MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbgrcl Structured version   Visualization version   GIF version

Theorem nbgrcl 27423
Description: If a class 𝑋 has at least one neighbor, this class must be a vertex. (Contributed by AV, 6-Jun-2021.) (Revised by AV, 12-Feb-2022.)
Hypothesis
Ref Expression
nbgrcl.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
nbgrcl (𝑁 ∈ (𝐺 NeighbVtx 𝑋) → 𝑋𝑉)

Proof of Theorem nbgrcl
Dummy variables 𝑔 𝑒 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nbgr 27421 . . 3 NeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ {𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒})
21mpoxeldm 7953 . 2 (𝑁 ∈ (𝐺 NeighbVtx 𝑋) → (𝐺 ∈ V ∧ 𝑋𝐺 / 𝑔(Vtx‘𝑔)))
3 csbfv 6762 . . . . 5 𝐺 / 𝑔(Vtx‘𝑔) = (Vtx‘𝐺)
4 nbgrcl.v . . . . 5 𝑉 = (Vtx‘𝐺)
53, 4eqtr4i 2768 . . . 4 𝐺 / 𝑔(Vtx‘𝑔) = 𝑉
65eleq2i 2829 . . 3 (𝑋𝐺 / 𝑔(Vtx‘𝑔) ↔ 𝑋𝑉)
76biimpi 219 . 2 (𝑋𝐺 / 𝑔(Vtx‘𝑔) → 𝑋𝑉)
82, 7simpl2im 507 1 (𝑁 ∈ (𝐺 NeighbVtx 𝑋) → 𝑋𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2110  wrex 3062  {crab 3065  Vcvv 3408  csb 3811  cdif 3863  wss 3866  {csn 4541  {cpr 4543  cfv 6380  (class class class)co 7213  Vtxcvtx 27087  Edgcedg 27138   NeighbVtx cnbgr 27420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-1st 7761  df-2nd 7762  df-nbgr 27421
This theorem is referenced by:  nbgrel  27428  frgrnbnb  28376
  Copyright terms: Public domain W3C validator