Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubffval Structured version   Visualization version   GIF version

Theorem mrsubffval 33369
Description: The substitution of some variables for expressions in a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubffval.c 𝐶 = (mCN‘𝑇)
mrsubffval.v 𝑉 = (mVR‘𝑇)
mrsubffval.r 𝑅 = (mREx‘𝑇)
mrsubffval.s 𝑆 = (mRSubst‘𝑇)
mrsubffval.g 𝐺 = (freeMnd‘(𝐶𝑉))
Assertion
Ref Expression
mrsubffval (𝑇𝑊𝑆 = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
Distinct variable groups:   𝑒,𝑓,𝑣,𝐶   𝑅,𝑒,𝑓,𝑣   𝑒,𝐺,𝑓   𝑇,𝑒,𝑓,𝑣   𝑒,𝑉,𝑓,𝑣
Allowed substitution hints:   𝑆(𝑣,𝑒,𝑓)   𝐺(𝑣)   𝑊(𝑣,𝑒,𝑓)

Proof of Theorem mrsubffval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 mrsubffval.s . 2 𝑆 = (mRSubst‘𝑇)
2 elex 3440 . . 3 (𝑇𝑊𝑇 ∈ V)
3 fveq2 6756 . . . . . . 7 (𝑡 = 𝑇 → (mREx‘𝑡) = (mREx‘𝑇))
4 mrsubffval.r . . . . . . 7 𝑅 = (mREx‘𝑇)
53, 4eqtr4di 2797 . . . . . 6 (𝑡 = 𝑇 → (mREx‘𝑡) = 𝑅)
6 fveq2 6756 . . . . . . 7 (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇))
7 mrsubffval.v . . . . . . 7 𝑉 = (mVR‘𝑇)
86, 7eqtr4di 2797 . . . . . 6 (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉)
95, 8oveq12d 7273 . . . . 5 (𝑡 = 𝑇 → ((mREx‘𝑡) ↑pm (mVR‘𝑡)) = (𝑅pm 𝑉))
10 fveq2 6756 . . . . . . . . . . 11 (𝑡 = 𝑇 → (mCN‘𝑡) = (mCN‘𝑇))
11 mrsubffval.c . . . . . . . . . . 11 𝐶 = (mCN‘𝑇)
1210, 11eqtr4di 2797 . . . . . . . . . 10 (𝑡 = 𝑇 → (mCN‘𝑡) = 𝐶)
1312, 8uneq12d 4094 . . . . . . . . 9 (𝑡 = 𝑇 → ((mCN‘𝑡) ∪ (mVR‘𝑡)) = (𝐶𝑉))
1413fveq2d 6760 . . . . . . . 8 (𝑡 = 𝑇 → (freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) = (freeMnd‘(𝐶𝑉)))
15 mrsubffval.g . . . . . . . 8 𝐺 = (freeMnd‘(𝐶𝑉))
1614, 15eqtr4di 2797 . . . . . . 7 (𝑡 = 𝑇 → (freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) = 𝐺)
1713mpteq1d 5165 . . . . . . . 8 (𝑡 = 𝑇 → (𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) = (𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)))
1817coeq1d 5759 . . . . . . 7 (𝑡 = 𝑇 → ((𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒) = ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))
1916, 18oveq12d 7273 . . . . . 6 (𝑡 = 𝑇 → ((freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) Σg ((𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)) = (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))
205, 19mpteq12dv 5161 . . . . 5 (𝑡 = 𝑇 → (𝑒 ∈ (mREx‘𝑡) ↦ ((freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) Σg ((𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))) = (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
219, 20mpteq12dv 5161 . . . 4 (𝑡 = 𝑇 → (𝑓 ∈ ((mREx‘𝑡) ↑pm (mVR‘𝑡)) ↦ (𝑒 ∈ (mREx‘𝑡) ↦ ((freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) Σg ((𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))) = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
22 df-mrsub 33352 . . . 4 mRSubst = (𝑡 ∈ V ↦ (𝑓 ∈ ((mREx‘𝑡) ↑pm (mVR‘𝑡)) ↦ (𝑒 ∈ (mREx‘𝑡) ↦ ((freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) Σg ((𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
23 ovex 7288 . . . . 5 (𝑅pm 𝑉) ∈ V
2423mptex 7081 . . . 4 (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))) ∈ V
2521, 22, 24fvmpt 6857 . . 3 (𝑇 ∈ V → (mRSubst‘𝑇) = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
262, 25syl 17 . 2 (𝑇𝑊 → (mRSubst‘𝑇) = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
271, 26syl5eq 2791 1 (𝑇𝑊𝑆 = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  cun 3881  ifcif 4456  cmpt 5153  dom cdm 5580  ccom 5584  cfv 6418  (class class class)co 7255  pm cpm 8574  ⟨“cs1 14228   Σg cgsu 17068  freeMndcfrmd 18401  mCNcmcn 33322  mVRcmvar 33323  mRExcmrex 33328  mRSubstcmrsub 33332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-mrsub 33352
This theorem is referenced by:  mrsubfval  33370  mrsubff  33374
  Copyright terms: Public domain W3C validator