Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndtcval Structured version   Visualization version   GIF version

Theorem mndtcval 49423
Description: Value of the category built from a monoid. (Contributed by Zhi Wang, 22-Sep-2024.) (New usage is discouraged.)
Hypotheses
Ref Expression
mndtcbas.c (𝜑𝐶 = (MndToCat‘𝑀))
mndtcbas.m (𝜑𝑀 ∈ Mnd)
Assertion
Ref Expression
mndtcval (𝜑𝐶 = {⟨(Base‘ndx), {𝑀}⟩, ⟨(Hom ‘ndx), {⟨𝑀, 𝑀, (Base‘𝑀)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}⟩})

Proof of Theorem mndtcval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 mndtcbas.c . 2 (𝜑𝐶 = (MndToCat‘𝑀))
2 mndtcbas.m . . 3 (𝜑𝑀 ∈ Mnd)
3 sneq 4616 . . . . . 6 (𝑚 = 𝑀 → {𝑚} = {𝑀})
43opeq2d 4861 . . . . 5 (𝑚 = 𝑀 → ⟨(Base‘ndx), {𝑚}⟩ = ⟨(Base‘ndx), {𝑀}⟩)
5 id 22 . . . . . . . 8 (𝑚 = 𝑀𝑚 = 𝑀)
6 fveq2 6881 . . . . . . . 8 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
75, 5, 6oteq123d 4869 . . . . . . 7 (𝑚 = 𝑀 → ⟨𝑚, 𝑚, (Base‘𝑚)⟩ = ⟨𝑀, 𝑀, (Base‘𝑀)⟩)
87sneqd 4618 . . . . . 6 (𝑚 = 𝑀 → {⟨𝑚, 𝑚, (Base‘𝑚)⟩} = {⟨𝑀, 𝑀, (Base‘𝑀)⟩})
98opeq2d 4861 . . . . 5 (𝑚 = 𝑀 → ⟨(Hom ‘ndx), {⟨𝑚, 𝑚, (Base‘𝑚)⟩}⟩ = ⟨(Hom ‘ndx), {⟨𝑀, 𝑀, (Base‘𝑀)⟩}⟩)
105, 5, 5oteq123d 4869 . . . . . . . 8 (𝑚 = 𝑀 → ⟨𝑚, 𝑚, 𝑚⟩ = ⟨𝑀, 𝑀, 𝑀⟩)
11 fveq2 6881 . . . . . . . 8 (𝑚 = 𝑀 → (+g𝑚) = (+g𝑀))
1210, 11opeq12d 4862 . . . . . . 7 (𝑚 = 𝑀 → ⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩ = ⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩)
1312sneqd 4618 . . . . . 6 (𝑚 = 𝑀 → {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩} = {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩})
1413opeq2d 4861 . . . . 5 (𝑚 = 𝑀 → ⟨(comp‘ndx), {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}⟩ = ⟨(comp‘ndx), {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}⟩)
154, 9, 14tpeq123d 4729 . . . 4 (𝑚 = 𝑀 → {⟨(Base‘ndx), {𝑚}⟩, ⟨(Hom ‘ndx), {⟨𝑚, 𝑚, (Base‘𝑚)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}⟩} = {⟨(Base‘ndx), {𝑀}⟩, ⟨(Hom ‘ndx), {⟨𝑀, 𝑀, (Base‘𝑀)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}⟩})
16 df-mndtc 49422 . . . 4 MndToCat = (𝑚 ∈ Mnd ↦ {⟨(Base‘ndx), {𝑚}⟩, ⟨(Hom ‘ndx), {⟨𝑚, 𝑚, (Base‘𝑚)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}⟩})
17 tpex 7745 . . . 4 {⟨(Base‘ndx), {𝑀}⟩, ⟨(Hom ‘ndx), {⟨𝑀, 𝑀, (Base‘𝑀)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}⟩} ∈ V
1815, 16, 17fvmpt 6991 . . 3 (𝑀 ∈ Mnd → (MndToCat‘𝑀) = {⟨(Base‘ndx), {𝑀}⟩, ⟨(Hom ‘ndx), {⟨𝑀, 𝑀, (Base‘𝑀)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}⟩})
192, 18syl 17 . 2 (𝜑 → (MndToCat‘𝑀) = {⟨(Base‘ndx), {𝑀}⟩, ⟨(Hom ‘ndx), {⟨𝑀, 𝑀, (Base‘𝑀)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}⟩})
201, 19eqtrd 2771 1 (𝜑𝐶 = {⟨(Base‘ndx), {𝑀}⟩, ⟨(Hom ‘ndx), {⟨𝑀, 𝑀, (Base‘𝑀)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {csn 4606  {ctp 4610  cop 4612  cotp 4614  cfv 6536  ndxcnx 17217  Basecbs 17233  +gcplusg 17276  Hom chom 17287  compcco 17288  Mndcmnd 18717  MndToCatcmndtc 49421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-mndtc 49422
This theorem is referenced by:  mndtcbasval  49424  mndtchom  49428  mndtcco  49429
  Copyright terms: Public domain W3C validator