Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mndtchom | Structured version Visualization version GIF version |
Description: The only hom-set of the category built from a monoid is the base set of the monoid. (Contributed by Zhi Wang, 22-Sep-2024.) |
Ref | Expression |
---|---|
mndtcbas.c | ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) |
mndtcbas.m | ⊢ (𝜑 → 𝑀 ∈ Mnd) |
mndtcbas.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
mndtchom.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
mndtchom.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
mndtchom.h | ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) |
Ref | Expression |
---|---|
mndtchom | ⊢ (𝜑 → (𝑋𝐻𝑌) = (Base‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndtchom.h | . . . 4 ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) | |
2 | mndtcbas.c | . . . . . 6 ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) | |
3 | mndtcbas.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ Mnd) | |
4 | 2, 3 | mndtcval 46610 | . . . . 5 ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), {𝑀}〉, 〈(Hom ‘ndx), {〈𝑀, 𝑀, (Base‘𝑀)〉}〉, 〈(comp‘ndx), {〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}〉}) |
5 | catstr 17723 | . . . . 5 ⊢ {〈(Base‘ndx), {𝑀}〉, 〈(Hom ‘ndx), {〈𝑀, 𝑀, (Base‘𝑀)〉}〉, 〈(comp‘ndx), {〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}〉} Struct 〈1, ;15〉 | |
6 | homid 17171 | . . . . 5 ⊢ Hom = Slot (Hom ‘ndx) | |
7 | snsstp2 4756 | . . . . 5 ⊢ {〈(Hom ‘ndx), {〈𝑀, 𝑀, (Base‘𝑀)〉}〉} ⊆ {〈(Base‘ndx), {𝑀}〉, 〈(Hom ‘ndx), {〈𝑀, 𝑀, (Base‘𝑀)〉}〉, 〈(comp‘ndx), {〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}〉} | |
8 | snex 5363 | . . . . . 6 ⊢ {〈𝑀, 𝑀, (Base‘𝑀)〉} ∈ V | |
9 | 8 | a1i 11 | . . . . 5 ⊢ (𝜑 → {〈𝑀, 𝑀, (Base‘𝑀)〉} ∈ V) |
10 | eqid 2736 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
11 | 4, 5, 6, 7, 9, 10 | strfv3 16955 | . . . 4 ⊢ (𝜑 → (Hom ‘𝐶) = {〈𝑀, 𝑀, (Base‘𝑀)〉}) |
12 | 1, 11 | eqtrd 2776 | . . 3 ⊢ (𝜑 → 𝐻 = {〈𝑀, 𝑀, (Base‘𝑀)〉}) |
13 | mndtcbas.b | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | |
14 | mndtchom.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
15 | 2, 3, 13, 14 | mndtcob 46613 | . . 3 ⊢ (𝜑 → 𝑋 = 𝑀) |
16 | mndtchom.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
17 | 2, 3, 13, 16 | mndtcob 46613 | . . 3 ⊢ (𝜑 → 𝑌 = 𝑀) |
18 | 12, 15, 17 | oveq123d 7328 | . 2 ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑀{〈𝑀, 𝑀, (Base‘𝑀)〉}𝑀)) |
19 | df-ot 4574 | . . . . 5 ⊢ 〈𝑀, 𝑀, (Base‘𝑀)〉 = 〈〈𝑀, 𝑀〉, (Base‘𝑀)〉 | |
20 | 19 | sneqi 4576 | . . . 4 ⊢ {〈𝑀, 𝑀, (Base‘𝑀)〉} = {〈〈𝑀, 𝑀〉, (Base‘𝑀)〉} |
21 | 20 | oveqi 7320 | . . 3 ⊢ (𝑀{〈𝑀, 𝑀, (Base‘𝑀)〉}𝑀) = (𝑀{〈〈𝑀, 𝑀〉, (Base‘𝑀)〉}𝑀) |
22 | df-ov 7310 | . . 3 ⊢ (𝑀{〈〈𝑀, 𝑀〉, (Base‘𝑀)〉}𝑀) = ({〈〈𝑀, 𝑀〉, (Base‘𝑀)〉}‘〈𝑀, 𝑀〉) | |
23 | opex 5392 | . . . 4 ⊢ 〈𝑀, 𝑀〉 ∈ V | |
24 | fvex 6817 | . . . 4 ⊢ (Base‘𝑀) ∈ V | |
25 | 23, 24 | fvsn 7085 | . . 3 ⊢ ({〈〈𝑀, 𝑀〉, (Base‘𝑀)〉}‘〈𝑀, 𝑀〉) = (Base‘𝑀) |
26 | 21, 22, 25 | 3eqtri 2768 | . 2 ⊢ (𝑀{〈𝑀, 𝑀, (Base‘𝑀)〉}𝑀) = (Base‘𝑀) |
27 | 18, 26 | eqtrdi 2792 | 1 ⊢ (𝜑 → (𝑋𝐻𝑌) = (Base‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 Vcvv 3437 {csn 4565 {ctp 4569 〈cop 4571 〈cotp 4573 ‘cfv 6458 (class class class)co 7307 1c1 10922 5c5 12081 ;cdc 12487 ndxcnx 16943 Basecbs 16961 +gcplusg 17011 Hom chom 17022 compcco 17023 Mndcmnd 18434 MndToCatcmndtc 46608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-ot 4574 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-nn 12024 df-2 12086 df-3 12087 df-4 12088 df-5 12089 df-6 12090 df-7 12091 df-8 12092 df-9 12093 df-n0 12284 df-z 12370 df-dec 12488 df-uz 12633 df-fz 13290 df-struct 16897 df-slot 16932 df-ndx 16944 df-base 16962 df-hom 17035 df-cco 17036 df-mndtc 46609 |
This theorem is referenced by: mndtccatid 46618 grptcmon 46621 grptcepi 46622 |
Copyright terms: Public domain | W3C validator |