Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nbgrprc0 | Structured version Visualization version GIF version |
Description: The set of neighbors is empty if the graph 𝐺 or the vertex 𝑁 are proper classes. (Contributed by AV, 26-Oct-2020.) |
Ref | Expression |
---|---|
nbgrprc0 | ⊢ (¬ (𝐺 ∈ V ∧ 𝑁 ∈ V) → (𝐺 NeighbVtx 𝑁) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nbgr 27930 | . . 3 ⊢ NeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ {𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒}) | |
2 | 1 | reldmmpo 7462 | . 2 ⊢ Rel dom NeighbVtx |
3 | 2 | ovprc 7367 | 1 ⊢ (¬ (𝐺 ∈ V ∧ 𝑁 ∈ V) → (𝐺 NeighbVtx 𝑁) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∃wrex 3070 {crab 3403 Vcvv 3441 ∖ cdif 3894 ⊆ wss 3897 ∅c0 4268 {csn 4572 {cpr 4574 ‘cfv 6473 (class class class)co 7329 Vtxcvtx 27596 Edgcedg 27647 NeighbVtx cnbgr 27929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-dm 5624 df-iota 6425 df-fv 6481 df-ov 7332 df-oprab 7333 df-mpo 7334 df-nbgr 27930 |
This theorem is referenced by: uhgrnbgr0nb 27951 nbgr0vtxlem 27952 |
Copyright terms: Public domain | W3C validator |