Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-mvr Structured version   Visualization version   GIF version

Definition df-mvr 20137
 Description: Define the generating elements of the power series algebra. (Contributed by Mario Carneiro, 7-Jan-2015.)
Assertion
Ref Expression
df-mvr mVar = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥𝑖 ↦ (𝑓 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)), (1r𝑟), (0g𝑟)))))
Distinct variable group:   𝑓,,𝑖,𝑟,𝑥,𝑦

Detailed syntax breakdown of Definition df-mvr
StepHypRef Expression
1 cmvr 20132 . 2 class mVar
2 vi . . 3 setvar 𝑖
3 vr . . 3 setvar 𝑟
4 cvv 3480 . . 3 class V
5 vx . . . 4 setvar 𝑥
62cv 1537 . . . 4 class 𝑖
7 vf . . . . 5 setvar 𝑓
8 vh . . . . . . . . . 10 setvar
98cv 1537 . . . . . . . . 9 class
109ccnv 5541 . . . . . . . 8 class
11 cn 11634 . . . . . . . 8 class
1210, 11cima 5545 . . . . . . 7 class ( “ ℕ)
13 cfn 8505 . . . . . . 7 class Fin
1412, 13wcel 2115 . . . . . 6 wff ( “ ℕ) ∈ Fin
15 cn0 11894 . . . . . . 7 class 0
16 cmap 8402 . . . . . . 7 class m
1715, 6, 16co 7149 . . . . . 6 class (ℕ0m 𝑖)
1814, 8, 17crab 3137 . . . . 5 class { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin}
197cv 1537 . . . . . . 7 class 𝑓
20 vy . . . . . . . 8 setvar 𝑦
2120, 5weq 1965 . . . . . . . . 9 wff 𝑦 = 𝑥
22 c1 10536 . . . . . . . . 9 class 1
23 cc0 10535 . . . . . . . . 9 class 0
2421, 22, 23cif 4450 . . . . . . . 8 class if(𝑦 = 𝑥, 1, 0)
2520, 6, 24cmpt 5132 . . . . . . 7 class (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0))
2619, 25wceq 1538 . . . . . 6 wff 𝑓 = (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0))
273cv 1537 . . . . . . 7 class 𝑟
28 cur 19251 . . . . . . 7 class 1r
2927, 28cfv 6343 . . . . . 6 class (1r𝑟)
30 c0g 16713 . . . . . . 7 class 0g
3127, 30cfv 6343 . . . . . 6 class (0g𝑟)
3226, 29, 31cif 4450 . . . . 5 class if(𝑓 = (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)), (1r𝑟), (0g𝑟))
337, 18, 32cmpt 5132 . . . 4 class (𝑓 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)), (1r𝑟), (0g𝑟)))
345, 6, 33cmpt 5132 . . 3 class (𝑥𝑖 ↦ (𝑓 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)), (1r𝑟), (0g𝑟))))
352, 3, 4, 4, 34cmpo 7151 . 2 class (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥𝑖 ↦ (𝑓 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)), (1r𝑟), (0g𝑟)))))
361, 35wceq 1538 1 wff mVar = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥𝑖 ↦ (𝑓 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)), (1r𝑟), (0g𝑟)))))
 Colors of variables: wff setvar class This definition is referenced by:  mvrfval  20200  vr1val  20360
 Copyright terms: Public domain W3C validator