2i 2765 . 2 (⟨𝑀, 𝑀⟩{⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}𝑀) = (+g𝑀)
2921, 28eqtrdi 2787 1 (𝜑 → (⟨𝑋, 𝑌· 𝑍) = (+g𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2112  Vcvv 3398  {csn 4527  {ctp 4531  cop 4533  cotp 4535  cfv 6358  (class class class)co 7191  1c1 10695  5c5 11853  cdc 12258  ndxcnx 16663  Basecbs 16666  +gcplusg 16749  Hom chom 16760  compcco 16761  Mndcmnd 18127  MndToCatcmndtc 45978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-ot 4536  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-fz 13061  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-hom 16773  df-cco 16774  df-mndtc 45979
This theorem is referenced by:  mndtcco2  45987  mndtccatid  45988
  Copyright terms: Public domain W3C validator