![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nbgrcl | Structured version Visualization version GIF version |
Description: If a class 𝑋 has at least one neighbor, this class must be a vertex. (Contributed by AV, 6-Jun-2021.) (Revised by AV, 12-Feb-2022.) |
Ref | Expression |
---|---|
nbgrcl.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
nbgrcl | ⊢ (𝑁 ∈ (𝐺 NeighbVtx 𝑋) → 𝑋 ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nbgr 29023 | . . 3 ⊢ NeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ {𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒}) | |
2 | 1 | mpoxeldm 8202 | . 2 ⊢ (𝑁 ∈ (𝐺 NeighbVtx 𝑋) → (𝐺 ∈ V ∧ 𝑋 ∈ ⦋𝐺 / 𝑔⦌(Vtx‘𝑔))) |
3 | csbfv 6941 | . . . . 5 ⊢ ⦋𝐺 / 𝑔⦌(Vtx‘𝑔) = (Vtx‘𝐺) | |
4 | nbgrcl.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
5 | 3, 4 | eqtr4i 2762 | . . . 4 ⊢ ⦋𝐺 / 𝑔⦌(Vtx‘𝑔) = 𝑉 |
6 | 5 | eleq2i 2824 | . . 3 ⊢ (𝑋 ∈ ⦋𝐺 / 𝑔⦌(Vtx‘𝑔) ↔ 𝑋 ∈ 𝑉) |
7 | 6 | biimpi 215 | . 2 ⊢ (𝑋 ∈ ⦋𝐺 / 𝑔⦌(Vtx‘𝑔) → 𝑋 ∈ 𝑉) |
8 | 2, 7 | simpl2im 503 | 1 ⊢ (𝑁 ∈ (𝐺 NeighbVtx 𝑋) → 𝑋 ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∃wrex 3069 {crab 3431 Vcvv 3473 ⦋csb 3893 ∖ cdif 3945 ⊆ wss 3948 {csn 4628 {cpr 4630 ‘cfv 6543 (class class class)co 7412 Vtxcvtx 28689 Edgcedg 28740 NeighbVtx cnbgr 29022 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-nbgr 29023 |
This theorem is referenced by: nbgrel 29030 frgrnbnb 29979 |
Copyright terms: Public domain | W3C validator |