![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mndtcco | Structured version Visualization version GIF version |
Description: The composition of the category built from a monoid is the monoid operation. (Contributed by Zhi Wang, 22-Sep-2024.) |
Ref | Expression |
---|---|
mndtcbas.c | ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) |
mndtcbas.m | ⊢ (𝜑 → 𝑀 ∈ Mnd) |
mndtcbas.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
mndtchom.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
mndtchom.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
mndtcco.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
mndtcco.o | ⊢ (𝜑 → · = (comp‘𝐶)) |
Ref | Expression |
---|---|
mndtcco | ⊢ (𝜑 → (〈𝑋, 𝑌〉 · 𝑍) = (+g‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndtcco.o | . . . 4 ⊢ (𝜑 → · = (comp‘𝐶)) | |
2 | mndtcbas.c | . . . . . 6 ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) | |
3 | mndtcbas.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ Mnd) | |
4 | 2, 3 | mndtcval 47658 | . . . . 5 ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), {𝑀}〉, 〈(Hom ‘ndx), {〈𝑀, 𝑀, (Base‘𝑀)〉}〉, 〈(comp‘ndx), {〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}〉}) |
5 | catstr 17905 | . . . . 5 ⊢ {〈(Base‘ndx), {𝑀}〉, 〈(Hom ‘ndx), {〈𝑀, 𝑀, (Base‘𝑀)〉}〉, 〈(comp‘ndx), {〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}〉} Struct 〈1, ;15〉 | |
6 | ccoid 17355 | . . . . 5 ⊢ comp = Slot (comp‘ndx) | |
7 | snsstp3 4820 | . . . . 5 ⊢ {〈(comp‘ndx), {〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}〉} ⊆ {〈(Base‘ndx), {𝑀}〉, 〈(Hom ‘ndx), {〈𝑀, 𝑀, (Base‘𝑀)〉}〉, 〈(comp‘ndx), {〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}〉} | |
8 | snex 5430 | . . . . . 6 ⊢ {〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉} ∈ V | |
9 | 8 | a1i 11 | . . . . 5 ⊢ (𝜑 → {〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉} ∈ V) |
10 | eqid 2732 | . . . . 5 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
11 | 4, 5, 6, 7, 9, 10 | strfv3 17134 | . . . 4 ⊢ (𝜑 → (comp‘𝐶) = {〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}) |
12 | 1, 11 | eqtrd 2772 | . . 3 ⊢ (𝜑 → · = {〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}) |
13 | mndtcbas.b | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | |
14 | mndtchom.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
15 | 2, 3, 13, 14 | mndtcob 47661 | . . . 4 ⊢ (𝜑 → 𝑋 = 𝑀) |
16 | mndtchom.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
17 | 2, 3, 13, 16 | mndtcob 47661 | . . . 4 ⊢ (𝜑 → 𝑌 = 𝑀) |
18 | 15, 17 | opeq12d 4880 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 = 〈𝑀, 𝑀〉) |
19 | mndtcco.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
20 | 2, 3, 13, 19 | mndtcob 47661 | . . 3 ⊢ (𝜑 → 𝑍 = 𝑀) |
21 | 12, 18, 20 | oveq123d 7426 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉 · 𝑍) = (〈𝑀, 𝑀〉{〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}𝑀)) |
22 | df-ov 7408 | . . 3 ⊢ (〈𝑀, 𝑀〉{〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}𝑀) = ({〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}‘〈〈𝑀, 𝑀〉, 𝑀〉) | |
23 | df-ot 4636 | . . . 4 ⊢ 〈𝑀, 𝑀, 𝑀〉 = 〈〈𝑀, 𝑀〉, 𝑀〉 | |
24 | 23 | fveq2i 6891 | . . 3 ⊢ ({〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}‘〈𝑀, 𝑀, 𝑀〉) = ({〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}‘〈〈𝑀, 𝑀〉, 𝑀〉) |
25 | otex 5464 | . . . 4 ⊢ 〈𝑀, 𝑀, 𝑀〉 ∈ V | |
26 | fvex 6901 | . . . 4 ⊢ (+g‘𝑀) ∈ V | |
27 | 25, 26 | fvsn 7175 | . . 3 ⊢ ({〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}‘〈𝑀, 𝑀, 𝑀〉) = (+g‘𝑀) |
28 | 22, 24, 27 | 3eqtr2i 2766 | . 2 ⊢ (〈𝑀, 𝑀〉{〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}𝑀) = (+g‘𝑀) |
29 | 21, 28 | eqtrdi 2788 | 1 ⊢ (𝜑 → (〈𝑋, 𝑌〉 · 𝑍) = (+g‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3474 {csn 4627 {ctp 4631 〈cop 4633 〈cotp 4635 ‘cfv 6540 (class class class)co 7405 1c1 11107 5c5 12266 ;cdc 12673 ndxcnx 17122 Basecbs 17140 +gcplusg 17193 Hom chom 17204 compcco 17205 Mndcmnd 18621 MndToCatcmndtc 47656 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-ot 4636 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17141 df-hom 17217 df-cco 17218 df-mndtc 47657 |
This theorem is referenced by: mndtcco2 47665 mndtccatid 47666 |
Copyright terms: Public domain | W3C validator |