Detailed syntax breakdown of Definition df-psr
Step | Hyp | Ref
| Expression |
1 | | cmps 21116 |
. 2
class
mPwSer |
2 | | vi |
. . 3
setvar 𝑖 |
3 | | vr |
. . 3
setvar 𝑟 |
4 | | cvv 3433 |
. . 3
class
V |
5 | | vd |
. . . 4
setvar 𝑑 |
6 | | vh |
. . . . . . . . 9
setvar ℎ |
7 | 6 | cv 1538 |
. . . . . . . 8
class ℎ |
8 | 7 | ccnv 5589 |
. . . . . . 7
class ◡ℎ |
9 | | cn 11982 |
. . . . . . 7
class
ℕ |
10 | 8, 9 | cima 5593 |
. . . . . 6
class (◡ℎ “ ℕ) |
11 | | cfn 8742 |
. . . . . 6
class
Fin |
12 | 10, 11 | wcel 2107 |
. . . . 5
wff (◡ℎ “ ℕ) ∈ Fin |
13 | | cn0 12242 |
. . . . . 6
class
ℕ0 |
14 | 2 | cv 1538 |
. . . . . 6
class 𝑖 |
15 | | cmap 8624 |
. . . . . 6
class
↑m |
16 | 13, 14, 15 | co 7284 |
. . . . 5
class
(ℕ0 ↑m 𝑖) |
17 | 12, 6, 16 | crab 3069 |
. . . 4
class {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} |
18 | | vb |
. . . . 5
setvar 𝑏 |
19 | 3 | cv 1538 |
. . . . . . 7
class 𝑟 |
20 | | cbs 16921 |
. . . . . . 7
class
Base |
21 | 19, 20 | cfv 6437 |
. . . . . 6
class
(Base‘𝑟) |
22 | 5 | cv 1538 |
. . . . . 6
class 𝑑 |
23 | 21, 22, 15 | co 7284 |
. . . . 5
class
((Base‘𝑟)
↑m 𝑑) |
24 | | cnx 16903 |
. . . . . . . . 9
class
ndx |
25 | 24, 20 | cfv 6437 |
. . . . . . . 8
class
(Base‘ndx) |
26 | 18 | cv 1538 |
. . . . . . . 8
class 𝑏 |
27 | 25, 26 | cop 4568 |
. . . . . . 7
class
〈(Base‘ndx), 𝑏〉 |
28 | | cplusg 16971 |
. . . . . . . . 9
class
+g |
29 | 24, 28 | cfv 6437 |
. . . . . . . 8
class
(+g‘ndx) |
30 | 19, 28 | cfv 6437 |
. . . . . . . . . 10
class
(+g‘𝑟) |
31 | 30 | cof 7540 |
. . . . . . . . 9
class
∘f (+g‘𝑟) |
32 | 26, 26 | cxp 5588 |
. . . . . . . . 9
class (𝑏 × 𝑏) |
33 | 31, 32 | cres 5592 |
. . . . . . . 8
class (
∘f (+g‘𝑟) ↾ (𝑏 × 𝑏)) |
34 | 29, 33 | cop 4568 |
. . . . . . 7
class
〈(+g‘ndx), ( ∘f
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉 |
35 | | cmulr 16972 |
. . . . . . . . 9
class
.r |
36 | 24, 35 | cfv 6437 |
. . . . . . . 8
class
(.r‘ndx) |
37 | | vf |
. . . . . . . . 9
setvar 𝑓 |
38 | | vg |
. . . . . . . . 9
setvar 𝑔 |
39 | | vk |
. . . . . . . . . 10
setvar 𝑘 |
40 | | vx |
. . . . . . . . . . . 12
setvar 𝑥 |
41 | | vy |
. . . . . . . . . . . . . . 15
setvar 𝑦 |
42 | 41 | cv 1538 |
. . . . . . . . . . . . . 14
class 𝑦 |
43 | 39 | cv 1538 |
. . . . . . . . . . . . . 14
class 𝑘 |
44 | | cle 11019 |
. . . . . . . . . . . . . . 15
class
≤ |
45 | 44 | cofr 7541 |
. . . . . . . . . . . . . 14
class
∘r ≤ |
46 | 42, 43, 45 | wbr 5075 |
. . . . . . . . . . . . 13
wff 𝑦 ∘r ≤ 𝑘 |
47 | 46, 41, 22 | crab 3069 |
. . . . . . . . . . . 12
class {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} |
48 | 40 | cv 1538 |
. . . . . . . . . . . . . 14
class 𝑥 |
49 | 37 | cv 1538 |
. . . . . . . . . . . . . 14
class 𝑓 |
50 | 48, 49 | cfv 6437 |
. . . . . . . . . . . . 13
class (𝑓‘𝑥) |
51 | | cmin 11214 |
. . . . . . . . . . . . . . . 16
class
− |
52 | 51 | cof 7540 |
. . . . . . . . . . . . . . 15
class
∘f − |
53 | 43, 48, 52 | co 7284 |
. . . . . . . . . . . . . 14
class (𝑘 ∘f −
𝑥) |
54 | 38 | cv 1538 |
. . . . . . . . . . . . . 14
class 𝑔 |
55 | 53, 54 | cfv 6437 |
. . . . . . . . . . . . 13
class (𝑔‘(𝑘 ∘f − 𝑥)) |
56 | 19, 35 | cfv 6437 |
. . . . . . . . . . . . 13
class
(.r‘𝑟) |
57 | 50, 55, 56 | co 7284 |
. . . . . . . . . . . 12
class ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥))) |
58 | 40, 47, 57 | cmpt 5158 |
. . . . . . . . . . 11
class (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))) |
59 | | cgsu 17160 |
. . . . . . . . . . 11
class
Σg |
60 | 19, 58, 59 | co 7284 |
. . . . . . . . . 10
class (𝑟 Σg
(𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥))))) |
61 | 39, 22, 60 | cmpt 5158 |
. . . . . . . . 9
class (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))) |
62 | 37, 38, 26, 26, 61 | cmpo 7286 |
. . . . . . . 8
class (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥))))))) |
63 | 36, 62 | cop 4568 |
. . . . . . 7
class
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))))〉 |
64 | 27, 34, 63 | ctp 4566 |
. . . . . 6
class
{〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), (
∘f (+g‘𝑟) ↾ (𝑏 × 𝑏))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))))〉} |
65 | | csca 16974 |
. . . . . . . . 9
class
Scalar |
66 | 24, 65 | cfv 6437 |
. . . . . . . 8
class
(Scalar‘ndx) |
67 | 66, 19 | cop 4568 |
. . . . . . 7
class
〈(Scalar‘ndx), 𝑟〉 |
68 | | cvsca 16975 |
. . . . . . . . 9
class
·𝑠 |
69 | 24, 68 | cfv 6437 |
. . . . . . . 8
class (
·𝑠 ‘ndx) |
70 | 48 | csn 4562 |
. . . . . . . . . . 11
class {𝑥} |
71 | 22, 70 | cxp 5588 |
. . . . . . . . . 10
class (𝑑 × {𝑥}) |
72 | 56 | cof 7540 |
. . . . . . . . . 10
class
∘f (.r‘𝑟) |
73 | 71, 49, 72 | co 7284 |
. . . . . . . . 9
class ((𝑑 × {𝑥}) ∘f
(.r‘𝑟)𝑓) |
74 | 40, 37, 21, 26, 73 | cmpo 7286 |
. . . . . . . 8
class (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f
(.r‘𝑟)𝑓)) |
75 | 69, 74 | cop 4568 |
. . . . . . 7
class 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f
(.r‘𝑟)𝑓))〉 |
76 | | cts 16977 |
. . . . . . . . 9
class
TopSet |
77 | 24, 76 | cfv 6437 |
. . . . . . . 8
class
(TopSet‘ndx) |
78 | | ctopn 17141 |
. . . . . . . . . . . 12
class
TopOpen |
79 | 19, 78 | cfv 6437 |
. . . . . . . . . . 11
class
(TopOpen‘𝑟) |
80 | 79 | csn 4562 |
. . . . . . . . . 10
class
{(TopOpen‘𝑟)} |
81 | 22, 80 | cxp 5588 |
. . . . . . . . 9
class (𝑑 × {(TopOpen‘𝑟)}) |
82 | | cpt 17158 |
. . . . . . . . 9
class
∏t |
83 | 81, 82 | cfv 6437 |
. . . . . . . 8
class
(∏t‘(𝑑 × {(TopOpen‘𝑟)})) |
84 | 77, 83 | cop 4568 |
. . . . . . 7
class
〈(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉 |
85 | 67, 75, 84 | ctp 4566 |
. . . . . 6
class
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉} |
86 | 64, 85 | cun 3886 |
. . . . 5
class
({〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), (
∘f (+g‘𝑟) ↾ (𝑏 × 𝑏))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉}) |
87 | 18, 23, 86 | csb 3833 |
. . . 4
class
⦋((Base‘𝑟) ↑m 𝑑) / 𝑏⦌({〈(Base‘ndx),
𝑏〉,
〈(+g‘ndx), ( ∘f
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉}) |
88 | 5, 17, 87 | csb 3833 |
. . 3
class
⦋{ℎ
∈ (ℕ0 ↑m 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑m 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘f (+g‘𝑟) ↾ (𝑏 × 𝑏))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪ {〈(Scalar‘ndx),
𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑
× {(TopOpen‘𝑟)}))〉}) |
89 | 2, 3, 4, 4, 88 | cmpo 7286 |
. 2
class (𝑖 ∈ V, 𝑟 ∈ V ↦ ⦋{ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑m 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘f (+g‘𝑟) ↾ (𝑏 × 𝑏))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪ {〈(Scalar‘ndx),
𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑
× {(TopOpen‘𝑟)}))〉})) |
90 | 1, 89 | wceq 1539 |
1
wff mPwSer =
(𝑖 ∈ V, 𝑟 ∈ V ↦
⦋{ℎ ∈
(ℕ0 ↑m 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑m 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘f (+g‘𝑟) ↾ (𝑏 × 𝑏))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪ {〈(Scalar‘ndx),
𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑
× {(TopOpen‘𝑟)}))〉})) |