Step | Hyp | Ref
| Expression |
1 | | df-nbgr 27700 |
. 2
⊢
NeighbVtx = (𝑔 ∈ V,
𝑘 ∈ (Vtx‘𝑔) ↦ {𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘}) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑘, 𝑛} ⊆ 𝑒}) |
2 | | nbgrval.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
3 | 2 | 1vgrex 27372 |
. . 3
⊢ (𝑁 ∈ 𝑉 → 𝐺 ∈ V) |
4 | | fveq2 6774 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺)) |
5 | 2, 4 | eqtr4id 2797 |
. . . . 5
⊢ (𝑔 = 𝐺 → 𝑉 = (Vtx‘𝑔)) |
6 | 5 | eleq2d 2824 |
. . . 4
⊢ (𝑔 = 𝐺 → (𝑁 ∈ 𝑉 ↔ 𝑁 ∈ (Vtx‘𝑔))) |
7 | 6 | biimpac 479 |
. . 3
⊢ ((𝑁 ∈ 𝑉 ∧ 𝑔 = 𝐺) → 𝑁 ∈ (Vtx‘𝑔)) |
8 | | fvex 6787 |
. . . . 5
⊢
(Vtx‘𝑔) ∈
V |
9 | 8 | difexi 5252 |
. . . 4
⊢
((Vtx‘𝑔)
∖ {𝑘}) ∈
V |
10 | | rabexg 5255 |
. . . 4
⊢
(((Vtx‘𝑔)
∖ {𝑘}) ∈ V
→ {𝑛 ∈
((Vtx‘𝑔) ∖
{𝑘}) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑘, 𝑛} ⊆ 𝑒} ∈ V) |
11 | 9, 10 | mp1i 13 |
. . 3
⊢ ((𝑁 ∈ 𝑉 ∧ (𝑔 = 𝐺 ∧ 𝑘 = 𝑁)) → {𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘}) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑘, 𝑛} ⊆ 𝑒} ∈ V) |
12 | 4, 2 | eqtr4di 2796 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉) |
13 | 12 | adantr 481 |
. . . . . 6
⊢ ((𝑔 = 𝐺 ∧ 𝑘 = 𝑁) → (Vtx‘𝑔) = 𝑉) |
14 | | sneq 4571 |
. . . . . . 7
⊢ (𝑘 = 𝑁 → {𝑘} = {𝑁}) |
15 | 14 | adantl 482 |
. . . . . 6
⊢ ((𝑔 = 𝐺 ∧ 𝑘 = 𝑁) → {𝑘} = {𝑁}) |
16 | 13, 15 | difeq12d 4058 |
. . . . 5
⊢ ((𝑔 = 𝐺 ∧ 𝑘 = 𝑁) → ((Vtx‘𝑔) ∖ {𝑘}) = (𝑉 ∖ {𝑁})) |
17 | 16 | adantl 482 |
. . . 4
⊢ ((𝑁 ∈ 𝑉 ∧ (𝑔 = 𝐺 ∧ 𝑘 = 𝑁)) → ((Vtx‘𝑔) ∖ {𝑘}) = (𝑉 ∖ {𝑁})) |
18 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (Edg‘𝑔) = (Edg‘𝐺)) |
19 | | nbgrval.e |
. . . . . . . 8
⊢ 𝐸 = (Edg‘𝐺) |
20 | 18, 19 | eqtr4di 2796 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (Edg‘𝑔) = 𝐸) |
21 | 20 | adantr 481 |
. . . . . 6
⊢ ((𝑔 = 𝐺 ∧ 𝑘 = 𝑁) → (Edg‘𝑔) = 𝐸) |
22 | 21 | adantl 482 |
. . . . 5
⊢ ((𝑁 ∈ 𝑉 ∧ (𝑔 = 𝐺 ∧ 𝑘 = 𝑁)) → (Edg‘𝑔) = 𝐸) |
23 | | preq1 4669 |
. . . . . . . 8
⊢ (𝑘 = 𝑁 → {𝑘, 𝑛} = {𝑁, 𝑛}) |
24 | 23 | sseq1d 3952 |
. . . . . . 7
⊢ (𝑘 = 𝑁 → ({𝑘, 𝑛} ⊆ 𝑒 ↔ {𝑁, 𝑛} ⊆ 𝑒)) |
25 | 24 | adantl 482 |
. . . . . 6
⊢ ((𝑔 = 𝐺 ∧ 𝑘 = 𝑁) → ({𝑘, 𝑛} ⊆ 𝑒 ↔ {𝑁, 𝑛} ⊆ 𝑒)) |
26 | 25 | adantl 482 |
. . . . 5
⊢ ((𝑁 ∈ 𝑉 ∧ (𝑔 = 𝐺 ∧ 𝑘 = 𝑁)) → ({𝑘, 𝑛} ⊆ 𝑒 ↔ {𝑁, 𝑛} ⊆ 𝑒)) |
27 | 22, 26 | rexeqbidv 3337 |
. . . 4
⊢ ((𝑁 ∈ 𝑉 ∧ (𝑔 = 𝐺 ∧ 𝑘 = 𝑁)) → (∃𝑒 ∈ (Edg‘𝑔){𝑘, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒)) |
28 | 17, 27 | rabeqbidv 3420 |
. . 3
⊢ ((𝑁 ∈ 𝑉 ∧ (𝑔 = 𝐺 ∧ 𝑘 = 𝑁)) → {𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘}) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑘, 𝑛} ⊆ 𝑒} = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒}) |
29 | 3, 7, 11, 28 | ovmpodv2 7431 |
. 2
⊢ (𝑁 ∈ 𝑉 → ( NeighbVtx = (𝑔 ∈ V, 𝑘 ∈ (Vtx‘𝑔) ↦ {𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘}) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑘, 𝑛} ⊆ 𝑒}) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒})) |
30 | 1, 29 | mpi 20 |
1
⊢ (𝑁 ∈ 𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒}) |