MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvrfval Structured version   Visualization version   GIF version

Theorem mvrfval 20658
Description: Value of the generating elements of the power series structure. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
mvrfval.v 𝑉 = (𝐼 mVar 𝑅)
mvrfval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
mvrfval.z 0 = (0g𝑅)
mvrfval.o 1 = (1r𝑅)
mvrfval.i (𝜑𝐼𝑊)
mvrfval.r (𝜑𝑅𝑌)
Assertion
Ref Expression
mvrfval (𝜑𝑉 = (𝑥𝐼 ↦ (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 ))))
Distinct variable groups:   𝑥,𝑓, 0   1 ,𝑓,𝑥   𝑦,𝑓,𝐷,𝑥   𝑦,𝑊   𝑓,,𝐼,𝑥,𝑦   𝑅,𝑓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,)   𝐷()   𝑅(𝑦,)   1 (𝑦,)   𝑉(𝑥,𝑦,𝑓,)   𝑊(𝑥,𝑓,)   𝑌(𝑥,𝑦,𝑓,)   0 (𝑦,)

Proof of Theorem mvrfval
Dummy variables 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mvrfval.v . 2 𝑉 = (𝐼 mVar 𝑅)
2 mvrfval.i . . . 4 (𝜑𝐼𝑊)
32elexd 3461 . . 3 (𝜑𝐼 ∈ V)
4 mvrfval.r . . . 4 (𝜑𝑅𝑌)
54elexd 3461 . . 3 (𝜑𝑅 ∈ V)
62mptexd 6964 . . 3 (𝜑 → (𝑥𝐼 ↦ (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 ))) ∈ V)
7 simpl 486 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → 𝑖 = 𝐼)
87oveq2d 7151 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (ℕ0m 𝑖) = (ℕ0m 𝐼))
98rabeqdv 3432 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
10 mvrfval.d . . . . . . 7 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
119, 10eqtr4di 2851 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} = 𝐷)
12 mpteq1 5118 . . . . . . . . 9 (𝑖 = 𝐼 → (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))
1312adantr 484 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))
1413eqeq2d 2809 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑓 = (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)) ↔ 𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))
15 simpr 488 . . . . . . . . 9 ((𝑖 = 𝐼𝑟 = 𝑅) → 𝑟 = 𝑅)
1615fveq2d 6649 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (1r𝑟) = (1r𝑅))
17 mvrfval.o . . . . . . . 8 1 = (1r𝑅)
1816, 17eqtr4di 2851 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (1r𝑟) = 1 )
1915fveq2d 6649 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (0g𝑟) = (0g𝑅))
20 mvrfval.z . . . . . . . 8 0 = (0g𝑅)
2119, 20eqtr4di 2851 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (0g𝑟) = 0 )
2214, 18, 21ifbieq12d 4452 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → if(𝑓 = (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)), (1r𝑟), (0g𝑟)) = if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 ))
2311, 22mpteq12dv 5115 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑓 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)), (1r𝑟), (0g𝑟))) = (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 )))
247, 23mpteq12dv 5115 . . . 4 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑥𝑖 ↦ (𝑓 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)), (1r𝑟), (0g𝑟)))) = (𝑥𝐼 ↦ (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 ))))
25 df-mvr 20595 . . . 4 mVar = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥𝑖 ↦ (𝑓 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)), (1r𝑟), (0g𝑟)))))
2624, 25ovmpoga 7283 . . 3 ((𝐼 ∈ V ∧ 𝑅 ∈ V ∧ (𝑥𝐼 ↦ (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 ))) ∈ V) → (𝐼 mVar 𝑅) = (𝑥𝐼 ↦ (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 ))))
273, 5, 6, 26syl3anc 1368 . 2 (𝜑 → (𝐼 mVar 𝑅) = (𝑥𝐼 ↦ (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 ))))
281, 27syl5eq 2845 1 (𝜑𝑉 = (𝑥𝐼 ↦ (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  {crab 3110  Vcvv 3441  ifcif 4425  cmpt 5110  ccnv 5518  cima 5522  cfv 6324  (class class class)co 7135  m cmap 8389  Fincfn 8492  0cc0 10526  1c1 10527  cn 11625  0cn0 11885  0gc0g 16705  1rcur 19244   mVar cmvr 20590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-mvr 20595
This theorem is referenced by:  mvrval  20659  mvrf  20662  subrgmvr  20701
  Copyright terms: Public domain W3C validator