![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mndtcco | Structured version Visualization version GIF version |
Description: The composition of the category built from a monoid is the monoid operation. (Contributed by Zhi Wang, 22-Sep-2024.) |
Ref | Expression |
---|---|
mndtcbas.c | β’ (π β πΆ = (MndToCatβπ)) |
mndtcbas.m | β’ (π β π β Mnd) |
mndtcbas.b | β’ (π β π΅ = (BaseβπΆ)) |
mndtchom.x | β’ (π β π β π΅) |
mndtchom.y | β’ (π β π β π΅) |
mndtcco.z | β’ (π β π β π΅) |
mndtcco.o | β’ (π β Β· = (compβπΆ)) |
Ref | Expression |
---|---|
mndtcco | β’ (π β (β¨π, πβ© Β· π) = (+gβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndtcco.o | . . . 4 β’ (π β Β· = (compβπΆ)) | |
2 | mndtcbas.c | . . . . . 6 β’ (π β πΆ = (MndToCatβπ)) | |
3 | mndtcbas.m | . . . . . 6 β’ (π β π β Mnd) | |
4 | 2, 3 | mndtcval 47961 | . . . . 5 β’ (π β πΆ = {β¨(Baseβndx), {π}β©, β¨(Hom βndx), {β¨π, π, (Baseβπ)β©}β©, β¨(compβndx), {β¨β¨π, π, πβ©, (+gβπ)β©}β©}) |
5 | catstr 17918 | . . . . 5 β’ {β¨(Baseβndx), {π}β©, β¨(Hom βndx), {β¨π, π, (Baseβπ)β©}β©, β¨(compβndx), {β¨β¨π, π, πβ©, (+gβπ)β©}β©} Struct β¨1, ;15β© | |
6 | ccoid 17365 | . . . . 5 β’ comp = Slot (compβndx) | |
7 | snsstp3 4816 | . . . . 5 β’ {β¨(compβndx), {β¨β¨π, π, πβ©, (+gβπ)β©}β©} β {β¨(Baseβndx), {π}β©, β¨(Hom βndx), {β¨π, π, (Baseβπ)β©}β©, β¨(compβndx), {β¨β¨π, π, πβ©, (+gβπ)β©}β©} | |
8 | snex 5424 | . . . . . 6 β’ {β¨β¨π, π, πβ©, (+gβπ)β©} β V | |
9 | 8 | a1i 11 | . . . . 5 β’ (π β {β¨β¨π, π, πβ©, (+gβπ)β©} β V) |
10 | eqid 2726 | . . . . 5 β’ (compβπΆ) = (compβπΆ) | |
11 | 4, 5, 6, 7, 9, 10 | strfv3 17144 | . . . 4 β’ (π β (compβπΆ) = {β¨β¨π, π, πβ©, (+gβπ)β©}) |
12 | 1, 11 | eqtrd 2766 | . . 3 β’ (π β Β· = {β¨β¨π, π, πβ©, (+gβπ)β©}) |
13 | mndtcbas.b | . . . . 5 β’ (π β π΅ = (BaseβπΆ)) | |
14 | mndtchom.x | . . . . 5 β’ (π β π β π΅) | |
15 | 2, 3, 13, 14 | mndtcob 47964 | . . . 4 β’ (π β π = π) |
16 | mndtchom.y | . . . . 5 β’ (π β π β π΅) | |
17 | 2, 3, 13, 16 | mndtcob 47964 | . . . 4 β’ (π β π = π) |
18 | 15, 17 | opeq12d 4876 | . . 3 β’ (π β β¨π, πβ© = β¨π, πβ©) |
19 | mndtcco.z | . . . 4 β’ (π β π β π΅) | |
20 | 2, 3, 13, 19 | mndtcob 47964 | . . 3 β’ (π β π = π) |
21 | 12, 18, 20 | oveq123d 7425 | . 2 β’ (π β (β¨π, πβ© Β· π) = (β¨π, πβ©{β¨β¨π, π, πβ©, (+gβπ)β©}π)) |
22 | df-ov 7407 | . . 3 β’ (β¨π, πβ©{β¨β¨π, π, πβ©, (+gβπ)β©}π) = ({β¨β¨π, π, πβ©, (+gβπ)β©}ββ¨β¨π, πβ©, πβ©) | |
23 | df-ot 4632 | . . . 4 β’ β¨π, π, πβ© = β¨β¨π, πβ©, πβ© | |
24 | 23 | fveq2i 6887 | . . 3 β’ ({β¨β¨π, π, πβ©, (+gβπ)β©}ββ¨π, π, πβ©) = ({β¨β¨π, π, πβ©, (+gβπ)β©}ββ¨β¨π, πβ©, πβ©) |
25 | otex 5458 | . . . 4 β’ β¨π, π, πβ© β V | |
26 | fvex 6897 | . . . 4 β’ (+gβπ) β V | |
27 | 25, 26 | fvsn 7174 | . . 3 β’ ({β¨β¨π, π, πβ©, (+gβπ)β©}ββ¨π, π, πβ©) = (+gβπ) |
28 | 22, 24, 27 | 3eqtr2i 2760 | . 2 β’ (β¨π, πβ©{β¨β¨π, π, πβ©, (+gβπ)β©}π) = (+gβπ) |
29 | 21, 28 | eqtrdi 2782 | 1 β’ (π β (β¨π, πβ© Β· π) = (+gβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 Vcvv 3468 {csn 4623 {ctp 4627 β¨cop 4629 β¨cotp 4631 βcfv 6536 (class class class)co 7404 1c1 11110 5c5 12271 ;cdc 12678 ndxcnx 17132 Basecbs 17150 +gcplusg 17203 Hom chom 17214 compcco 17215 Mndcmnd 18664 MndToCatcmndtc 47959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-ot 4632 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-z 12560 df-dec 12679 df-uz 12824 df-fz 13488 df-struct 17086 df-slot 17121 df-ndx 17133 df-base 17151 df-hom 17227 df-cco 17228 df-mndtc 47960 |
This theorem is referenced by: mndtcco2 47968 mndtccatid 47969 |
Copyright terms: Public domain | W3C validator |