| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nbgrcl | Structured version Visualization version GIF version | ||
| Description: If a class 𝑋 has at least one neighbor, this class must be a vertex. (Contributed by AV, 6-Jun-2021.) (Revised by AV, 12-Feb-2022.) |
| Ref | Expression |
|---|---|
| nbgrcl.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| nbgrcl | ⊢ (𝑁 ∈ (𝐺 NeighbVtx 𝑋) → 𝑋 ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nbgr 29260 | . . 3 ⊢ NeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ {𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒}) | |
| 2 | 1 | mpoxeldm 8190 | . 2 ⊢ (𝑁 ∈ (𝐺 NeighbVtx 𝑋) → (𝐺 ∈ V ∧ 𝑋 ∈ ⦋𝐺 / 𝑔⦌(Vtx‘𝑔))) |
| 3 | csbfv 6908 | . . . . 5 ⊢ ⦋𝐺 / 𝑔⦌(Vtx‘𝑔) = (Vtx‘𝐺) | |
| 4 | nbgrcl.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 5 | 3, 4 | eqtr4i 2755 | . . . 4 ⊢ ⦋𝐺 / 𝑔⦌(Vtx‘𝑔) = 𝑉 |
| 6 | 5 | eleq2i 2820 | . . 3 ⊢ (𝑋 ∈ ⦋𝐺 / 𝑔⦌(Vtx‘𝑔) ↔ 𝑋 ∈ 𝑉) |
| 7 | 6 | biimpi 216 | . 2 ⊢ (𝑋 ∈ ⦋𝐺 / 𝑔⦌(Vtx‘𝑔) → 𝑋 ∈ 𝑉) |
| 8 | 2, 7 | simpl2im 503 | 1 ⊢ (𝑁 ∈ (𝐺 NeighbVtx 𝑋) → 𝑋 ∈ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3405 Vcvv 3447 ⦋csb 3862 ∖ cdif 3911 ⊆ wss 3914 {csn 4589 {cpr 4591 ‘cfv 6511 (class class class)co 7387 Vtxcvtx 28923 Edgcedg 28974 NeighbVtx cnbgr 29259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-nbgr 29260 |
| This theorem is referenced by: nbgrel 29267 frgrnbnb 30222 pgnbgreunbgrlem3 48108 pgnbgreunbgrlem6 48114 |
| Copyright terms: Public domain | W3C validator |