Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndtcval Structured version   Visualization version   GIF version

Theorem mndtcval 48752
Description: Value of the category built from a monoid. (Contributed by Zhi Wang, 22-Sep-2024.) (New usage is discouraged.)
Hypotheses
Ref Expression
mndtcbas.c (𝜑𝐶 = (MndToCat‘𝑀))
mndtcbas.m (𝜑𝑀 ∈ Mnd)
Assertion
Ref Expression
mndtcval (𝜑𝐶 = {⟨(Base‘ndx), {𝑀}⟩, ⟨(Hom ‘ndx), {⟨𝑀, 𝑀, (Base‘𝑀)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}⟩})

Proof of Theorem mndtcval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 mndtcbas.c . 2 (𝜑𝐶 = (MndToCat‘𝑀))
2 mndtcbas.m . . 3 (𝜑𝑀 ∈ Mnd)
3 sneq 4658 . . . . . 6 (𝑚 = 𝑀 → {𝑚} = {𝑀})
43opeq2d 4904 . . . . 5 (𝑚 = 𝑀 → ⟨(Base‘ndx), {𝑚}⟩ = ⟨(Base‘ndx), {𝑀}⟩)
5 id 22 . . . . . . . 8 (𝑚 = 𝑀𝑚 = 𝑀)
6 fveq2 6920 . . . . . . . 8 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
75, 5, 6oteq123d 4912 . . . . . . 7 (𝑚 = 𝑀 → ⟨𝑚, 𝑚, (Base‘𝑚)⟩ = ⟨𝑀, 𝑀, (Base‘𝑀)⟩)
87sneqd 4660 . . . . . 6 (𝑚 = 𝑀 → {⟨𝑚, 𝑚, (Base‘𝑚)⟩} = {⟨𝑀, 𝑀, (Base‘𝑀)⟩})
98opeq2d 4904 . . . . 5 (𝑚 = 𝑀 → ⟨(Hom ‘ndx), {⟨𝑚, 𝑚, (Base‘𝑚)⟩}⟩ = ⟨(Hom ‘ndx), {⟨𝑀, 𝑀, (Base‘𝑀)⟩}⟩)
105, 5, 5oteq123d 4912 . . . . . . . 8 (𝑚 = 𝑀 → ⟨𝑚, 𝑚, 𝑚⟩ = ⟨𝑀, 𝑀, 𝑀⟩)
11 fveq2 6920 . . . . . . . 8 (𝑚 = 𝑀 → (+g𝑚) = (+g𝑀))
1210, 11opeq12d 4905 . . . . . . 7 (𝑚 = 𝑀 → ⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩ = ⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩)
1312sneqd 4660 . . . . . 6 (𝑚 = 𝑀 → {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩} = {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩})
1413opeq2d 4904 . . . . 5 (𝑚 = 𝑀 → ⟨(comp‘ndx), {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}⟩ = ⟨(comp‘ndx), {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}⟩)
154, 9, 14tpeq123d 4773 . . . 4 (𝑚 = 𝑀 → {⟨(Base‘ndx), {𝑚}⟩, ⟨(Hom ‘ndx), {⟨𝑚, 𝑚, (Base‘𝑚)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}⟩} = {⟨(Base‘ndx), {𝑀}⟩, ⟨(Hom ‘ndx), {⟨𝑀, 𝑀, (Base‘𝑀)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}⟩})
16 df-mndtc 48751 . . . 4 MndToCat = (𝑚 ∈ Mnd ↦ {⟨(Base‘ndx), {𝑚}⟩, ⟨(Hom ‘ndx), {⟨𝑚, 𝑚, (Base‘𝑚)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}⟩})
17 tpex 7781 . . . 4 {⟨(Base‘ndx), {𝑀}⟩, ⟨(Hom ‘ndx), {⟨𝑀, 𝑀, (Base‘𝑀)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}⟩} ∈ V
1815, 16, 17fvmpt 7029 . . 3 (𝑀 ∈ Mnd → (MndToCat‘𝑀) = {⟨(Base‘ndx), {𝑀}⟩, ⟨(Hom ‘ndx), {⟨𝑀, 𝑀, (Base‘𝑀)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}⟩})
192, 18syl 17 . 2 (𝜑 → (MndToCat‘𝑀) = {⟨(Base‘ndx), {𝑀}⟩, ⟨(Hom ‘ndx), {⟨𝑀, 𝑀, (Base‘𝑀)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}⟩})
201, 19eqtrd 2780 1 (𝜑𝐶 = {⟨(Base‘ndx), {𝑀}⟩, ⟨(Hom ‘ndx), {⟨𝑀, 𝑀, (Base‘𝑀)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {csn 4648  {ctp 4652  cop 4654  cotp 4656  cfv 6573  ndxcnx 17240  Basecbs 17258  +gcplusg 17311  Hom chom 17322  compcco 17323  Mndcmnd 18772  MndToCatcmndtc 48750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-mndtc 48751
This theorem is referenced by:  mndtcbasval  48753  mndtchom  48757  mndtcco  48758
  Copyright terms: Public domain W3C validator