| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mndtchom | Structured version Visualization version GIF version | ||
| Description: The only hom-set of the category built from a monoid is the base set of the monoid. (Contributed by Zhi Wang, 22-Sep-2024.) |
| Ref | Expression |
|---|---|
| mndtcbas.c | ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) |
| mndtcbas.m | ⊢ (𝜑 → 𝑀 ∈ Mnd) |
| mndtcbas.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
| mndtchom.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| mndtchom.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| mndtchom.h | ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) |
| Ref | Expression |
|---|---|
| mndtchom | ⊢ (𝜑 → (𝑋𝐻𝑌) = (Base‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndtchom.h | . . . 4 ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) | |
| 2 | mndtcbas.c | . . . . . 6 ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) | |
| 3 | mndtcbas.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ Mnd) | |
| 4 | 2, 3 | mndtcval 49176 | . . . . 5 ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), {𝑀}〉, 〈(Hom ‘ndx), {〈𝑀, 𝑀, (Base‘𝑀)〉}〉, 〈(comp‘ndx), {〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}〉}) |
| 5 | catstr 18005 | . . . . 5 ⊢ {〈(Base‘ndx), {𝑀}〉, 〈(Hom ‘ndx), {〈𝑀, 𝑀, (Base‘𝑀)〉}〉, 〈(comp‘ndx), {〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}〉} Struct 〈1, ;15〉 | |
| 6 | homid 17456 | . . . . 5 ⊢ Hom = Slot (Hom ‘ndx) | |
| 7 | snsstp2 4817 | . . . . 5 ⊢ {〈(Hom ‘ndx), {〈𝑀, 𝑀, (Base‘𝑀)〉}〉} ⊆ {〈(Base‘ndx), {𝑀}〉, 〈(Hom ‘ndx), {〈𝑀, 𝑀, (Base‘𝑀)〉}〉, 〈(comp‘ndx), {〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}〉} | |
| 8 | snex 5436 | . . . . . 6 ⊢ {〈𝑀, 𝑀, (Base‘𝑀)〉} ∈ V | |
| 9 | 8 | a1i 11 | . . . . 5 ⊢ (𝜑 → {〈𝑀, 𝑀, (Base‘𝑀)〉} ∈ V) |
| 10 | eqid 2737 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 11 | 4, 5, 6, 7, 9, 10 | strfv3 17241 | . . . 4 ⊢ (𝜑 → (Hom ‘𝐶) = {〈𝑀, 𝑀, (Base‘𝑀)〉}) |
| 12 | 1, 11 | eqtrd 2777 | . . 3 ⊢ (𝜑 → 𝐻 = {〈𝑀, 𝑀, (Base‘𝑀)〉}) |
| 13 | mndtcbas.b | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | |
| 14 | mndtchom.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 15 | 2, 3, 13, 14 | mndtcob 49179 | . . 3 ⊢ (𝜑 → 𝑋 = 𝑀) |
| 16 | mndtchom.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 17 | 2, 3, 13, 16 | mndtcob 49179 | . . 3 ⊢ (𝜑 → 𝑌 = 𝑀) |
| 18 | 12, 15, 17 | oveq123d 7452 | . 2 ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑀{〈𝑀, 𝑀, (Base‘𝑀)〉}𝑀)) |
| 19 | df-ot 4635 | . . . . 5 ⊢ 〈𝑀, 𝑀, (Base‘𝑀)〉 = 〈〈𝑀, 𝑀〉, (Base‘𝑀)〉 | |
| 20 | 19 | sneqi 4637 | . . . 4 ⊢ {〈𝑀, 𝑀, (Base‘𝑀)〉} = {〈〈𝑀, 𝑀〉, (Base‘𝑀)〉} |
| 21 | 20 | oveqi 7444 | . . 3 ⊢ (𝑀{〈𝑀, 𝑀, (Base‘𝑀)〉}𝑀) = (𝑀{〈〈𝑀, 𝑀〉, (Base‘𝑀)〉}𝑀) |
| 22 | df-ov 7434 | . . 3 ⊢ (𝑀{〈〈𝑀, 𝑀〉, (Base‘𝑀)〉}𝑀) = ({〈〈𝑀, 𝑀〉, (Base‘𝑀)〉}‘〈𝑀, 𝑀〉) | |
| 23 | opex 5469 | . . . 4 ⊢ 〈𝑀, 𝑀〉 ∈ V | |
| 24 | fvex 6919 | . . . 4 ⊢ (Base‘𝑀) ∈ V | |
| 25 | 23, 24 | fvsn 7201 | . . 3 ⊢ ({〈〈𝑀, 𝑀〉, (Base‘𝑀)〉}‘〈𝑀, 𝑀〉) = (Base‘𝑀) |
| 26 | 21, 22, 25 | 3eqtri 2769 | . 2 ⊢ (𝑀{〈𝑀, 𝑀, (Base‘𝑀)〉}𝑀) = (Base‘𝑀) |
| 27 | 18, 26 | eqtrdi 2793 | 1 ⊢ (𝜑 → (𝑋𝐻𝑌) = (Base‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3480 {csn 4626 {ctp 4630 〈cop 4632 〈cotp 4634 ‘cfv 6561 (class class class)co 7431 1c1 11156 5c5 12324 ;cdc 12733 ndxcnx 17230 Basecbs 17247 +gcplusg 17297 Hom chom 17308 compcco 17309 Mndcmnd 18747 MndToCatcmndtc 49174 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-ot 4635 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-struct 17184 df-slot 17219 df-ndx 17231 df-base 17248 df-hom 17321 df-cco 17322 df-mndtc 49175 |
| This theorem is referenced by: mndtccatid 49184 oppgoppchom 49187 grptcmon 49190 grptcepi 49191 |
| Copyright terms: Public domain | W3C validator |