Step | Hyp | Ref
| Expression |
1 | | mvrfval.v |
. 2
⊢ 𝑉 = (𝐼 mVar 𝑅) |
2 | | mvrfval.i |
. . . 4
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
3 | 2 | elexd 3442 |
. . 3
⊢ (𝜑 → 𝐼 ∈ V) |
4 | | mvrfval.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ 𝑌) |
5 | 4 | elexd 3442 |
. . 3
⊢ (𝜑 → 𝑅 ∈ V) |
6 | 2 | mptexd 7082 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 ))) ∈
V) |
7 | | simpl 482 |
. . . . 5
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → 𝑖 = 𝐼) |
8 | 7 | oveq2d 7271 |
. . . . . . . 8
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (ℕ0
↑m 𝑖) =
(ℕ0 ↑m 𝐼)) |
9 | 8 | rabeqdv 3409 |
. . . . . . 7
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
10 | | mvrfval.d |
. . . . . . 7
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
11 | 9, 10 | eqtr4di 2797 |
. . . . . 6
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} = 𝐷) |
12 | | mpteq1 5163 |
. . . . . . . . 9
⊢ (𝑖 = 𝐼 → (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0)) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0))) |
13 | 12 | adantr 480 |
. . . . . . . 8
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0)) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0))) |
14 | 13 | eqeq2d 2749 |
. . . . . . 7
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝑓 = (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0)) ↔ 𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))) |
15 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅) |
16 | 15 | fveq2d 6760 |
. . . . . . . 8
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (1r‘𝑟) = (1r‘𝑅)) |
17 | | mvrfval.o |
. . . . . . . 8
⊢ 1 =
(1r‘𝑅) |
18 | 16, 17 | eqtr4di 2797 |
. . . . . . 7
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (1r‘𝑟) = 1 ) |
19 | 15 | fveq2d 6760 |
. . . . . . . 8
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (0g‘𝑟) = (0g‘𝑅)) |
20 | | mvrfval.z |
. . . . . . . 8
⊢ 0 =
(0g‘𝑅) |
21 | 19, 20 | eqtr4di 2797 |
. . . . . . 7
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (0g‘𝑟) = 0 ) |
22 | 14, 18, 21 | ifbieq12d 4484 |
. . . . . 6
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → if(𝑓 = (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0)), (1r‘𝑟), (0g‘𝑟)) = if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 )) |
23 | 11, 22 | mpteq12dv 5161 |
. . . . 5
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝑓 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0)), (1r‘𝑟), (0g‘𝑟))) = (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 ))) |
24 | 7, 23 | mpteq12dv 5161 |
. . . 4
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝑥 ∈ 𝑖 ↦ (𝑓 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0)), (1r‘𝑟), (0g‘𝑟)))) = (𝑥 ∈ 𝐼 ↦ (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 )))) |
25 | | df-mvr 21023 |
. . . 4
⊢ mVar =
(𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥 ∈ 𝑖 ↦ (𝑓 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0)), (1r‘𝑟), (0g‘𝑟))))) |
26 | 24, 25 | ovmpoga 7405 |
. . 3
⊢ ((𝐼 ∈ V ∧ 𝑅 ∈ V ∧ (𝑥 ∈ 𝐼 ↦ (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 ))) ∈ V) →
(𝐼 mVar 𝑅) = (𝑥 ∈ 𝐼 ↦ (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 )))) |
27 | 3, 5, 6, 26 | syl3anc 1369 |
. 2
⊢ (𝜑 → (𝐼 mVar 𝑅) = (𝑥 ∈ 𝐼 ↦ (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 )))) |
28 | 1, 27 | eqtrid 2790 |
1
⊢ (𝜑 → 𝑉 = (𝑥 ∈ 𝐼 ↦ (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 )))) |