Detailed syntax breakdown of Definition df-norec
| Step | Hyp | Ref
| Expression |
| 1 | | cF |
. . 3
class 𝐹 |
| 2 | 1 | cnorec 27925 |
. 2
class norec
(𝐹) |
| 3 | | csur 27639 |
. . 3
class No |
| 4 | | vx |
. . . . . 6
setvar 𝑥 |
| 5 | 4 | cv 1538 |
. . . . 5
class 𝑥 |
| 6 | | vy |
. . . . . . . 8
setvar 𝑦 |
| 7 | 6 | cv 1538 |
. . . . . . 7
class 𝑦 |
| 8 | | cleft 27839 |
. . . . . . 7
class
L |
| 9 | 7, 8 | cfv 6542 |
. . . . . 6
class ( L
‘𝑦) |
| 10 | | cright 27840 |
. . . . . . 7
class
R |
| 11 | 7, 10 | cfv 6542 |
. . . . . 6
class ( R
‘𝑦) |
| 12 | 9, 11 | cun 3931 |
. . . . 5
class (( L
‘𝑦) ∪ ( R
‘𝑦)) |
| 13 | 5, 12 | wcel 2107 |
. . . 4
wff 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦)) |
| 14 | 13, 4, 6 | copab 5187 |
. . 3
class
{〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} |
| 15 | 3, 14, 1 | cfrecs 8288 |
. 2
class
frecs({〈𝑥,
𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No
, 𝐹) |
| 16 | 2, 15 | wceq 1539 |
1
wff norec
(𝐹) = frecs({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝐹) |