Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndtcco Structured version   Visualization version   GIF version

Theorem mndtcco 49247
Description: The composition of the category built from a monoid is the monoid operation. (Contributed by Zhi Wang, 22-Sep-2024.)
Hypotheses
Ref Expression
mndtcbas.c (𝜑𝐶 = (MndToCat‘𝑀))
mndtcbas.m (𝜑𝑀 ∈ Mnd)
mndtcbas.b (𝜑𝐵 = (Base‘𝐶))
mndtchom.x (𝜑𝑋𝐵)
mndtchom.y (𝜑𝑌𝐵)
mndtcco.z (𝜑𝑍𝐵)
mndtcco.o (𝜑· = (comp‘𝐶))
Assertion
Ref Expression
mndtcco (𝜑 → (⟨𝑋, 𝑌· 𝑍) = (+g𝑀))

Proof of Theorem mndtcco
StepHypRef Expression
1 mndtcco.o . . . 4 (𝜑· = (comp‘𝐶))
2 mndtcbas.c . . . . . 6 (𝜑𝐶 = (MndToCat‘𝑀))
3 mndtcbas.m . . . . . 6 (𝜑𝑀 ∈ Mnd)
42, 3mndtcval 49241 . . . . 5 (𝜑𝐶 = {⟨(Base‘ndx), {𝑀}⟩, ⟨(Hom ‘ndx), {⟨𝑀, 𝑀, (Base‘𝑀)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}⟩})
5 catstr 17958 . . . . 5 {⟨(Base‘ndx), {𝑀}⟩, ⟨(Hom ‘ndx), {⟨𝑀, 𝑀, (Base‘𝑀)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}⟩} Struct ⟨1, 15⟩
6 ccoid 17413 . . . . 5 comp = Slot (comp‘ndx)
7 snsstp3 4791 . . . . 5 {⟨(comp‘ndx), {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}⟩} ⊆ {⟨(Base‘ndx), {𝑀}⟩, ⟨(Hom ‘ndx), {⟨𝑀, 𝑀, (Base‘𝑀)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}⟩}
8 snex 5403 . . . . . 6 {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩} ∈ V
98a1i 11 . . . . 5 (𝜑 → {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩} ∈ V)
10 eqid 2734 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
114, 5, 6, 7, 9, 10strfv3 17208 . . . 4 (𝜑 → (comp‘𝐶) = {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩})
121, 11eqtrd 2769 . . 3 (𝜑· = {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩})
13 mndtcbas.b . . . . 5 (𝜑𝐵 = (Base‘𝐶))
14 mndtchom.x . . . . 5 (𝜑𝑋𝐵)
152, 3, 13, 14mndtcob 49244 . . . 4 (𝜑𝑋 = 𝑀)
16 mndtchom.y . . . . 5 (𝜑𝑌𝐵)
172, 3, 13, 16mndtcob 49244 . . . 4 (𝜑𝑌 = 𝑀)
1815, 17opeq12d 4854 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ = ⟨𝑀, 𝑀⟩)
19 mndtcco.z . . . 4 (𝜑𝑍𝐵)
202, 3, 13, 19mndtcob 49244 . . 3 (𝜑𝑍 = 𝑀)
2112, 18, 20oveq123d 7420 . 2 (𝜑 → (⟨𝑋, 𝑌· 𝑍) = (⟨𝑀, 𝑀⟩{⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}𝑀))
22 df-ov 7402 . . 3 (⟨𝑀, 𝑀⟩{⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}𝑀) = ({⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}‘⟨⟨𝑀, 𝑀⟩, 𝑀⟩)
23 df-ot 4608 . . . 4 𝑀, 𝑀, 𝑀⟩ = ⟨⟨𝑀, 𝑀⟩, 𝑀
2423fveq2i 6875 . . 3 ({⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}‘⟨𝑀, 𝑀, 𝑀⟩) = ({⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}‘⟨⟨𝑀, 𝑀⟩, 𝑀⟩)
25 otex 5437 . . . 4 𝑀, 𝑀, 𝑀⟩ ∈ V
26 fvex 6885 . . . 4 (+g𝑀) ∈ V
2725, 26fvsn 7169 . . 3 ({⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}‘⟨𝑀, 𝑀, 𝑀⟩) = (+g𝑀)
2822, 24, 273eqtr2i 2763 . 2 (⟨𝑀, 𝑀⟩{⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}𝑀) = (+g𝑀)
2921, 28eqtrdi 2785 1 (𝜑 → (⟨𝑋, 𝑌· 𝑍) = (+g𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  Vcvv 3457  {csn 4599  {ctp 4603  cop 4605  cotp 4607  cfv 6527  (class class class)co 7399  1c1 11122  5c5 12290  cdc 12700  ndxcnx 17197  Basecbs 17213  +gcplusg 17256  Hom chom 17267  compcco 17268  Mndcmnd 18697  MndToCatcmndtc 49239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-ot 4608  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-1st 7982  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-1o 8474  df-er 8713  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-nn 12233  df-2 12295  df-3 12296  df-4 12297  df-5 12298  df-6 12299  df-7 12300  df-8 12301  df-9 12302  df-n0 12494  df-z 12581  df-dec 12701  df-uz 12845  df-fz 13514  df-struct 17151  df-slot 17186  df-ndx 17198  df-base 17214  df-hom 17280  df-cco 17281  df-mndtc 49240
This theorem is referenced by:  mndtcco2  49248  mndtccatid  49249  oppgoppcco  49253
  Copyright terms: Public domain W3C validator