Detailed syntax breakdown of Definition df-psr
| Step | Hyp | Ref
| Expression |
| 1 | | cmps 21924 |
. 2
class
mPwSer |
| 2 | | vi |
. . 3
setvar 𝑖 |
| 3 | | vr |
. . 3
setvar 𝑟 |
| 4 | | cvv 3480 |
. . 3
class
V |
| 5 | | vd |
. . . 4
setvar 𝑑 |
| 6 | | vh |
. . . . . . . . 9
setvar ℎ |
| 7 | 6 | cv 1539 |
. . . . . . . 8
class ℎ |
| 8 | 7 | ccnv 5684 |
. . . . . . 7
class ◡ℎ |
| 9 | | cn 12266 |
. . . . . . 7
class
ℕ |
| 10 | 8, 9 | cima 5688 |
. . . . . 6
class (◡ℎ “ ℕ) |
| 11 | | cfn 8985 |
. . . . . 6
class
Fin |
| 12 | 10, 11 | wcel 2108 |
. . . . 5
wff (◡ℎ “ ℕ) ∈ Fin |
| 13 | | cn0 12526 |
. . . . . 6
class
ℕ0 |
| 14 | 2 | cv 1539 |
. . . . . 6
class 𝑖 |
| 15 | | cmap 8866 |
. . . . . 6
class
↑m |
| 16 | 13, 14, 15 | co 7431 |
. . . . 5
class
(ℕ0 ↑m 𝑖) |
| 17 | 12, 6, 16 | crab 3436 |
. . . 4
class {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} |
| 18 | | vb |
. . . . 5
setvar 𝑏 |
| 19 | 3 | cv 1539 |
. . . . . . 7
class 𝑟 |
| 20 | | cbs 17247 |
. . . . . . 7
class
Base |
| 21 | 19, 20 | cfv 6561 |
. . . . . 6
class
(Base‘𝑟) |
| 22 | 5 | cv 1539 |
. . . . . 6
class 𝑑 |
| 23 | 21, 22, 15 | co 7431 |
. . . . 5
class
((Base‘𝑟)
↑m 𝑑) |
| 24 | | cnx 17230 |
. . . . . . . . 9
class
ndx |
| 25 | 24, 20 | cfv 6561 |
. . . . . . . 8
class
(Base‘ndx) |
| 26 | 18 | cv 1539 |
. . . . . . . 8
class 𝑏 |
| 27 | 25, 26 | cop 4632 |
. . . . . . 7
class
〈(Base‘ndx), 𝑏〉 |
| 28 | | cplusg 17297 |
. . . . . . . . 9
class
+g |
| 29 | 24, 28 | cfv 6561 |
. . . . . . . 8
class
(+g‘ndx) |
| 30 | 19, 28 | cfv 6561 |
. . . . . . . . . 10
class
(+g‘𝑟) |
| 31 | 30 | cof 7695 |
. . . . . . . . 9
class
∘f (+g‘𝑟) |
| 32 | 26, 26 | cxp 5683 |
. . . . . . . . 9
class (𝑏 × 𝑏) |
| 33 | 31, 32 | cres 5687 |
. . . . . . . 8
class (
∘f (+g‘𝑟) ↾ (𝑏 × 𝑏)) |
| 34 | 29, 33 | cop 4632 |
. . . . . . 7
class
〈(+g‘ndx), ( ∘f
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉 |
| 35 | | cmulr 17298 |
. . . . . . . . 9
class
.r |
| 36 | 24, 35 | cfv 6561 |
. . . . . . . 8
class
(.r‘ndx) |
| 37 | | vf |
. . . . . . . . 9
setvar 𝑓 |
| 38 | | vg |
. . . . . . . . 9
setvar 𝑔 |
| 39 | | vk |
. . . . . . . . . 10
setvar 𝑘 |
| 40 | | vx |
. . . . . . . . . . . 12
setvar 𝑥 |
| 41 | | vy |
. . . . . . . . . . . . . . 15
setvar 𝑦 |
| 42 | 41 | cv 1539 |
. . . . . . . . . . . . . 14
class 𝑦 |
| 43 | 39 | cv 1539 |
. . . . . . . . . . . . . 14
class 𝑘 |
| 44 | | cle 11296 |
. . . . . . . . . . . . . . 15
class
≤ |
| 45 | 44 | cofr 7696 |
. . . . . . . . . . . . . 14
class
∘r ≤ |
| 46 | 42, 43, 45 | wbr 5143 |
. . . . . . . . . . . . 13
wff 𝑦 ∘r ≤ 𝑘 |
| 47 | 46, 41, 22 | crab 3436 |
. . . . . . . . . . . 12
class {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} |
| 48 | 40 | cv 1539 |
. . . . . . . . . . . . . 14
class 𝑥 |
| 49 | 37 | cv 1539 |
. . . . . . . . . . . . . 14
class 𝑓 |
| 50 | 48, 49 | cfv 6561 |
. . . . . . . . . . . . 13
class (𝑓‘𝑥) |
| 51 | | cmin 11492 |
. . . . . . . . . . . . . . . 16
class
− |
| 52 | 51 | cof 7695 |
. . . . . . . . . . . . . . 15
class
∘f − |
| 53 | 43, 48, 52 | co 7431 |
. . . . . . . . . . . . . 14
class (𝑘 ∘f −
𝑥) |
| 54 | 38 | cv 1539 |
. . . . . . . . . . . . . 14
class 𝑔 |
| 55 | 53, 54 | cfv 6561 |
. . . . . . . . . . . . 13
class (𝑔‘(𝑘 ∘f − 𝑥)) |
| 56 | 19, 35 | cfv 6561 |
. . . . . . . . . . . . 13
class
(.r‘𝑟) |
| 57 | 50, 55, 56 | co 7431 |
. . . . . . . . . . . 12
class ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥))) |
| 58 | 40, 47, 57 | cmpt 5225 |
. . . . . . . . . . 11
class (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))) |
| 59 | | cgsu 17485 |
. . . . . . . . . . 11
class
Σg |
| 60 | 19, 58, 59 | co 7431 |
. . . . . . . . . 10
class (𝑟 Σg
(𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥))))) |
| 61 | 39, 22, 60 | cmpt 5225 |
. . . . . . . . 9
class (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))) |
| 62 | 37, 38, 26, 26, 61 | cmpo 7433 |
. . . . . . . 8
class (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥))))))) |
| 63 | 36, 62 | cop 4632 |
. . . . . . 7
class
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))))〉 |
| 64 | 27, 34, 63 | ctp 4630 |
. . . . . 6
class
{〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), (
∘f (+g‘𝑟) ↾ (𝑏 × 𝑏))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))))〉} |
| 65 | | csca 17300 |
. . . . . . . . 9
class
Scalar |
| 66 | 24, 65 | cfv 6561 |
. . . . . . . 8
class
(Scalar‘ndx) |
| 67 | 66, 19 | cop 4632 |
. . . . . . 7
class
〈(Scalar‘ndx), 𝑟〉 |
| 68 | | cvsca 17301 |
. . . . . . . . 9
class
·𝑠 |
| 69 | 24, 68 | cfv 6561 |
. . . . . . . 8
class (
·𝑠 ‘ndx) |
| 70 | 48 | csn 4626 |
. . . . . . . . . . 11
class {𝑥} |
| 71 | 22, 70 | cxp 5683 |
. . . . . . . . . 10
class (𝑑 × {𝑥}) |
| 72 | 56 | cof 7695 |
. . . . . . . . . 10
class
∘f (.r‘𝑟) |
| 73 | 71, 49, 72 | co 7431 |
. . . . . . . . 9
class ((𝑑 × {𝑥}) ∘f
(.r‘𝑟)𝑓) |
| 74 | 40, 37, 21, 26, 73 | cmpo 7433 |
. . . . . . . 8
class (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f
(.r‘𝑟)𝑓)) |
| 75 | 69, 74 | cop 4632 |
. . . . . . 7
class 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f
(.r‘𝑟)𝑓))〉 |
| 76 | | cts 17303 |
. . . . . . . . 9
class
TopSet |
| 77 | 24, 76 | cfv 6561 |
. . . . . . . 8
class
(TopSet‘ndx) |
| 78 | | ctopn 17466 |
. . . . . . . . . . . 12
class
TopOpen |
| 79 | 19, 78 | cfv 6561 |
. . . . . . . . . . 11
class
(TopOpen‘𝑟) |
| 80 | 79 | csn 4626 |
. . . . . . . . . 10
class
{(TopOpen‘𝑟)} |
| 81 | 22, 80 | cxp 5683 |
. . . . . . . . 9
class (𝑑 × {(TopOpen‘𝑟)}) |
| 82 | | cpt 17483 |
. . . . . . . . 9
class
∏t |
| 83 | 81, 82 | cfv 6561 |
. . . . . . . 8
class
(∏t‘(𝑑 × {(TopOpen‘𝑟)})) |
| 84 | 77, 83 | cop 4632 |
. . . . . . 7
class
〈(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉 |
| 85 | 67, 75, 84 | ctp 4630 |
. . . . . 6
class
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉} |
| 86 | 64, 85 | cun 3949 |
. . . . 5
class
({〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), (
∘f (+g‘𝑟) ↾ (𝑏 × 𝑏))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉}) |
| 87 | 18, 23, 86 | csb 3899 |
. . . 4
class
⦋((Base‘𝑟) ↑m 𝑑) / 𝑏⦌({〈(Base‘ndx),
𝑏〉,
〈(+g‘ndx), ( ∘f
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉}) |
| 88 | 5, 17, 87 | csb 3899 |
. . 3
class
⦋{ℎ
∈ (ℕ0 ↑m 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑m 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘f (+g‘𝑟) ↾ (𝑏 × 𝑏))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪ {〈(Scalar‘ndx),
𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑
× {(TopOpen‘𝑟)}))〉}) |
| 89 | 2, 3, 4, 4, 88 | cmpo 7433 |
. 2
class (𝑖 ∈ V, 𝑟 ∈ V ↦ ⦋{ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑m 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘f (+g‘𝑟) ↾ (𝑏 × 𝑏))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪ {〈(Scalar‘ndx),
𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑
× {(TopOpen‘𝑟)}))〉})) |
| 90 | 1, 89 | wceq 1540 |
1
wff mPwSer =
(𝑖 ∈ V, 𝑟 ∈ V ↦
⦋{ℎ ∈
(ℕ0 ↑m 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑m 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘f (+g‘𝑟) ↾ (𝑏 × 𝑏))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪ {〈(Scalar‘ndx),
𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑
× {(TopOpen‘𝑟)}))〉})) |