Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mndtchom | Structured version Visualization version GIF version |
Description: The only hom-set of the category built from a monoid is the base set of the monoid. (Contributed by Zhi Wang, 22-Sep-2024.) |
Ref | Expression |
---|---|
mndtcbas.c | ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) |
mndtcbas.m | ⊢ (𝜑 → 𝑀 ∈ Mnd) |
mndtcbas.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
mndtchom.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
mndtchom.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
mndtchom.h | ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) |
Ref | Expression |
---|---|
mndtchom | ⊢ (𝜑 → (𝑋𝐻𝑌) = (Base‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndtchom.h | . . . 4 ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) | |
2 | mndtcbas.c | . . . . . 6 ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) | |
3 | mndtcbas.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ Mnd) | |
4 | 2, 3 | mndtcval 46318 | . . . . 5 ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), {𝑀}〉, 〈(Hom ‘ndx), {〈𝑀, 𝑀, (Base‘𝑀)〉}〉, 〈(comp‘ndx), {〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}〉}) |
5 | catstr 17655 | . . . . 5 ⊢ {〈(Base‘ndx), {𝑀}〉, 〈(Hom ‘ndx), {〈𝑀, 𝑀, (Base‘𝑀)〉}〉, 〈(comp‘ndx), {〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}〉} Struct 〈1, ;15〉 | |
6 | homid 17103 | . . . . 5 ⊢ Hom = Slot (Hom ‘ndx) | |
7 | snsstp2 4755 | . . . . 5 ⊢ {〈(Hom ‘ndx), {〈𝑀, 𝑀, (Base‘𝑀)〉}〉} ⊆ {〈(Base‘ndx), {𝑀}〉, 〈(Hom ‘ndx), {〈𝑀, 𝑀, (Base‘𝑀)〉}〉, 〈(comp‘ndx), {〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}〉} | |
8 | snex 5357 | . . . . . 6 ⊢ {〈𝑀, 𝑀, (Base‘𝑀)〉} ∈ V | |
9 | 8 | a1i 11 | . . . . 5 ⊢ (𝜑 → {〈𝑀, 𝑀, (Base‘𝑀)〉} ∈ V) |
10 | eqid 2739 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
11 | 4, 5, 6, 7, 9, 10 | strfv3 16887 | . . . 4 ⊢ (𝜑 → (Hom ‘𝐶) = {〈𝑀, 𝑀, (Base‘𝑀)〉}) |
12 | 1, 11 | eqtrd 2779 | . . 3 ⊢ (𝜑 → 𝐻 = {〈𝑀, 𝑀, (Base‘𝑀)〉}) |
13 | mndtcbas.b | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | |
14 | mndtchom.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
15 | 2, 3, 13, 14 | mndtcob 46321 | . . 3 ⊢ (𝜑 → 𝑋 = 𝑀) |
16 | mndtchom.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
17 | 2, 3, 13, 16 | mndtcob 46321 | . . 3 ⊢ (𝜑 → 𝑌 = 𝑀) |
18 | 12, 15, 17 | oveq123d 7289 | . 2 ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑀{〈𝑀, 𝑀, (Base‘𝑀)〉}𝑀)) |
19 | df-ot 4575 | . . . . 5 ⊢ 〈𝑀, 𝑀, (Base‘𝑀)〉 = 〈〈𝑀, 𝑀〉, (Base‘𝑀)〉 | |
20 | 19 | sneqi 4577 | . . . 4 ⊢ {〈𝑀, 𝑀, (Base‘𝑀)〉} = {〈〈𝑀, 𝑀〉, (Base‘𝑀)〉} |
21 | 20 | oveqi 7281 | . . 3 ⊢ (𝑀{〈𝑀, 𝑀, (Base‘𝑀)〉}𝑀) = (𝑀{〈〈𝑀, 𝑀〉, (Base‘𝑀)〉}𝑀) |
22 | df-ov 7271 | . . 3 ⊢ (𝑀{〈〈𝑀, 𝑀〉, (Base‘𝑀)〉}𝑀) = ({〈〈𝑀, 𝑀〉, (Base‘𝑀)〉}‘〈𝑀, 𝑀〉) | |
23 | opex 5381 | . . . 4 ⊢ 〈𝑀, 𝑀〉 ∈ V | |
24 | fvex 6781 | . . . 4 ⊢ (Base‘𝑀) ∈ V | |
25 | 23, 24 | fvsn 7047 | . . 3 ⊢ ({〈〈𝑀, 𝑀〉, (Base‘𝑀)〉}‘〈𝑀, 𝑀〉) = (Base‘𝑀) |
26 | 21, 22, 25 | 3eqtri 2771 | . 2 ⊢ (𝑀{〈𝑀, 𝑀, (Base‘𝑀)〉}𝑀) = (Base‘𝑀) |
27 | 18, 26 | eqtrdi 2795 | 1 ⊢ (𝜑 → (𝑋𝐻𝑌) = (Base‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 Vcvv 3430 {csn 4566 {ctp 4570 〈cop 4572 〈cotp 4574 ‘cfv 6430 (class class class)co 7268 1c1 10856 5c5 12014 ;cdc 12419 ndxcnx 16875 Basecbs 16893 +gcplusg 16943 Hom chom 16954 compcco 16955 Mndcmnd 18366 MndToCatcmndtc 46316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-ot 4575 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-uz 12565 df-fz 13222 df-struct 16829 df-slot 16864 df-ndx 16876 df-base 16894 df-hom 16967 df-cco 16968 df-mndtc 46317 |
This theorem is referenced by: mndtccatid 46326 grptcmon 46329 grptcepi 46330 |
Copyright terms: Public domain | W3C validator |