| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nbgrnvtx0 | Structured version Visualization version GIF version | ||
| Description: If a class 𝑋 is not a vertex of a graph 𝐺, then it has no neighbors in 𝐺. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 26-Oct-2020.) |
| Ref | Expression |
|---|---|
| nbgrel.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| nbgrnvtx0 | ⊢ (𝑋 ∉ 𝑉 → (𝐺 NeighbVtx 𝑋) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbgrel.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | csbfv 6911 | . . . . . 6 ⊢ ⦋𝐺 / 𝑔⦌(Vtx‘𝑔) = (Vtx‘𝐺) | |
| 3 | 1, 2 | eqtr4i 2756 | . . . . 5 ⊢ 𝑉 = ⦋𝐺 / 𝑔⦌(Vtx‘𝑔) |
| 4 | neleq2 3037 | . . . . 5 ⊢ (𝑉 = ⦋𝐺 / 𝑔⦌(Vtx‘𝑔) → (𝑋 ∉ 𝑉 ↔ 𝑋 ∉ ⦋𝐺 / 𝑔⦌(Vtx‘𝑔))) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ (𝑋 ∉ 𝑉 ↔ 𝑋 ∉ ⦋𝐺 / 𝑔⦌(Vtx‘𝑔)) |
| 6 | 5 | biimpi 216 | . . 3 ⊢ (𝑋 ∉ 𝑉 → 𝑋 ∉ ⦋𝐺 / 𝑔⦌(Vtx‘𝑔)) |
| 7 | 6 | olcd 874 | . 2 ⊢ (𝑋 ∉ 𝑉 → (𝐺 ∉ V ∨ 𝑋 ∉ ⦋𝐺 / 𝑔⦌(Vtx‘𝑔))) |
| 8 | df-nbgr 29267 | . . 3 ⊢ NeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ {𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒}) | |
| 9 | 8 | mpoxneldm 8194 | . 2 ⊢ ((𝐺 ∉ V ∨ 𝑋 ∉ ⦋𝐺 / 𝑔⦌(Vtx‘𝑔)) → (𝐺 NeighbVtx 𝑋) = ∅) |
| 10 | 7, 9 | syl 17 | 1 ⊢ (𝑋 ∉ 𝑉 → (𝐺 NeighbVtx 𝑋) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1540 ∉ wnel 3030 ∃wrex 3054 {crab 3408 Vcvv 3450 ⦋csb 3865 ∖ cdif 3914 ⊆ wss 3917 ∅c0 4299 {csn 4592 {cpr 4594 ‘cfv 6514 (class class class)co 7390 Vtxcvtx 28930 Edgcedg 28981 NeighbVtx cnbgr 29266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-nbgr 29267 |
| This theorem is referenced by: nbuhgr 29277 nbumgr 29281 nbgr0vtx 29289 nbgr0edglem 29290 nbgr1vtx 29292 |
| Copyright terms: Public domain | W3C validator |