Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nbgrcl | Structured version Visualization version GIF version |
Description: If a class 𝑋 has at least one neighbor, this class must be a vertex. (Contributed by AV, 6-Jun-2021.) (Revised by AV, 12-Feb-2022.) |
Ref | Expression |
---|---|
nbgrcl.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
nbgrcl | ⊢ (𝑁 ∈ (𝐺 NeighbVtx 𝑋) → 𝑋 ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nbgr 27700 | . . 3 ⊢ NeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ {𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒}) | |
2 | 1 | mpoxeldm 8027 | . 2 ⊢ (𝑁 ∈ (𝐺 NeighbVtx 𝑋) → (𝐺 ∈ V ∧ 𝑋 ∈ ⦋𝐺 / 𝑔⦌(Vtx‘𝑔))) |
3 | csbfv 6819 | . . . . 5 ⊢ ⦋𝐺 / 𝑔⦌(Vtx‘𝑔) = (Vtx‘𝐺) | |
4 | nbgrcl.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
5 | 3, 4 | eqtr4i 2769 | . . . 4 ⊢ ⦋𝐺 / 𝑔⦌(Vtx‘𝑔) = 𝑉 |
6 | 5 | eleq2i 2830 | . . 3 ⊢ (𝑋 ∈ ⦋𝐺 / 𝑔⦌(Vtx‘𝑔) ↔ 𝑋 ∈ 𝑉) |
7 | 6 | biimpi 215 | . 2 ⊢ (𝑋 ∈ ⦋𝐺 / 𝑔⦌(Vtx‘𝑔) → 𝑋 ∈ 𝑉) |
8 | 2, 7 | simpl2im 504 | 1 ⊢ (𝑁 ∈ (𝐺 NeighbVtx 𝑋) → 𝑋 ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 {crab 3068 Vcvv 3432 ⦋csb 3832 ∖ cdif 3884 ⊆ wss 3887 {csn 4561 {cpr 4563 ‘cfv 6433 (class class class)co 7275 Vtxcvtx 27366 Edgcedg 27417 NeighbVtx cnbgr 27699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-nbgr 27700 |
This theorem is referenced by: nbgrel 27707 frgrnbnb 28657 |
Copyright terms: Public domain | W3C validator |