Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubffval Structured version   Visualization version   GIF version

Theorem mrsubffval 35475
Description: The substitution of some variables for expressions in a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubffval.c 𝐶 = (mCN‘𝑇)
mrsubffval.v 𝑉 = (mVR‘𝑇)
mrsubffval.r 𝑅 = (mREx‘𝑇)
mrsubffval.s 𝑆 = (mRSubst‘𝑇)
mrsubffval.g 𝐺 = (freeMnd‘(𝐶𝑉))
Assertion
Ref Expression
mrsubffval (𝑇𝑊𝑆 = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
Distinct variable groups:   𝑒,𝑓,𝑣,𝐶   𝑅,𝑒,𝑓,𝑣   𝑒,𝐺,𝑓   𝑇,𝑒,𝑓,𝑣   𝑒,𝑉,𝑓,𝑣
Allowed substitution hints:   𝑆(𝑣,𝑒,𝑓)   𝐺(𝑣)   𝑊(𝑣,𝑒,𝑓)

Proof of Theorem mrsubffval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 mrsubffval.s . 2 𝑆 = (mRSubst‘𝑇)
2 elex 3509 . . 3 (𝑇𝑊𝑇 ∈ V)
3 fveq2 6920 . . . . . . 7 (𝑡 = 𝑇 → (mREx‘𝑡) = (mREx‘𝑇))
4 mrsubffval.r . . . . . . 7 𝑅 = (mREx‘𝑇)
53, 4eqtr4di 2798 . . . . . 6 (𝑡 = 𝑇 → (mREx‘𝑡) = 𝑅)
6 fveq2 6920 . . . . . . 7 (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇))
7 mrsubffval.v . . . . . . 7 𝑉 = (mVR‘𝑇)
86, 7eqtr4di 2798 . . . . . 6 (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉)
95, 8oveq12d 7466 . . . . 5 (𝑡 = 𝑇 → ((mREx‘𝑡) ↑pm (mVR‘𝑡)) = (𝑅pm 𝑉))
10 fveq2 6920 . . . . . . . . . . 11 (𝑡 = 𝑇 → (mCN‘𝑡) = (mCN‘𝑇))
11 mrsubffval.c . . . . . . . . . . 11 𝐶 = (mCN‘𝑇)
1210, 11eqtr4di 2798 . . . . . . . . . 10 (𝑡 = 𝑇 → (mCN‘𝑡) = 𝐶)
1312, 8uneq12d 4192 . . . . . . . . 9 (𝑡 = 𝑇 → ((mCN‘𝑡) ∪ (mVR‘𝑡)) = (𝐶𝑉))
1413fveq2d 6924 . . . . . . . 8 (𝑡 = 𝑇 → (freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) = (freeMnd‘(𝐶𝑉)))
15 mrsubffval.g . . . . . . . 8 𝐺 = (freeMnd‘(𝐶𝑉))
1614, 15eqtr4di 2798 . . . . . . 7 (𝑡 = 𝑇 → (freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) = 𝐺)
1713mpteq1d 5261 . . . . . . . 8 (𝑡 = 𝑇 → (𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) = (𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)))
1817coeq1d 5886 . . . . . . 7 (𝑡 = 𝑇 → ((𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒) = ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))
1916, 18oveq12d 7466 . . . . . 6 (𝑡 = 𝑇 → ((freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) Σg ((𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)) = (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))
205, 19mpteq12dv 5257 . . . . 5 (𝑡 = 𝑇 → (𝑒 ∈ (mREx‘𝑡) ↦ ((freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) Σg ((𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))) = (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
219, 20mpteq12dv 5257 . . . 4 (𝑡 = 𝑇 → (𝑓 ∈ ((mREx‘𝑡) ↑pm (mVR‘𝑡)) ↦ (𝑒 ∈ (mREx‘𝑡) ↦ ((freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) Σg ((𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))) = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
22 df-mrsub 35458 . . . 4 mRSubst = (𝑡 ∈ V ↦ (𝑓 ∈ ((mREx‘𝑡) ↑pm (mVR‘𝑡)) ↦ (𝑒 ∈ (mREx‘𝑡) ↦ ((freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) Σg ((𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
23 ovex 7481 . . . . 5 (𝑅pm 𝑉) ∈ V
2423mptex 7260 . . . 4 (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))) ∈ V
2521, 22, 24fvmpt 7029 . . 3 (𝑇 ∈ V → (mRSubst‘𝑇) = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
262, 25syl 17 . 2 (𝑇𝑊 → (mRSubst‘𝑇) = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
271, 26eqtrid 2792 1 (𝑇𝑊𝑆 = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  cun 3974  ifcif 4548  cmpt 5249  dom cdm 5700  ccom 5704  cfv 6573  (class class class)co 7448  pm cpm 8885  ⟨“cs1 14643   Σg cgsu 17500  freeMndcfrmd 18882  mCNcmcn 35428  mVRcmvar 35429  mRExcmrex 35434  mRSubstcmrsub 35438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-mrsub 35458
This theorem is referenced by:  mrsubfval  35476  mrsubff  35480
  Copyright terms: Public domain W3C validator