Step | Hyp | Ref
| Expression |
1 | | mrsubffval.s |
. 2
⊢ 𝑆 = (mRSubst‘𝑇) |
2 | | elex 3450 |
. . 3
⊢ (𝑇 ∈ 𝑊 → 𝑇 ∈ V) |
3 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑡 = 𝑇 → (mREx‘𝑡) = (mREx‘𝑇)) |
4 | | mrsubffval.r |
. . . . . . 7
⊢ 𝑅 = (mREx‘𝑇) |
5 | 3, 4 | eqtr4di 2796 |
. . . . . 6
⊢ (𝑡 = 𝑇 → (mREx‘𝑡) = 𝑅) |
6 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇)) |
7 | | mrsubffval.v |
. . . . . . 7
⊢ 𝑉 = (mVR‘𝑇) |
8 | 6, 7 | eqtr4di 2796 |
. . . . . 6
⊢ (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉) |
9 | 5, 8 | oveq12d 7293 |
. . . . 5
⊢ (𝑡 = 𝑇 → ((mREx‘𝑡) ↑pm (mVR‘𝑡)) = (𝑅 ↑pm 𝑉)) |
10 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑇 → (mCN‘𝑡) = (mCN‘𝑇)) |
11 | | mrsubffval.c |
. . . . . . . . . . 11
⊢ 𝐶 = (mCN‘𝑇) |
12 | 10, 11 | eqtr4di 2796 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑇 → (mCN‘𝑡) = 𝐶) |
13 | 12, 8 | uneq12d 4098 |
. . . . . . . . 9
⊢ (𝑡 = 𝑇 → ((mCN‘𝑡) ∪ (mVR‘𝑡)) = (𝐶 ∪ 𝑉)) |
14 | 13 | fveq2d 6778 |
. . . . . . . 8
⊢ (𝑡 = 𝑇 → (freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) = (freeMnd‘(𝐶 ∪ 𝑉))) |
15 | | mrsubffval.g |
. . . . . . . 8
⊢ 𝐺 = (freeMnd‘(𝐶 ∪ 𝑉)) |
16 | 14, 15 | eqtr4di 2796 |
. . . . . . 7
⊢ (𝑡 = 𝑇 → (freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) = 𝐺) |
17 | 13 | mpteq1d 5169 |
. . . . . . . 8
⊢ (𝑡 = 𝑇 → (𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) = (𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉))) |
18 | 17 | coeq1d 5770 |
. . . . . . 7
⊢ (𝑡 = 𝑇 → ((𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒) = ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒)) |
19 | 16, 18 | oveq12d 7293 |
. . . . . 6
⊢ (𝑡 = 𝑇 → ((freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) Σg
((𝑣 ∈
((mCN‘𝑡) ∪
(mVR‘𝑡)) ↦
if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒)) = (𝐺 Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒))) |
20 | 5, 19 | mpteq12dv 5165 |
. . . . 5
⊢ (𝑡 = 𝑇 → (𝑒 ∈ (mREx‘𝑡) ↦ ((freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) Σg
((𝑣 ∈
((mCN‘𝑡) ∪
(mVR‘𝑡)) ↦
if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒))) = (𝑒 ∈ 𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒)))) |
21 | 9, 20 | mpteq12dv 5165 |
. . . 4
⊢ (𝑡 = 𝑇 → (𝑓 ∈ ((mREx‘𝑡) ↑pm (mVR‘𝑡)) ↦ (𝑒 ∈ (mREx‘𝑡) ↦ ((freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) Σg
((𝑣 ∈
((mCN‘𝑡) ∪
(mVR‘𝑡)) ↦
if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒)))) = (𝑓 ∈ (𝑅 ↑pm 𝑉) ↦ (𝑒 ∈ 𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒))))) |
22 | | df-mrsub 33452 |
. . . 4
⊢ mRSubst =
(𝑡 ∈ V ↦ (𝑓 ∈ ((mREx‘𝑡) ↑pm
(mVR‘𝑡)) ↦
(𝑒 ∈ (mREx‘𝑡) ↦
((freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) Σg ((𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒))))) |
23 | | ovex 7308 |
. . . . 5
⊢ (𝑅 ↑pm 𝑉) ∈ V |
24 | 23 | mptex 7099 |
. . . 4
⊢ (𝑓 ∈ (𝑅 ↑pm 𝑉) ↦ (𝑒 ∈ 𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒)))) ∈ V |
25 | 21, 22, 24 | fvmpt 6875 |
. . 3
⊢ (𝑇 ∈ V →
(mRSubst‘𝑇) = (𝑓 ∈ (𝑅 ↑pm 𝑉) ↦ (𝑒 ∈ 𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒))))) |
26 | 2, 25 | syl 17 |
. 2
⊢ (𝑇 ∈ 𝑊 → (mRSubst‘𝑇) = (𝑓 ∈ (𝑅 ↑pm 𝑉) ↦ (𝑒 ∈ 𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒))))) |
27 | 1, 26 | eqtrid 2790 |
1
⊢ (𝑇 ∈ 𝑊 → 𝑆 = (𝑓 ∈ (𝑅 ↑pm 𝑉) ↦ (𝑒 ∈ 𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒))))) |