MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbgrnvtx0 Structured version   Visualization version   GIF version

Theorem nbgrnvtx0 27995
Description: If a class 𝑋 is not a vertex of a graph 𝐺, then it has no neighbors in 𝐺. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 26-Oct-2020.)
Hypothesis
Ref Expression
nbgrel.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
nbgrnvtx0 (𝑋𝑉 → (𝐺 NeighbVtx 𝑋) = ∅)

Proof of Theorem nbgrnvtx0
Dummy variables 𝑒 𝑔 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nbgrel.v . . . . . 6 𝑉 = (Vtx‘𝐺)
2 csbfv 6875 . . . . . 6 𝐺 / 𝑔(Vtx‘𝑔) = (Vtx‘𝐺)
31, 2eqtr4i 2767 . . . . 5 𝑉 = 𝐺 / 𝑔(Vtx‘𝑔)
4 neleq2 3052 . . . . 5 (𝑉 = 𝐺 / 𝑔(Vtx‘𝑔) → (𝑋𝑉𝑋𝐺 / 𝑔(Vtx‘𝑔)))
53, 4ax-mp 5 . . . 4 (𝑋𝑉𝑋𝐺 / 𝑔(Vtx‘𝑔))
65biimpi 215 . . 3 (𝑋𝑉𝑋𝐺 / 𝑔(Vtx‘𝑔))
76olcd 871 . 2 (𝑋𝑉 → (𝐺 ∉ V ∨ 𝑋𝐺 / 𝑔(Vtx‘𝑔)))
8 df-nbgr 27989 . . 3 NeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ {𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒})
98mpoxneldm 8098 . 2 ((𝐺 ∉ V ∨ 𝑋𝐺 / 𝑔(Vtx‘𝑔)) → (𝐺 NeighbVtx 𝑋) = ∅)
107, 9syl 17 1 (𝑋𝑉 → (𝐺 NeighbVtx 𝑋) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 844   = wceq 1540  wnel 3046  wrex 3070  {crab 3403  Vcvv 3441  csb 3843  cdif 3895  wss 3898  c0 4269  {csn 4573  {cpr 4575  cfv 6479  (class class class)co 7337  Vtxcvtx 27655  Edgcedg 27706   NeighbVtx cnbgr 27988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pr 5372  ax-un 7650
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-iota 6431  df-fun 6481  df-fv 6487  df-ov 7340  df-oprab 7341  df-mpo 7342  df-1st 7899  df-2nd 7900  df-nbgr 27989
This theorem is referenced by:  nbuhgr  27999  nbumgr  28003  nbgr0vtxlem  28011  nbgr1vtx  28014
  Copyright terms: Public domain W3C validator