![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mndtchom | Structured version Visualization version GIF version |
Description: The only hom-set of the category built from a monoid is the base set of the monoid. (Contributed by Zhi Wang, 22-Sep-2024.) |
Ref | Expression |
---|---|
mndtcbas.c | ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) |
mndtcbas.m | ⊢ (𝜑 → 𝑀 ∈ Mnd) |
mndtcbas.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
mndtchom.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
mndtchom.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
mndtchom.h | ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) |
Ref | Expression |
---|---|
mndtchom | ⊢ (𝜑 → (𝑋𝐻𝑌) = (Base‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndtchom.h | . . . 4 ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) | |
2 | mndtcbas.c | . . . . . 6 ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) | |
3 | mndtcbas.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ Mnd) | |
4 | 2, 3 | mndtcval 48406 | . . . . 5 ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), {𝑀}〉, 〈(Hom ‘ndx), {〈𝑀, 𝑀, (Base‘𝑀)〉}〉, 〈(comp‘ndx), {〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}〉}) |
5 | catstr 17981 | . . . . 5 ⊢ {〈(Base‘ndx), {𝑀}〉, 〈(Hom ‘ndx), {〈𝑀, 𝑀, (Base‘𝑀)〉}〉, 〈(comp‘ndx), {〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}〉} Struct 〈1, ;15〉 | |
6 | homid 17426 | . . . . 5 ⊢ Hom = Slot (Hom ‘ndx) | |
7 | snsstp2 4826 | . . . . 5 ⊢ {〈(Hom ‘ndx), {〈𝑀, 𝑀, (Base‘𝑀)〉}〉} ⊆ {〈(Base‘ndx), {𝑀}〉, 〈(Hom ‘ndx), {〈𝑀, 𝑀, (Base‘𝑀)〉}〉, 〈(comp‘ndx), {〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}〉} | |
8 | snex 5437 | . . . . . 6 ⊢ {〈𝑀, 𝑀, (Base‘𝑀)〉} ∈ V | |
9 | 8 | a1i 11 | . . . . 5 ⊢ (𝜑 → {〈𝑀, 𝑀, (Base‘𝑀)〉} ∈ V) |
10 | eqid 2726 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
11 | 4, 5, 6, 7, 9, 10 | strfv3 17207 | . . . 4 ⊢ (𝜑 → (Hom ‘𝐶) = {〈𝑀, 𝑀, (Base‘𝑀)〉}) |
12 | 1, 11 | eqtrd 2766 | . . 3 ⊢ (𝜑 → 𝐻 = {〈𝑀, 𝑀, (Base‘𝑀)〉}) |
13 | mndtcbas.b | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | |
14 | mndtchom.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
15 | 2, 3, 13, 14 | mndtcob 48409 | . . 3 ⊢ (𝜑 → 𝑋 = 𝑀) |
16 | mndtchom.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
17 | 2, 3, 13, 16 | mndtcob 48409 | . . 3 ⊢ (𝜑 → 𝑌 = 𝑀) |
18 | 12, 15, 17 | oveq123d 7445 | . 2 ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑀{〈𝑀, 𝑀, (Base‘𝑀)〉}𝑀)) |
19 | df-ot 4642 | . . . . 5 ⊢ 〈𝑀, 𝑀, (Base‘𝑀)〉 = 〈〈𝑀, 𝑀〉, (Base‘𝑀)〉 | |
20 | 19 | sneqi 4644 | . . . 4 ⊢ {〈𝑀, 𝑀, (Base‘𝑀)〉} = {〈〈𝑀, 𝑀〉, (Base‘𝑀)〉} |
21 | 20 | oveqi 7437 | . . 3 ⊢ (𝑀{〈𝑀, 𝑀, (Base‘𝑀)〉}𝑀) = (𝑀{〈〈𝑀, 𝑀〉, (Base‘𝑀)〉}𝑀) |
22 | df-ov 7427 | . . 3 ⊢ (𝑀{〈〈𝑀, 𝑀〉, (Base‘𝑀)〉}𝑀) = ({〈〈𝑀, 𝑀〉, (Base‘𝑀)〉}‘〈𝑀, 𝑀〉) | |
23 | opex 5470 | . . . 4 ⊢ 〈𝑀, 𝑀〉 ∈ V | |
24 | fvex 6914 | . . . 4 ⊢ (Base‘𝑀) ∈ V | |
25 | 23, 24 | fvsn 7195 | . . 3 ⊢ ({〈〈𝑀, 𝑀〉, (Base‘𝑀)〉}‘〈𝑀, 𝑀〉) = (Base‘𝑀) |
26 | 21, 22, 25 | 3eqtri 2758 | . 2 ⊢ (𝑀{〈𝑀, 𝑀, (Base‘𝑀)〉}𝑀) = (Base‘𝑀) |
27 | 18, 26 | eqtrdi 2782 | 1 ⊢ (𝜑 → (𝑋𝐻𝑌) = (Base‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 Vcvv 3462 {csn 4633 {ctp 4637 〈cop 4639 〈cotp 4641 ‘cfv 6554 (class class class)co 7424 1c1 11159 5c5 12322 ;cdc 12729 ndxcnx 17195 Basecbs 17213 +gcplusg 17266 Hom chom 17277 compcco 17278 Mndcmnd 18727 MndToCatcmndtc 48404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-ot 4642 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12611 df-dec 12730 df-uz 12875 df-fz 13539 df-struct 17149 df-slot 17184 df-ndx 17196 df-base 17214 df-hom 17290 df-cco 17291 df-mndtc 48405 |
This theorem is referenced by: mndtccatid 48414 grptcmon 48417 grptcepi 48418 |
Copyright terms: Public domain | W3C validator |