![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nbgrprc0 | Structured version Visualization version GIF version |
Description: The set of neighbors is empty if the graph 𝐺 or the vertex 𝑁 are proper classes. (Contributed by AV, 26-Oct-2020.) |
Ref | Expression |
---|---|
nbgrprc0 | ⊢ (¬ (𝐺 ∈ V ∧ 𝑁 ∈ V) → (𝐺 NeighbVtx 𝑁) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nbgr 29269 | . . 3 ⊢ NeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ {𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒}) | |
2 | 1 | reldmmpo 7560 | . 2 ⊢ Rel dom NeighbVtx |
3 | 2 | ovprc 7462 | 1 ⊢ (¬ (𝐺 ∈ V ∧ 𝑁 ∈ V) → (𝐺 NeighbVtx 𝑁) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∃wrex 3060 {crab 3419 Vcvv 3462 ∖ cdif 3944 ⊆ wss 3947 ∅c0 4325 {csn 4633 {cpr 4635 ‘cfv 6554 (class class class)co 7424 Vtxcvtx 28932 Edgcedg 28983 NeighbVtx cnbgr 29268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-xp 5688 df-rel 5689 df-dm 5692 df-iota 6506 df-fv 6562 df-ov 7427 df-oprab 7428 df-mpo 7429 df-nbgr 29269 |
This theorem is referenced by: uhgrnbgr0nb 29290 nbgr0edglem 29292 |
Copyright terms: Public domain | W3C validator |