MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbgrcl Structured version   Visualization version   GIF version

Theorem nbgrcl 27702
Description: If a class 𝑋 has at least one neighbor, this class must be a vertex. (Contributed by AV, 6-Jun-2021.) (Revised by AV, 12-Feb-2022.)
Hypothesis
Ref Expression
nbgrcl.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
nbgrcl (𝑁 ∈ (𝐺 NeighbVtx 𝑋) → 𝑋𝑉)

Proof of Theorem nbgrcl
Dummy variables 𝑔 𝑒 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nbgr 27700 . . 3 NeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ {𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒})
21mpoxeldm 8027 . 2 (𝑁 ∈ (𝐺 NeighbVtx 𝑋) → (𝐺 ∈ V ∧ 𝑋𝐺 / 𝑔(Vtx‘𝑔)))
3 csbfv 6819 . . . . 5 𝐺 / 𝑔(Vtx‘𝑔) = (Vtx‘𝐺)
4 nbgrcl.v . . . . 5 𝑉 = (Vtx‘𝐺)
53, 4eqtr4i 2769 . . . 4 𝐺 / 𝑔(Vtx‘𝑔) = 𝑉
65eleq2i 2830 . . 3 (𝑋𝐺 / 𝑔(Vtx‘𝑔) ↔ 𝑋𝑉)
76biimpi 215 . 2 (𝑋𝐺 / 𝑔(Vtx‘𝑔) → 𝑋𝑉)
82, 7simpl2im 504 1 (𝑁 ∈ (𝐺 NeighbVtx 𝑋) → 𝑋𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wrex 3065  {crab 3068  Vcvv 3432  csb 3832  cdif 3884  wss 3887  {csn 4561  {cpr 4563  cfv 6433  (class class class)co 7275  Vtxcvtx 27366  Edgcedg 27417   NeighbVtx cnbgr 27699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-nbgr 27700
This theorem is referenced by:  nbgrel  27707  frgrnbnb  28657
  Copyright terms: Public domain W3C validator