| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nbgrprc0 | Structured version Visualization version GIF version | ||
| Description: The set of neighbors is empty if the graph 𝐺 or the vertex 𝑁 are proper classes. (Contributed by AV, 26-Oct-2020.) |
| Ref | Expression |
|---|---|
| nbgrprc0 | ⊢ (¬ (𝐺 ∈ V ∧ 𝑁 ∈ V) → (𝐺 NeighbVtx 𝑁) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nbgr 29311 | . . 3 ⊢ NeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ {𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒}) | |
| 2 | 1 | reldmmpo 7480 | . 2 ⊢ Rel dom NeighbVtx |
| 3 | 2 | ovprc 7384 | 1 ⊢ (¬ (𝐺 ∈ V ∧ 𝑁 ∈ V) → (𝐺 NeighbVtx 𝑁) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 {crab 3395 Vcvv 3436 ∖ cdif 3894 ⊆ wss 3897 ∅c0 4280 {csn 4573 {cpr 4575 ‘cfv 6481 (class class class)co 7346 Vtxcvtx 28974 Edgcedg 29025 NeighbVtx cnbgr 29310 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-dm 5624 df-iota 6437 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-nbgr 29311 |
| This theorem is referenced by: uhgrnbgr0nb 29332 nbgr0edglem 29334 |
| Copyright terms: Public domain | W3C validator |