Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nbgrnvtx0 | Structured version Visualization version GIF version |
Description: If a class 𝑋 is not a vertex of a graph 𝐺, then it has no neighbors in 𝐺. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 26-Oct-2020.) |
Ref | Expression |
---|---|
nbgrel.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
nbgrnvtx0 | ⊢ (𝑋 ∉ 𝑉 → (𝐺 NeighbVtx 𝑋) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbgrel.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | csbfv 6801 | . . . . . 6 ⊢ ⦋𝐺 / 𝑔⦌(Vtx‘𝑔) = (Vtx‘𝐺) | |
3 | 1, 2 | eqtr4i 2769 | . . . . 5 ⊢ 𝑉 = ⦋𝐺 / 𝑔⦌(Vtx‘𝑔) |
4 | neleq2 3054 | . . . . 5 ⊢ (𝑉 = ⦋𝐺 / 𝑔⦌(Vtx‘𝑔) → (𝑋 ∉ 𝑉 ↔ 𝑋 ∉ ⦋𝐺 / 𝑔⦌(Vtx‘𝑔))) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ (𝑋 ∉ 𝑉 ↔ 𝑋 ∉ ⦋𝐺 / 𝑔⦌(Vtx‘𝑔)) |
6 | 5 | biimpi 215 | . . 3 ⊢ (𝑋 ∉ 𝑉 → 𝑋 ∉ ⦋𝐺 / 𝑔⦌(Vtx‘𝑔)) |
7 | 6 | olcd 870 | . 2 ⊢ (𝑋 ∉ 𝑉 → (𝐺 ∉ V ∨ 𝑋 ∉ ⦋𝐺 / 𝑔⦌(Vtx‘𝑔))) |
8 | df-nbgr 27603 | . . 3 ⊢ NeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ {𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒}) | |
9 | 8 | mpoxneldm 7999 | . 2 ⊢ ((𝐺 ∉ V ∨ 𝑋 ∉ ⦋𝐺 / 𝑔⦌(Vtx‘𝑔)) → (𝐺 NeighbVtx 𝑋) = ∅) |
10 | 7, 9 | syl 17 | 1 ⊢ (𝑋 ∉ 𝑉 → (𝐺 NeighbVtx 𝑋) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 843 = wceq 1539 ∉ wnel 3048 ∃wrex 3064 {crab 3067 Vcvv 3422 ⦋csb 3828 ∖ cdif 3880 ⊆ wss 3883 ∅c0 4253 {csn 4558 {cpr 4560 ‘cfv 6418 (class class class)co 7255 Vtxcvtx 27269 Edgcedg 27320 NeighbVtx cnbgr 27602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-nbgr 27603 |
This theorem is referenced by: nbuhgr 27613 nbumgr 27617 nbgr0vtxlem 27625 nbgr1vtx 27628 |
Copyright terms: Public domain | W3C validator |