Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndtcval Structured version   Visualization version   GIF version

Theorem mndtcval 47705
Description: Value of the category built from a monoid. (Contributed by Zhi Wang, 22-Sep-2024.) (New usage is discouraged.)
Hypotheses
Ref Expression
mndtcbas.c (πœ‘ β†’ 𝐢 = (MndToCatβ€˜π‘€))
mndtcbas.m (πœ‘ β†’ 𝑀 ∈ Mnd)
Assertion
Ref Expression
mndtcval (πœ‘ β†’ 𝐢 = {⟨(Baseβ€˜ndx), {𝑀}⟩, ⟨(Hom β€˜ndx), {βŸ¨π‘€, 𝑀, (Baseβ€˜π‘€)⟩}⟩, ⟨(compβ€˜ndx), {βŸ¨βŸ¨π‘€, 𝑀, π‘€βŸ©, (+gβ€˜π‘€)⟩}⟩})

Proof of Theorem mndtcval
Dummy variable π‘š is distinct from all other variables.
StepHypRef Expression
1 mndtcbas.c . 2 (πœ‘ β†’ 𝐢 = (MndToCatβ€˜π‘€))
2 mndtcbas.m . . 3 (πœ‘ β†’ 𝑀 ∈ Mnd)
3 sneq 4639 . . . . . 6 (π‘š = 𝑀 β†’ {π‘š} = {𝑀})
43opeq2d 4881 . . . . 5 (π‘š = 𝑀 β†’ ⟨(Baseβ€˜ndx), {π‘š}⟩ = ⟨(Baseβ€˜ndx), {𝑀}⟩)
5 id 22 . . . . . . . 8 (π‘š = 𝑀 β†’ π‘š = 𝑀)
6 fveq2 6892 . . . . . . . 8 (π‘š = 𝑀 β†’ (Baseβ€˜π‘š) = (Baseβ€˜π‘€))
75, 5, 6oteq123d 4889 . . . . . . 7 (π‘š = 𝑀 β†’ βŸ¨π‘š, π‘š, (Baseβ€˜π‘š)⟩ = βŸ¨π‘€, 𝑀, (Baseβ€˜π‘€)⟩)
87sneqd 4641 . . . . . 6 (π‘š = 𝑀 β†’ {βŸ¨π‘š, π‘š, (Baseβ€˜π‘š)⟩} = {βŸ¨π‘€, 𝑀, (Baseβ€˜π‘€)⟩})
98opeq2d 4881 . . . . 5 (π‘š = 𝑀 β†’ ⟨(Hom β€˜ndx), {βŸ¨π‘š, π‘š, (Baseβ€˜π‘š)⟩}⟩ = ⟨(Hom β€˜ndx), {βŸ¨π‘€, 𝑀, (Baseβ€˜π‘€)⟩}⟩)
105, 5, 5oteq123d 4889 . . . . . . . 8 (π‘š = 𝑀 β†’ βŸ¨π‘š, π‘š, π‘šβŸ© = βŸ¨π‘€, 𝑀, π‘€βŸ©)
11 fveq2 6892 . . . . . . . 8 (π‘š = 𝑀 β†’ (+gβ€˜π‘š) = (+gβ€˜π‘€))
1210, 11opeq12d 4882 . . . . . . 7 (π‘š = 𝑀 β†’ βŸ¨βŸ¨π‘š, π‘š, π‘šβŸ©, (+gβ€˜π‘š)⟩ = βŸ¨βŸ¨π‘€, 𝑀, π‘€βŸ©, (+gβ€˜π‘€)⟩)
1312sneqd 4641 . . . . . 6 (π‘š = 𝑀 β†’ {βŸ¨βŸ¨π‘š, π‘š, π‘šβŸ©, (+gβ€˜π‘š)⟩} = {βŸ¨βŸ¨π‘€, 𝑀, π‘€βŸ©, (+gβ€˜π‘€)⟩})
1413opeq2d 4881 . . . . 5 (π‘š = 𝑀 β†’ ⟨(compβ€˜ndx), {βŸ¨βŸ¨π‘š, π‘š, π‘šβŸ©, (+gβ€˜π‘š)⟩}⟩ = ⟨(compβ€˜ndx), {βŸ¨βŸ¨π‘€, 𝑀, π‘€βŸ©, (+gβ€˜π‘€)⟩}⟩)
154, 9, 14tpeq123d 4753 . . . 4 (π‘š = 𝑀 β†’ {⟨(Baseβ€˜ndx), {π‘š}⟩, ⟨(Hom β€˜ndx), {βŸ¨π‘š, π‘š, (Baseβ€˜π‘š)⟩}⟩, ⟨(compβ€˜ndx), {βŸ¨βŸ¨π‘š, π‘š, π‘šβŸ©, (+gβ€˜π‘š)⟩}⟩} = {⟨(Baseβ€˜ndx), {𝑀}⟩, ⟨(Hom β€˜ndx), {βŸ¨π‘€, 𝑀, (Baseβ€˜π‘€)⟩}⟩, ⟨(compβ€˜ndx), {βŸ¨βŸ¨π‘€, 𝑀, π‘€βŸ©, (+gβ€˜π‘€)⟩}⟩})
16 df-mndtc 47704 . . . 4 MndToCat = (π‘š ∈ Mnd ↦ {⟨(Baseβ€˜ndx), {π‘š}⟩, ⟨(Hom β€˜ndx), {βŸ¨π‘š, π‘š, (Baseβ€˜π‘š)⟩}⟩, ⟨(compβ€˜ndx), {βŸ¨βŸ¨π‘š, π‘š, π‘šβŸ©, (+gβ€˜π‘š)⟩}⟩})
17 tpex 7734 . . . 4 {⟨(Baseβ€˜ndx), {𝑀}⟩, ⟨(Hom β€˜ndx), {βŸ¨π‘€, 𝑀, (Baseβ€˜π‘€)⟩}⟩, ⟨(compβ€˜ndx), {βŸ¨βŸ¨π‘€, 𝑀, π‘€βŸ©, (+gβ€˜π‘€)⟩}⟩} ∈ V
1815, 16, 17fvmpt 6999 . . 3 (𝑀 ∈ Mnd β†’ (MndToCatβ€˜π‘€) = {⟨(Baseβ€˜ndx), {𝑀}⟩, ⟨(Hom β€˜ndx), {βŸ¨π‘€, 𝑀, (Baseβ€˜π‘€)⟩}⟩, ⟨(compβ€˜ndx), {βŸ¨βŸ¨π‘€, 𝑀, π‘€βŸ©, (+gβ€˜π‘€)⟩}⟩})
192, 18syl 17 . 2 (πœ‘ β†’ (MndToCatβ€˜π‘€) = {⟨(Baseβ€˜ndx), {𝑀}⟩, ⟨(Hom β€˜ndx), {βŸ¨π‘€, 𝑀, (Baseβ€˜π‘€)⟩}⟩, ⟨(compβ€˜ndx), {βŸ¨βŸ¨π‘€, 𝑀, π‘€βŸ©, (+gβ€˜π‘€)⟩}⟩})
201, 19eqtrd 2773 1 (πœ‘ β†’ 𝐢 = {⟨(Baseβ€˜ndx), {𝑀}⟩, ⟨(Hom β€˜ndx), {βŸ¨π‘€, 𝑀, (Baseβ€˜π‘€)⟩}⟩, ⟨(compβ€˜ndx), {βŸ¨βŸ¨π‘€, 𝑀, π‘€βŸ©, (+gβ€˜π‘€)⟩}⟩})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1542   ∈ wcel 2107  {csn 4629  {ctp 4633  βŸ¨cop 4635  βŸ¨cotp 4637  β€˜cfv 6544  ndxcnx 17126  Basecbs 17144  +gcplusg 17197  Hom chom 17208  compcco 17209  Mndcmnd 18625  MndToCatcmndtc 47703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-ot 4638  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-mndtc 47704
This theorem is referenced by:  mndtcbasval  47706  mndtchom  47710  mndtcco  47711
  Copyright terms: Public domain W3C validator