Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndtcco Structured version   Visualization version   GIF version

Theorem mndtcco 49571
Description: The composition of the category built from a monoid is the monoid operation. (Contributed by Zhi Wang, 22-Sep-2024.)
Hypotheses
Ref Expression
mndtcbas.c (𝜑𝐶 = (MndToCat‘𝑀))
mndtcbas.m (𝜑𝑀 ∈ Mnd)
mndtcbas.b (𝜑𝐵 = (Base‘𝐶))
mndtchom.x (𝜑𝑋𝐵)
mndtchom.y (𝜑𝑌𝐵)
mndtcco.z (𝜑𝑍𝐵)
mndtcco.o (𝜑· = (comp‘𝐶))
Assertion
Ref Expression
mndtcco (𝜑 → (⟨𝑋, 𝑌· 𝑍) = (+g𝑀))

Proof of Theorem mndtcco
StepHypRef Expression
1 mndtcco.o . . . 4 (𝜑· = (comp‘𝐶))
2 mndtcbas.c . . . . . 6 (𝜑𝐶 = (MndToCat‘𝑀))
3 mndtcbas.m . . . . . 6 (𝜑𝑀 ∈ Mnd)
42, 3mndtcval 49565 . . . . 5 (𝜑𝐶 = {⟨(Base‘ndx), {𝑀}⟩, ⟨(Hom ‘ndx), {⟨𝑀, 𝑀, (Base‘𝑀)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}⟩})
5 catstr 17922 . . . . 5 {⟨(Base‘ndx), {𝑀}⟩, ⟨(Hom ‘ndx), {⟨𝑀, 𝑀, (Base‘𝑀)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}⟩} Struct ⟨1, 15⟩
6 ccoid 17377 . . . . 5 comp = Slot (comp‘ndx)
7 snsstp3 4782 . . . . 5 {⟨(comp‘ndx), {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}⟩} ⊆ {⟨(Base‘ndx), {𝑀}⟩, ⟨(Hom ‘ndx), {⟨𝑀, 𝑀, (Base‘𝑀)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}⟩}
8 snex 5391 . . . . . 6 {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩} ∈ V
98a1i 11 . . . . 5 (𝜑 → {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩} ∈ V)
10 eqid 2729 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
114, 5, 6, 7, 9, 10strfv3 17174 . . . 4 (𝜑 → (comp‘𝐶) = {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩})
121, 11eqtrd 2764 . . 3 (𝜑· = {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩})
13 mndtcbas.b . . . . 5 (𝜑𝐵 = (Base‘𝐶))
14 mndtchom.x . . . . 5 (𝜑𝑋𝐵)
152, 3, 13, 14mndtcob 49568 . . . 4 (𝜑𝑋 = 𝑀)
16 mndtchom.y . . . . 5 (𝜑𝑌𝐵)
172, 3, 13, 16mndtcob 49568 . . . 4 (𝜑𝑌 = 𝑀)
1815, 17opeq12d 4845 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ = ⟨𝑀, 𝑀⟩)
19 mndtcco.z . . . 4 (𝜑𝑍𝐵)
202, 3, 13, 19mndtcob 49568 . . 3 (𝜑𝑍 = 𝑀)
2112, 18, 20oveq123d 7408 . 2 (𝜑 → (⟨𝑋, 𝑌· 𝑍) = (⟨𝑀, 𝑀⟩{⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}𝑀))
22 df-ov 7390 . . 3 (⟨𝑀, 𝑀⟩{⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}𝑀) = ({⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}‘⟨⟨𝑀, 𝑀⟩, 𝑀⟩)
23 df-ot 4598 . . . 4 𝑀, 𝑀, 𝑀⟩ = ⟨⟨𝑀, 𝑀⟩, 𝑀
2423fveq2i 6861 . . 3 ({⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}‘⟨𝑀, 𝑀, 𝑀⟩) = ({⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}‘⟨⟨𝑀, 𝑀⟩, 𝑀⟩)
25 otex 5425 . . . 4 𝑀, 𝑀, 𝑀⟩ ∈ V
26 fvex 6871 . . . 4 (+g𝑀) ∈ V
2725, 26fvsn 7155 . . 3 ({⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}‘⟨𝑀, 𝑀, 𝑀⟩) = (+g𝑀)
2822, 24, 273eqtr2i 2758 . 2 (⟨𝑀, 𝑀⟩{⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}𝑀) = (+g𝑀)
2921, 28eqtrdi 2780 1 (𝜑 → (⟨𝑋, 𝑌· 𝑍) = (+g𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  {csn 4589  {ctp 4593  cop 4595  cotp 4597  cfv 6511  (class class class)co 7387  1c1 11069  5c5 12244  cdc 12649  ndxcnx 17163  Basecbs 17179  +gcplusg 17220  Hom chom 17231  compcco 17232  Mndcmnd 18661  MndToCatcmndtc 49563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-hom 17244  df-cco 17245  df-mndtc 49564
This theorem is referenced by:  mndtcco2  49572  mndtccatid  49573  oppgoppcco  49577
  Copyright terms: Public domain W3C validator