MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbgrnvtx0 Structured version   Visualization version   GIF version

Theorem nbgrnvtx0 29356
Description: If a class 𝑋 is not a vertex of a graph 𝐺, then it has no neighbors in 𝐺. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 26-Oct-2020.)
Hypothesis
Ref Expression
nbgrel.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
nbgrnvtx0 (𝑋𝑉 → (𝐺 NeighbVtx 𝑋) = ∅)

Proof of Theorem nbgrnvtx0
Dummy variables 𝑒 𝑔 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nbgrel.v . . . . . 6 𝑉 = (Vtx‘𝐺)
2 csbfv 6956 . . . . . 6 𝐺 / 𝑔(Vtx‘𝑔) = (Vtx‘𝐺)
31, 2eqtr4i 2768 . . . . 5 𝑉 = 𝐺 / 𝑔(Vtx‘𝑔)
4 neleq2 3053 . . . . 5 (𝑉 = 𝐺 / 𝑔(Vtx‘𝑔) → (𝑋𝑉𝑋𝐺 / 𝑔(Vtx‘𝑔)))
53, 4ax-mp 5 . . . 4 (𝑋𝑉𝑋𝐺 / 𝑔(Vtx‘𝑔))
65biimpi 216 . . 3 (𝑋𝑉𝑋𝐺 / 𝑔(Vtx‘𝑔))
76olcd 875 . 2 (𝑋𝑉 → (𝐺 ∉ V ∨ 𝑋𝐺 / 𝑔(Vtx‘𝑔)))
8 df-nbgr 29350 . . 3 NeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ {𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒})
98mpoxneldm 8237 . 2 ((𝐺 ∉ V ∨ 𝑋𝐺 / 𝑔(Vtx‘𝑔)) → (𝐺 NeighbVtx 𝑋) = ∅)
107, 9syl 17 1 (𝑋𝑉 → (𝐺 NeighbVtx 𝑋) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 848   = wceq 1540  wnel 3046  wrex 3070  {crab 3436  Vcvv 3480  csb 3899  cdif 3948  wss 3951  c0 4333  {csn 4626  {cpr 4628  cfv 6561  (class class class)co 7431  Vtxcvtx 29013  Edgcedg 29064   NeighbVtx cnbgr 29349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-nbgr 29350
This theorem is referenced by:  nbuhgr  29360  nbumgr  29364  nbgr0vtx  29372  nbgr0edglem  29373  nbgr1vtx  29375
  Copyright terms: Public domain W3C validator