![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mndtchom | Structured version Visualization version GIF version |
Description: The only hom-set of the category built from a monoid is the base set of the monoid. (Contributed by Zhi Wang, 22-Sep-2024.) |
Ref | Expression |
---|---|
mndtcbas.c | β’ (π β πΆ = (MndToCatβπ)) |
mndtcbas.m | β’ (π β π β Mnd) |
mndtcbas.b | β’ (π β π΅ = (BaseβπΆ)) |
mndtchom.x | β’ (π β π β π΅) |
mndtchom.y | β’ (π β π β π΅) |
mndtchom.h | β’ (π β π» = (Hom βπΆ)) |
Ref | Expression |
---|---|
mndtchom | β’ (π β (ππ»π) = (Baseβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndtchom.h | . . . 4 β’ (π β π» = (Hom βπΆ)) | |
2 | mndtcbas.c | . . . . . 6 β’ (π β πΆ = (MndToCatβπ)) | |
3 | mndtcbas.m | . . . . . 6 β’ (π β π β Mnd) | |
4 | 2, 3 | mndtcval 47979 | . . . . 5 β’ (π β πΆ = {β¨(Baseβndx), {π}β©, β¨(Hom βndx), {β¨π, π, (Baseβπ)β©}β©, β¨(compβndx), {β¨β¨π, π, πβ©, (+gβπ)β©}β©}) |
5 | catstr 17921 | . . . . 5 β’ {β¨(Baseβndx), {π}β©, β¨(Hom βndx), {β¨π, π, (Baseβπ)β©}β©, β¨(compβndx), {β¨β¨π, π, πβ©, (+gβπ)β©}β©} Struct β¨1, ;15β© | |
6 | homid 17366 | . . . . 5 β’ Hom = Slot (Hom βndx) | |
7 | snsstp2 4815 | . . . . 5 β’ {β¨(Hom βndx), {β¨π, π, (Baseβπ)β©}β©} β {β¨(Baseβndx), {π}β©, β¨(Hom βndx), {β¨π, π, (Baseβπ)β©}β©, β¨(compβndx), {β¨β¨π, π, πβ©, (+gβπ)β©}β©} | |
8 | snex 5424 | . . . . . 6 β’ {β¨π, π, (Baseβπ)β©} β V | |
9 | 8 | a1i 11 | . . . . 5 β’ (π β {β¨π, π, (Baseβπ)β©} β V) |
10 | eqid 2726 | . . . . 5 β’ (Hom βπΆ) = (Hom βπΆ) | |
11 | 4, 5, 6, 7, 9, 10 | strfv3 17147 | . . . 4 β’ (π β (Hom βπΆ) = {β¨π, π, (Baseβπ)β©}) |
12 | 1, 11 | eqtrd 2766 | . . 3 β’ (π β π» = {β¨π, π, (Baseβπ)β©}) |
13 | mndtcbas.b | . . . 4 β’ (π β π΅ = (BaseβπΆ)) | |
14 | mndtchom.x | . . . 4 β’ (π β π β π΅) | |
15 | 2, 3, 13, 14 | mndtcob 47982 | . . 3 β’ (π β π = π) |
16 | mndtchom.y | . . . 4 β’ (π β π β π΅) | |
17 | 2, 3, 13, 16 | mndtcob 47982 | . . 3 β’ (π β π = π) |
18 | 12, 15, 17 | oveq123d 7426 | . 2 β’ (π β (ππ»π) = (π{β¨π, π, (Baseβπ)β©}π)) |
19 | df-ot 4632 | . . . . 5 β’ β¨π, π, (Baseβπ)β© = β¨β¨π, πβ©, (Baseβπ)β© | |
20 | 19 | sneqi 4634 | . . . 4 β’ {β¨π, π, (Baseβπ)β©} = {β¨β¨π, πβ©, (Baseβπ)β©} |
21 | 20 | oveqi 7418 | . . 3 β’ (π{β¨π, π, (Baseβπ)β©}π) = (π{β¨β¨π, πβ©, (Baseβπ)β©}π) |
22 | df-ov 7408 | . . 3 β’ (π{β¨β¨π, πβ©, (Baseβπ)β©}π) = ({β¨β¨π, πβ©, (Baseβπ)β©}ββ¨π, πβ©) | |
23 | opex 5457 | . . . 4 β’ β¨π, πβ© β V | |
24 | fvex 6898 | . . . 4 β’ (Baseβπ) β V | |
25 | 23, 24 | fvsn 7175 | . . 3 β’ ({β¨β¨π, πβ©, (Baseβπ)β©}ββ¨π, πβ©) = (Baseβπ) |
26 | 21, 22, 25 | 3eqtri 2758 | . 2 β’ (π{β¨π, π, (Baseβπ)β©}π) = (Baseβπ) |
27 | 18, 26 | eqtrdi 2782 | 1 β’ (π β (ππ»π) = (Baseβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 Vcvv 3468 {csn 4623 {ctp 4627 β¨cop 4629 β¨cotp 4631 βcfv 6537 (class class class)co 7405 1c1 11113 5c5 12274 ;cdc 12681 ndxcnx 17135 Basecbs 17153 +gcplusg 17206 Hom chom 17217 compcco 17218 Mndcmnd 18667 MndToCatcmndtc 47977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-ot 4632 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13491 df-struct 17089 df-slot 17124 df-ndx 17136 df-base 17154 df-hom 17230 df-cco 17231 df-mndtc 47978 |
This theorem is referenced by: mndtccatid 47987 grptcmon 47990 grptcepi 47991 |
Copyright terms: Public domain | W3C validator |