Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubffval Structured version   Visualization version   GIF version

Theorem mrsubffval 35539
Description: The substitution of some variables for expressions in a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubffval.c 𝐶 = (mCN‘𝑇)
mrsubffval.v 𝑉 = (mVR‘𝑇)
mrsubffval.r 𝑅 = (mREx‘𝑇)
mrsubffval.s 𝑆 = (mRSubst‘𝑇)
mrsubffval.g 𝐺 = (freeMnd‘(𝐶𝑉))
Assertion
Ref Expression
mrsubffval (𝑇𝑊𝑆 = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
Distinct variable groups:   𝑒,𝑓,𝑣,𝐶   𝑅,𝑒,𝑓,𝑣   𝑒,𝐺,𝑓   𝑇,𝑒,𝑓,𝑣   𝑒,𝑉,𝑓,𝑣
Allowed substitution hints:   𝑆(𝑣,𝑒,𝑓)   𝐺(𝑣)   𝑊(𝑣,𝑒,𝑓)

Proof of Theorem mrsubffval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 mrsubffval.s . 2 𝑆 = (mRSubst‘𝑇)
2 elex 3457 . . 3 (𝑇𝑊𝑇 ∈ V)
3 fveq2 6822 . . . . . . 7 (𝑡 = 𝑇 → (mREx‘𝑡) = (mREx‘𝑇))
4 mrsubffval.r . . . . . . 7 𝑅 = (mREx‘𝑇)
53, 4eqtr4di 2784 . . . . . 6 (𝑡 = 𝑇 → (mREx‘𝑡) = 𝑅)
6 fveq2 6822 . . . . . . 7 (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇))
7 mrsubffval.v . . . . . . 7 𝑉 = (mVR‘𝑇)
86, 7eqtr4di 2784 . . . . . 6 (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉)
95, 8oveq12d 7364 . . . . 5 (𝑡 = 𝑇 → ((mREx‘𝑡) ↑pm (mVR‘𝑡)) = (𝑅pm 𝑉))
10 fveq2 6822 . . . . . . . . . . 11 (𝑡 = 𝑇 → (mCN‘𝑡) = (mCN‘𝑇))
11 mrsubffval.c . . . . . . . . . . 11 𝐶 = (mCN‘𝑇)
1210, 11eqtr4di 2784 . . . . . . . . . 10 (𝑡 = 𝑇 → (mCN‘𝑡) = 𝐶)
1312, 8uneq12d 4119 . . . . . . . . 9 (𝑡 = 𝑇 → ((mCN‘𝑡) ∪ (mVR‘𝑡)) = (𝐶𝑉))
1413fveq2d 6826 . . . . . . . 8 (𝑡 = 𝑇 → (freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) = (freeMnd‘(𝐶𝑉)))
15 mrsubffval.g . . . . . . . 8 𝐺 = (freeMnd‘(𝐶𝑉))
1614, 15eqtr4di 2784 . . . . . . 7 (𝑡 = 𝑇 → (freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) = 𝐺)
1713mpteq1d 5181 . . . . . . . 8 (𝑡 = 𝑇 → (𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) = (𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)))
1817coeq1d 5801 . . . . . . 7 (𝑡 = 𝑇 → ((𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒) = ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))
1916, 18oveq12d 7364 . . . . . 6 (𝑡 = 𝑇 → ((freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) Σg ((𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)) = (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))
205, 19mpteq12dv 5178 . . . . 5 (𝑡 = 𝑇 → (𝑒 ∈ (mREx‘𝑡) ↦ ((freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) Σg ((𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))) = (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
219, 20mpteq12dv 5178 . . . 4 (𝑡 = 𝑇 → (𝑓 ∈ ((mREx‘𝑡) ↑pm (mVR‘𝑡)) ↦ (𝑒 ∈ (mREx‘𝑡) ↦ ((freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) Σg ((𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))) = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
22 df-mrsub 35522 . . . 4 mRSubst = (𝑡 ∈ V ↦ (𝑓 ∈ ((mREx‘𝑡) ↑pm (mVR‘𝑡)) ↦ (𝑒 ∈ (mREx‘𝑡) ↦ ((freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) Σg ((𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
23 ovex 7379 . . . . 5 (𝑅pm 𝑉) ∈ V
2423mptex 7157 . . . 4 (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))) ∈ V
2521, 22, 24fvmpt 6929 . . 3 (𝑇 ∈ V → (mRSubst‘𝑇) = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
262, 25syl 17 . 2 (𝑇𝑊 → (mRSubst‘𝑇) = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
271, 26eqtrid 2778 1 (𝑇𝑊𝑆 = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  cun 3900  ifcif 4475  cmpt 5172  dom cdm 5616  ccom 5620  cfv 6481  (class class class)co 7346  pm cpm 8751  ⟨“cs1 14500   Σg cgsu 17341  freeMndcfrmd 18752  mCNcmcn 35492  mVRcmvar 35493  mRExcmrex 35498  mRSubstcmrsub 35502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-mrsub 35522
This theorem is referenced by:  mrsubfval  35540  mrsubff  35544
  Copyright terms: Public domain W3C validator