Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-nbgr | Structured version Visualization version GIF version |
Description: Define the (open)
neighborhood resp. the class of all neighbors of a
vertex (in a graph), see definition in section I.1 of [Bollobas] p. 3 or
definition in section 1.1 of [Diestel]
p. 3. The neighborhood/neighbors
of a vertex are all (other) vertices which are connected with this
vertex by an edge. In contrast to a closed neighborhood, a vertex is
not a neighbor of itself. This definition is applicable even for
arbitrary hypergraphs.
Remark: To distinguish this definition from other definitions for neighborhoods resp. neighbors (e.g., nei in Topology, see df-nei 22157), the suffix Vtx is added to the class constant NeighbVtx. (Contributed by Alexander van der Vekens and Mario Carneiro, 7-Oct-2017.) (Revised by AV, 24-Oct-2020.) |
Ref | Expression |
---|---|
df-nbgr | ⊢ NeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ {𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnbgr 27602 | . 2 class NeighbVtx | |
2 | vg | . . 3 setvar 𝑔 | |
3 | vv | . . 3 setvar 𝑣 | |
4 | cvv 3422 | . . 3 class V | |
5 | 2 | cv 1538 | . . . 4 class 𝑔 |
6 | cvtx 27269 | . . . 4 class Vtx | |
7 | 5, 6 | cfv 6418 | . . 3 class (Vtx‘𝑔) |
8 | 3 | cv 1538 | . . . . . . 7 class 𝑣 |
9 | vn | . . . . . . . 8 setvar 𝑛 | |
10 | 9 | cv 1538 | . . . . . . 7 class 𝑛 |
11 | 8, 10 | cpr 4560 | . . . . . 6 class {𝑣, 𝑛} |
12 | ve | . . . . . . 7 setvar 𝑒 | |
13 | 12 | cv 1538 | . . . . . 6 class 𝑒 |
14 | 11, 13 | wss 3883 | . . . . 5 wff {𝑣, 𝑛} ⊆ 𝑒 |
15 | cedg 27320 | . . . . . 6 class Edg | |
16 | 5, 15 | cfv 6418 | . . . . 5 class (Edg‘𝑔) |
17 | 14, 12, 16 | wrex 3064 | . . . 4 wff ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒 |
18 | 8 | csn 4558 | . . . . 5 class {𝑣} |
19 | 7, 18 | cdif 3880 | . . . 4 class ((Vtx‘𝑔) ∖ {𝑣}) |
20 | 17, 9, 19 | crab 3067 | . . 3 class {𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒} |
21 | 2, 3, 4, 7, 20 | cmpo 7257 | . 2 class (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ {𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒}) |
22 | 1, 21 | wceq 1539 | 1 wff NeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ {𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒}) |
Colors of variables: wff setvar class |
This definition is referenced by: nbgrprc0 27604 nbgrcl 27605 nbgrval 27606 nbgrnvtx0 27609 |
Copyright terms: Public domain | W3C validator |