Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubffval Structured version   Visualization version   GIF version

Theorem mrsubffval 35494
Description: The substitution of some variables for expressions in a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubffval.c 𝐶 = (mCN‘𝑇)
mrsubffval.v 𝑉 = (mVR‘𝑇)
mrsubffval.r 𝑅 = (mREx‘𝑇)
mrsubffval.s 𝑆 = (mRSubst‘𝑇)
mrsubffval.g 𝐺 = (freeMnd‘(𝐶𝑉))
Assertion
Ref Expression
mrsubffval (𝑇𝑊𝑆 = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
Distinct variable groups:   𝑒,𝑓,𝑣,𝐶   𝑅,𝑒,𝑓,𝑣   𝑒,𝐺,𝑓   𝑇,𝑒,𝑓,𝑣   𝑒,𝑉,𝑓,𝑣
Allowed substitution hints:   𝑆(𝑣,𝑒,𝑓)   𝐺(𝑣)   𝑊(𝑣,𝑒,𝑓)

Proof of Theorem mrsubffval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 mrsubffval.s . 2 𝑆 = (mRSubst‘𝑇)
2 elex 3468 . . 3 (𝑇𝑊𝑇 ∈ V)
3 fveq2 6858 . . . . . . 7 (𝑡 = 𝑇 → (mREx‘𝑡) = (mREx‘𝑇))
4 mrsubffval.r . . . . . . 7 𝑅 = (mREx‘𝑇)
53, 4eqtr4di 2782 . . . . . 6 (𝑡 = 𝑇 → (mREx‘𝑡) = 𝑅)
6 fveq2 6858 . . . . . . 7 (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇))
7 mrsubffval.v . . . . . . 7 𝑉 = (mVR‘𝑇)
86, 7eqtr4di 2782 . . . . . 6 (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉)
95, 8oveq12d 7405 . . . . 5 (𝑡 = 𝑇 → ((mREx‘𝑡) ↑pm (mVR‘𝑡)) = (𝑅pm 𝑉))
10 fveq2 6858 . . . . . . . . . . 11 (𝑡 = 𝑇 → (mCN‘𝑡) = (mCN‘𝑇))
11 mrsubffval.c . . . . . . . . . . 11 𝐶 = (mCN‘𝑇)
1210, 11eqtr4di 2782 . . . . . . . . . 10 (𝑡 = 𝑇 → (mCN‘𝑡) = 𝐶)
1312, 8uneq12d 4132 . . . . . . . . 9 (𝑡 = 𝑇 → ((mCN‘𝑡) ∪ (mVR‘𝑡)) = (𝐶𝑉))
1413fveq2d 6862 . . . . . . . 8 (𝑡 = 𝑇 → (freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) = (freeMnd‘(𝐶𝑉)))
15 mrsubffval.g . . . . . . . 8 𝐺 = (freeMnd‘(𝐶𝑉))
1614, 15eqtr4di 2782 . . . . . . 7 (𝑡 = 𝑇 → (freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) = 𝐺)
1713mpteq1d 5197 . . . . . . . 8 (𝑡 = 𝑇 → (𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) = (𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)))
1817coeq1d 5825 . . . . . . 7 (𝑡 = 𝑇 → ((𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒) = ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))
1916, 18oveq12d 7405 . . . . . 6 (𝑡 = 𝑇 → ((freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) Σg ((𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)) = (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))
205, 19mpteq12dv 5194 . . . . 5 (𝑡 = 𝑇 → (𝑒 ∈ (mREx‘𝑡) ↦ ((freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) Σg ((𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))) = (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
219, 20mpteq12dv 5194 . . . 4 (𝑡 = 𝑇 → (𝑓 ∈ ((mREx‘𝑡) ↑pm (mVR‘𝑡)) ↦ (𝑒 ∈ (mREx‘𝑡) ↦ ((freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) Σg ((𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))) = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
22 df-mrsub 35477 . . . 4 mRSubst = (𝑡 ∈ V ↦ (𝑓 ∈ ((mREx‘𝑡) ↑pm (mVR‘𝑡)) ↦ (𝑒 ∈ (mREx‘𝑡) ↦ ((freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) Σg ((𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
23 ovex 7420 . . . . 5 (𝑅pm 𝑉) ∈ V
2423mptex 7197 . . . 4 (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))) ∈ V
2521, 22, 24fvmpt 6968 . . 3 (𝑇 ∈ V → (mRSubst‘𝑇) = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
262, 25syl 17 . 2 (𝑇𝑊 → (mRSubst‘𝑇) = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
271, 26eqtrid 2776 1 (𝑇𝑊𝑆 = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  cun 3912  ifcif 4488  cmpt 5188  dom cdm 5638  ccom 5642  cfv 6511  (class class class)co 7387  pm cpm 8800  ⟨“cs1 14560   Σg cgsu 17403  freeMndcfrmd 18774  mCNcmcn 35447  mVRcmvar 35448  mRExcmrex 35453  mRSubstcmrsub 35457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-mrsub 35477
This theorem is referenced by:  mrsubfval  35495  mrsubff  35499
  Copyright terms: Public domain W3C validator