Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndtcval Structured version   Visualization version   GIF version

Theorem mndtcval 46252
Description: Value of the category built from a monoid. (Contributed by Zhi Wang, 22-Sep-2024.) (New usage is discouraged.)
Hypotheses
Ref Expression
mndtcbas.c (𝜑𝐶 = (MndToCat‘𝑀))
mndtcbas.m (𝜑𝑀 ∈ Mnd)
Assertion
Ref Expression
mndtcval (𝜑𝐶 = {⟨(Base‘ndx), {𝑀}⟩, ⟨(Hom ‘ndx), {⟨𝑀, 𝑀, (Base‘𝑀)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}⟩})

Proof of Theorem mndtcval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 mndtcbas.c . 2 (𝜑𝐶 = (MndToCat‘𝑀))
2 mndtcbas.m . . 3 (𝜑𝑀 ∈ Mnd)
3 sneq 4568 . . . . . 6 (𝑚 = 𝑀 → {𝑚} = {𝑀})
43opeq2d 4808 . . . . 5 (𝑚 = 𝑀 → ⟨(Base‘ndx), {𝑚}⟩ = ⟨(Base‘ndx), {𝑀}⟩)
5 id 22 . . . . . . . 8 (𝑚 = 𝑀𝑚 = 𝑀)
6 fveq2 6756 . . . . . . . 8 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
75, 5, 6oteq123d 4816 . . . . . . 7 (𝑚 = 𝑀 → ⟨𝑚, 𝑚, (Base‘𝑚)⟩ = ⟨𝑀, 𝑀, (Base‘𝑀)⟩)
87sneqd 4570 . . . . . 6 (𝑚 = 𝑀 → {⟨𝑚, 𝑚, (Base‘𝑚)⟩} = {⟨𝑀, 𝑀, (Base‘𝑀)⟩})
98opeq2d 4808 . . . . 5 (𝑚 = 𝑀 → ⟨(Hom ‘ndx), {⟨𝑚, 𝑚, (Base‘𝑚)⟩}⟩ = ⟨(Hom ‘ndx), {⟨𝑀, 𝑀, (Base‘𝑀)⟩}⟩)
105, 5, 5oteq123d 4816 . . . . . . . 8 (𝑚 = 𝑀 → ⟨𝑚, 𝑚, 𝑚⟩ = ⟨𝑀, 𝑀, 𝑀⟩)
11 fveq2 6756 . . . . . . . 8 (𝑚 = 𝑀 → (+g𝑚) = (+g𝑀))
1210, 11opeq12d 4809 . . . . . . 7 (𝑚 = 𝑀 → ⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩ = ⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩)
1312sneqd 4570 . . . . . 6 (𝑚 = 𝑀 → {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩} = {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩})
1413opeq2d 4808 . . . . 5 (𝑚 = 𝑀 → ⟨(comp‘ndx), {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}⟩ = ⟨(comp‘ndx), {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}⟩)
154, 9, 14tpeq123d 4681 . . . 4 (𝑚 = 𝑀 → {⟨(Base‘ndx), {𝑚}⟩, ⟨(Hom ‘ndx), {⟨𝑚, 𝑚, (Base‘𝑚)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}⟩} = {⟨(Base‘ndx), {𝑀}⟩, ⟨(Hom ‘ndx), {⟨𝑀, 𝑀, (Base‘𝑀)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}⟩})
16 df-mndtc 46251 . . . 4 MndToCat = (𝑚 ∈ Mnd ↦ {⟨(Base‘ndx), {𝑚}⟩, ⟨(Hom ‘ndx), {⟨𝑚, 𝑚, (Base‘𝑚)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}⟩})
17 tpex 7575 . . . 4 {⟨(Base‘ndx), {𝑀}⟩, ⟨(Hom ‘ndx), {⟨𝑀, 𝑀, (Base‘𝑀)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}⟩} ∈ V
1815, 16, 17fvmpt 6857 . . 3 (𝑀 ∈ Mnd → (MndToCat‘𝑀) = {⟨(Base‘ndx), {𝑀}⟩, ⟨(Hom ‘ndx), {⟨𝑀, 𝑀, (Base‘𝑀)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}⟩})
192, 18syl 17 . 2 (𝜑 → (MndToCat‘𝑀) = {⟨(Base‘ndx), {𝑀}⟩, ⟨(Hom ‘ndx), {⟨𝑀, 𝑀, (Base‘𝑀)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}⟩})
201, 19eqtrd 2778 1 (𝜑𝐶 = {⟨(Base‘ndx), {𝑀}⟩, ⟨(Hom ‘ndx), {⟨𝑀, 𝑀, (Base‘𝑀)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  {csn 4558  {ctp 4562  cop 4564  cotp 4566  cfv 6418  ndxcnx 16822  Basecbs 16840  +gcplusg 16888  Hom chom 16899  compcco 16900  Mndcmnd 18300  MndToCatcmndtc 46250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-ot 4567  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-mndtc 46251
This theorem is referenced by:  mndtcbasval  46253  mndtchom  46257  mndtcco  46258
  Copyright terms: Public domain W3C validator