Home | Metamath
Proof Explorer Theorem List (p. 277 of 465) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29259) |
Hilbert Space Explorer
(29260-30782) |
Users' Mathboxes
(30783-46465) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | edg0usgr 27601 | A class without edges is a simple graph. Since ran 𝐹 = ∅ does not generally imply Fun 𝐹, but Fun (iEdg‘𝐺) is required for 𝐺 to be a simple graph, however, this must be provided as assertion. (Contributed by AV, 18-Oct-2020.) |
⊢ ((𝐺 ∈ 𝑊 ∧ (Edg‘𝐺) = ∅ ∧ Fun (iEdg‘𝐺)) → 𝐺 ∈ USGraph) | ||
Theorem | lfuhgr1v0e 27602* | A loop-free hypergraph with one vertex has no edges. (Contributed by AV, 18-Oct-2020.) (Revised by AV, 2-Apr-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼⟶𝐸) → (Edg‘𝐺) = ∅) | ||
Theorem | usgr1vr 27603 | A simple graph with one vertex has no edges. (Contributed by AV, 18-Oct-2020.) (Revised by AV, 21-Mar-2021.) (Proof shortened by AV, 2-Apr-2021.) |
⊢ ((𝐴 ∈ 𝑋 ∧ (Vtx‘𝐺) = {𝐴}) → (𝐺 ∈ USGraph → (iEdg‘𝐺) = ∅)) | ||
Theorem | usgr1v 27604 | A class with one (or no) vertex is a simple graph if and only if it has no edges. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 18-Oct-2020.) |
⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝐴}) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅)) | ||
Theorem | usgr1v0edg 27605 | A class with one (or no) vertex is a simple graph if and only if it has no edges. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 18-Oct-2020.) |
⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝐴} ∧ Fun (iEdg‘𝐺)) → (𝐺 ∈ USGraph ↔ (Edg‘𝐺) = ∅)) | ||
Theorem | usgrexmpldifpr 27606 | Lemma for usgrexmpledg 27610: all "edges" are different. (Contributed by Alexander van der Vekens, 15-Aug-2017.) |
⊢ (({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3})) | ||
Theorem | usgrexmplef 27607* | Lemma for usgrexmpl 27611. (Contributed by Alexander van der Vekens, 15-Aug-2017.) |
⊢ 𝑉 = (0...4) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 0} {0, 3}”〉 ⇒ ⊢ 𝐸:dom 𝐸–1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} | ||
Theorem | usgrexmpllem 27608 | Lemma for usgrexmpl 27611. (Contributed by AV, 21-Oct-2020.) |
⊢ 𝑉 = (0...4) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 0} {0, 3}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ ((Vtx‘𝐺) = 𝑉 ∧ (iEdg‘𝐺) = 𝐸) | ||
Theorem | usgrexmplvtx 27609 | The vertices 0, 1, 2, 3, 4 of the graph 𝐺 = 〈𝑉, 𝐸〉. (Contributed by AV, 12-Jan-2020.) (Revised by AV, 21-Oct-2020.) |
⊢ 𝑉 = (0...4) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 0} {0, 3}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (Vtx‘𝐺) = ({0, 1, 2} ∪ {3, 4}) | ||
Theorem | usgrexmpledg 27610 | The edges {0, 1}, {1, 2}, {2, 0}, {0, 3} of the graph 𝐺 = 〈𝑉, 𝐸〉. (Contributed by AV, 12-Jan-2020.) (Revised by AV, 21-Oct-2020.) |
⊢ 𝑉 = (0...4) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 0} {0, 3}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (Edg‘𝐺) = ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) | ||
Theorem | usgrexmpl 27611 | 𝐺 is a simple graph of five vertices 0, 1, 2, 3, 4, with edges {0, 1}, {1, 2}, {2, 0}, {0, 3}. (Contributed by Alexander van der Vekens, 15-Aug-2017.) (Revised by AV, 21-Oct-2020.) |
⊢ 𝑉 = (0...4) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 0} {0, 3}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ 𝐺 ∈ USGraph | ||
Theorem | griedg0prc 27612* | The class of empty graphs (represented as ordered pairs) is a proper class. (Contributed by AV, 27-Dec-2020.) |
⊢ 𝑈 = {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ⇒ ⊢ 𝑈 ∉ V | ||
Theorem | griedg0ssusgr 27613* | The class of all simple graphs is a superclass of the class of empty graphs represented as ordered pairs. (Contributed by AV, 27-Dec-2020.) |
⊢ 𝑈 = {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ⇒ ⊢ 𝑈 ⊆ USGraph | ||
Theorem | usgrprc 27614 | The class of simple graphs is a proper class (and therefore, because of prcssprc 5252, the classes of multigraphs, pseudographs and hypergraphs are proper classes, too). (Contributed by AV, 27-Dec-2020.) |
⊢ USGraph ∉ V | ||
Syntax | csubgr 27615 | Extend class notation with subgraphs. |
class SubGraph | ||
Definition | df-subgr 27616* | Define the class of the subgraph relation. A class 𝑠 is a subgraph of a class 𝑔 (the supergraph of 𝑠) if its vertices are also vertices of 𝑔, and its edges are also edges of 𝑔, connecting vertices of 𝑠 only (see section I.1 in [Bollobas] p. 2 or section 1.1 in [Diestel] p. 4). The second condition is ensured by the requirement that the edge function of 𝑠 is a restriction of the edge function of 𝑔 having only vertices of 𝑠 in its range. Note that the domains of the edge functions of the subgraph and the supergraph should be compatible. (Contributed by AV, 16-Nov-2020.) |
⊢ SubGraph = {〈𝑠, 𝑔〉 ∣ ((Vtx‘𝑠) ⊆ (Vtx‘𝑔) ∧ (iEdg‘𝑠) = ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) ∧ (Edg‘𝑠) ⊆ 𝒫 (Vtx‘𝑠))} | ||
Theorem | relsubgr 27617 | The class of the subgraph relation is a relation. (Contributed by AV, 16-Nov-2020.) |
⊢ Rel SubGraph | ||
Theorem | subgrv 27618 | If a class is a subgraph of another class, both classes are sets. (Contributed by AV, 16-Nov-2020.) |
⊢ (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V)) | ||
Theorem | issubgr 27619 | The property of a set to be a subgraph of another set. (Contributed by AV, 16-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝑆) & ⊢ 𝐴 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝑆) & ⊢ 𝐵 = (iEdg‘𝐺) & ⊢ 𝐸 = (Edg‘𝑆) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉))) | ||
Theorem | issubgr2 27620 | The property of a set to be a subgraph of a set whose edge function is actually a function. (Contributed by AV, 20-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝑆) & ⊢ 𝐴 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝑆) & ⊢ 𝐵 = (iEdg‘𝐺) & ⊢ 𝐸 = (Edg‘𝑆) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ 𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ 𝐸 ⊆ 𝒫 𝑉))) | ||
Theorem | subgrprop 27621 | The properties of a subgraph. (Contributed by AV, 19-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝑆) & ⊢ 𝐴 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝑆) & ⊢ 𝐵 = (iEdg‘𝐺) & ⊢ 𝐸 = (Edg‘𝑆) ⇒ ⊢ (𝑆 SubGraph 𝐺 → (𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉)) | ||
Theorem | subgrprop2 27622 | The properties of a subgraph: If 𝑆 is a subgraph of 𝐺, its vertices are also vertices of 𝐺, and its edges are also edges of 𝐺, connecting vertices of the subgraph only. (Contributed by AV, 19-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝑆) & ⊢ 𝐴 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝑆) & ⊢ 𝐵 = (iEdg‘𝐺) & ⊢ 𝐸 = (Edg‘𝑆) ⇒ ⊢ (𝑆 SubGraph 𝐺 → (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ 𝐸 ⊆ 𝒫 𝑉)) | ||
Theorem | uhgrissubgr 27623 | The property of a hypergraph to be a subgraph. (Contributed by AV, 19-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝑆) & ⊢ 𝐴 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝑆) & ⊢ 𝐵 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ UHGraph) → (𝑆 SubGraph 𝐺 ↔ (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵))) | ||
Theorem | subgrprop3 27624 | The properties of a subgraph: If 𝑆 is a subgraph of 𝐺, its vertices are also vertices of 𝐺, and its edges are also edges of 𝐺. (Contributed by AV, 19-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝑆) & ⊢ 𝐴 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝑆) & ⊢ 𝐵 = (Edg‘𝐺) ⇒ ⊢ (𝑆 SubGraph 𝐺 → (𝑉 ⊆ 𝐴 ∧ 𝐸 ⊆ 𝐵)) | ||
Theorem | egrsubgr 27625 | An empty graph consisting of a subset of vertices of a graph (and having no edges) is a subgraph of the graph. (Contributed by AV, 17-Nov-2020.) (Proof shortened by AV, 17-Dec-2020.) |
⊢ (((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → 𝑆 SubGraph 𝐺) | ||
Theorem | 0grsubgr 27626 | The null graph (represented by an empty set) is a subgraph of all graphs. (Contributed by AV, 17-Nov-2020.) |
⊢ (𝐺 ∈ 𝑊 → ∅ SubGraph 𝐺) | ||
Theorem | 0uhgrsubgr 27627 | The null graph (as hypergraph) is a subgraph of all graphs. (Contributed by AV, 17-Nov-2020.) (Proof shortened by AV, 28-Nov-2020.) |
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → 𝑆 SubGraph 𝐺) | ||
Theorem | uhgrsubgrself 27628 | A hypergraph is a subgraph of itself. (Contributed by AV, 17-Nov-2020.) (Proof shortened by AV, 21-Nov-2020.) |
⊢ (𝐺 ∈ UHGraph → 𝐺 SubGraph 𝐺) | ||
Theorem | subgrfun 27629 | The edge function of a subgraph of a graph whose edge function is actually a function is a function. (Contributed by AV, 20-Nov-2020.) |
⊢ ((Fun (iEdg‘𝐺) ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆)) | ||
Theorem | subgruhgrfun 27630 | The edge function of a subgraph of a hypergraph is a function. (Contributed by AV, 16-Nov-2020.) (Proof shortened by AV, 20-Nov-2020.) |
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆)) | ||
Theorem | subgreldmiedg 27631 | An element of the domain of the edge function of a subgraph is an element of the domain of the edge function of the supergraph. (Contributed by AV, 20-Nov-2020.) |
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝑋 ∈ dom (iEdg‘𝑆)) → 𝑋 ∈ dom (iEdg‘𝐺)) | ||
Theorem | subgruhgredgd 27632 | An edge of a subgraph of a hypergraph is a nonempty subset of its vertices. (Contributed by AV, 17-Nov-2020.) (Revised by AV, 21-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝑆) & ⊢ 𝐼 = (iEdg‘𝑆) & ⊢ (𝜑 → 𝐺 ∈ UHGraph) & ⊢ (𝜑 → 𝑆 SubGraph 𝐺) & ⊢ (𝜑 → 𝑋 ∈ dom 𝐼) ⇒ ⊢ (𝜑 → (𝐼‘𝑋) ∈ (𝒫 𝑉 ∖ {∅})) | ||
Theorem | subumgredg2 27633* | An edge of a subgraph of a multigraph connects exactly two different vertices. (Contributed by AV, 26-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝑆) & ⊢ 𝐼 = (iEdg‘𝑆) ⇒ ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) ∈ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}) | ||
Theorem | subuhgr 27634 | A subgraph of a hypergraph is a hypergraph. (Contributed by AV, 16-Nov-2020.) (Proof shortened by AV, 21-Nov-2020.) |
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ UHGraph) | ||
Theorem | subupgr 27635 | A subgraph of a pseudograph is a pseudograph. (Contributed by AV, 16-Nov-2020.) (Proof shortened by AV, 21-Nov-2020.) |
⊢ ((𝐺 ∈ UPGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ UPGraph) | ||
Theorem | subumgr 27636 | A subgraph of a multigraph is a multigraph. (Contributed by AV, 26-Nov-2020.) |
⊢ ((𝐺 ∈ UMGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ UMGraph) | ||
Theorem | subusgr 27637 | A subgraph of a simple graph is a simple graph. (Contributed by AV, 16-Nov-2020.) (Proof shortened by AV, 27-Nov-2020.) |
⊢ ((𝐺 ∈ USGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ USGraph) | ||
Theorem | uhgrspansubgrlem 27638 | Lemma for uhgrspansubgr 27639: The edges of the graph 𝑆 obtained by removing some edges of a hypergraph 𝐺 are subsets of its vertices (a spanning subgraph, see comment for uhgrspansubgr 27639. (Contributed by AV, 18-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐸 ↾ 𝐴)) & ⊢ (𝜑 → 𝐺 ∈ UHGraph) ⇒ ⊢ (𝜑 → (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) | ||
Theorem | uhgrspansubgr 27639 | A spanning subgraph 𝑆 of a hypergraph 𝐺 is actually a subgraph of 𝐺. A subgraph 𝑆 of a graph 𝐺 which has the same vertices as 𝐺 and is obtained by removing some edges of 𝐺 is called a spanning subgraph (see section I.1 in [Bollobas] p. 2 and section 1.1 in [Diestel] p. 4). Formally, the edges are "removed" by restricting the edge function of the original graph by an arbitrary class (which actually needs not to be a subset of the domain of the edge function). (Contributed by AV, 18-Nov-2020.) (Proof shortened by AV, 21-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐸 ↾ 𝐴)) & ⊢ (𝜑 → 𝐺 ∈ UHGraph) ⇒ ⊢ (𝜑 → 𝑆 SubGraph 𝐺) | ||
Theorem | uhgrspan 27640 | A spanning subgraph 𝑆 of a hypergraph 𝐺 is a hypergraph. (Contributed by AV, 11-Oct-2020.) (Proof shortened by AV, 18-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐸 ↾ 𝐴)) & ⊢ (𝜑 → 𝐺 ∈ UHGraph) ⇒ ⊢ (𝜑 → 𝑆 ∈ UHGraph) | ||
Theorem | upgrspan 27641 | A spanning subgraph 𝑆 of a pseudograph 𝐺 is a pseudograph. (Contributed by AV, 11-Oct-2020.) (Proof shortened by AV, 18-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐸 ↾ 𝐴)) & ⊢ (𝜑 → 𝐺 ∈ UPGraph) ⇒ ⊢ (𝜑 → 𝑆 ∈ UPGraph) | ||
Theorem | umgrspan 27642 | A spanning subgraph 𝑆 of a multigraph 𝐺 is a multigraph. (Contributed by AV, 27-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐸 ↾ 𝐴)) & ⊢ (𝜑 → 𝐺 ∈ UMGraph) ⇒ ⊢ (𝜑 → 𝑆 ∈ UMGraph) | ||
Theorem | usgrspan 27643 | A spanning subgraph 𝑆 of a simple graph 𝐺 is a simple graph. (Contributed by AV, 15-Oct-2020.) (Revised by AV, 16-Oct-2020.) (Proof shortened by AV, 18-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐸 ↾ 𝐴)) & ⊢ (𝜑 → 𝐺 ∈ USGraph) ⇒ ⊢ (𝜑 → 𝑆 ∈ USGraph) | ||
Theorem | uhgrspanop 27644 | A spanning subgraph of a hypergraph represented by an ordered pair is a hypergraph. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 11-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UHGraph → 〈𝑉, (𝐸 ↾ 𝐴)〉 ∈ UHGraph) | ||
Theorem | upgrspanop 27645 | A spanning subgraph of a pseudograph represented by an ordered pair is a pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 13-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UPGraph → 〈𝑉, (𝐸 ↾ 𝐴)〉 ∈ UPGraph) | ||
Theorem | umgrspanop 27646 | A spanning subgraph of a multigraph represented by an ordered pair is a multigraph. (Contributed by AV, 27-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UMGraph → 〈𝑉, (𝐸 ↾ 𝐴)〉 ∈ UMGraph) | ||
Theorem | usgrspanop 27647 | A spanning subgraph of a simple graph represented by an ordered pair is a simple graph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 16-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ USGraph → 〈𝑉, (𝐸 ↾ 𝐴)〉 ∈ USGraph) | ||
Theorem | uhgrspan1lem1 27648 | Lemma 1 for uhgrspan1 27651. (Contributed by AV, 19-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐹 = {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∉ (𝐼‘𝑖)} ⇒ ⊢ ((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼 ↾ 𝐹) ∈ V) | ||
Theorem | uhgrspan1lem2 27649 | Lemma 2 for uhgrspan1 27651. (Contributed by AV, 19-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐹 = {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∉ (𝐼‘𝑖)} & ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)〉 ⇒ ⊢ (Vtx‘𝑆) = (𝑉 ∖ {𝑁}) | ||
Theorem | uhgrspan1lem3 27650 | Lemma 3 for uhgrspan1 27651. (Contributed by AV, 19-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐹 = {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∉ (𝐼‘𝑖)} & ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)〉 ⇒ ⊢ (iEdg‘𝑆) = (𝐼 ↾ 𝐹) | ||
Theorem | uhgrspan1 27651* | The induced subgraph 𝑆 of a hypergraph 𝐺 obtained by removing one vertex is actually a subgraph of 𝐺. A subgraph is called induced or spanned by a subset of vertices of a graph if it contains all edges of the original graph that join two vertices of the subgraph (see section I.1 in [Bollobas] p. 2 and section 1.1 in [Diestel] p. 4). (Contributed by AV, 19-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐹 = {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∉ (𝐼‘𝑖)} & ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)〉 ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 SubGraph 𝐺) | ||
Theorem | upgrreslem 27652* | Lemma for upgrres 27654. (Contributed by AV, 27-Nov-2020.) (Revised by AV, 19-Dec-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐹 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → ran (𝐸 ↾ 𝐹) ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}) | ||
Theorem | umgrreslem 27653* | Lemma for umgrres 27655 and usgrres 27656. (Contributed by AV, 27-Nov-2020.) (Revised by AV, 19-Dec-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐹 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → ran (𝐸 ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) | ||
Theorem | upgrres 27654* | A subgraph obtained by removing one vertex and all edges incident with this vertex from a pseudograph (see uhgrspan1 27651) is a pseudograph. (Contributed by AV, 8-Nov-2020.) (Revised by AV, 19-Dec-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐹 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} & ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), (𝐸 ↾ 𝐹)〉 ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ UPGraph) | ||
Theorem | umgrres 27655* | A subgraph obtained by removing one vertex and all edges incident with this vertex from a multigraph (see uhgrspan1 27651) is a multigraph. (Contributed by AV, 27-Nov-2020.) (Revised by AV, 19-Dec-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐹 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} & ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), (𝐸 ↾ 𝐹)〉 ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ UMGraph) | ||
Theorem | usgrres 27656* | A subgraph obtained by removing one vertex and all edges incident with this vertex from a simple graph (see uhgrspan1 27651) is a simple graph. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 19-Dec-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐹 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} & ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), (𝐸 ↾ 𝐹)〉 ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ USGraph) | ||
Theorem | upgrres1lem1 27657* | Lemma 1 for upgrres1 27661. (Contributed by AV, 7-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} ⇒ ⊢ ((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V) | ||
Theorem | umgrres1lem 27658* | Lemma for umgrres1 27662. (Contributed by AV, 27-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) | ||
Theorem | upgrres1lem2 27659* | Lemma 2 for upgrres1 27661. (Contributed by AV, 7-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} & ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 ⇒ ⊢ (Vtx‘𝑆) = (𝑉 ∖ {𝑁}) | ||
Theorem | upgrres1lem3 27660* | Lemma 3 for upgrres1 27661. (Contributed by AV, 7-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} & ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 ⇒ ⊢ (iEdg‘𝑆) = ( I ↾ 𝐹) | ||
Theorem | upgrres1 27661* | A pseudograph obtained by removing one vertex and all edges incident with this vertex is a pseudograph. Remark: This graph is not a subgraph of the original graph in the sense of df-subgr 27616 since the domains of the edge functions may not be compatible. (Contributed by AV, 8-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} & ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ UPGraph) | ||
Theorem | umgrres1 27662* | A multigraph obtained by removing one vertex and all edges incident with this vertex is a multigraph. Remark: This graph is not a subgraph of the original graph in the sense of df-subgr 27616 since the domains of the edge functions may not be compatible. (Contributed by AV, 27-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} & ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ UMGraph) | ||
Theorem | usgrres1 27663* | Restricting a simple graph by removing one vertex results in a simple graph. Remark: This restricted graph is not a subgraph of the original graph in the sense of df-subgr 27616 since the domains of the edge functions may not be compatible. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 10-Jan-2020.) (Revised by AV, 23-Oct-2020.) (Proof shortened by AV, 27-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} & ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ USGraph) | ||
Syntax | cfusgr 27664 | Extend class notation with finite simple graphs. |
class FinUSGraph | ||
Definition | df-fusgr 27665 | Define the class of all finite undirected simple graphs without loops (called "finite simple graphs" in the following). A finite simple graph is an undirected simple graph of finite order, i.e. with a finite set of vertices. (Contributed by AV, 3-Jan-2020.) (Revised by AV, 21-Oct-2020.) |
⊢ FinUSGraph = {𝑔 ∈ USGraph ∣ (Vtx‘𝑔) ∈ Fin} | ||
Theorem | isfusgr 27666 | The property of being a finite simple graph. (Contributed by AV, 3-Jan-2020.) (Revised by AV, 21-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) | ||
Theorem | fusgrvtxfi 27667 | A finite simple graph has a finite set of vertices. (Contributed by AV, 16-Dec-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin) | ||
Theorem | isfusgrf1 27668* | The property of being a finite simple graph. (Contributed by AV, 3-Jan-2020.) (Revised by AV, 21-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ FinUSGraph ↔ (𝐼:dom 𝐼–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ∧ 𝑉 ∈ Fin))) | ||
Theorem | isfusgrcl 27669 | The property of being a finite simple graph. (Contributed by AV, 3-Jan-2020.) (Revised by AV, 9-Jan-2020.) |
⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ (♯‘(Vtx‘𝐺)) ∈ ℕ0)) | ||
Theorem | fusgrusgr 27670 | A finite simple graph is a simple graph. (Contributed by AV, 16-Jan-2020.) (Revised by AV, 21-Oct-2020.) |
⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph) | ||
Theorem | opfusgr 27671 | A finite simple graph represented as ordered pair. (Contributed by AV, 23-Oct-2020.) |
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (〈𝑉, 𝐸〉 ∈ FinUSGraph ↔ (〈𝑉, 𝐸〉 ∈ USGraph ∧ 𝑉 ∈ Fin))) | ||
Theorem | usgredgffibi 27672 | The number of edges in a simple graph is finite iff its edge function is finite. (Contributed by AV, 10-Jan-2020.) (Revised by AV, 22-Oct-2020.) |
⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ USGraph → (𝐸 ∈ Fin ↔ 𝐼 ∈ Fin)) | ||
Theorem | fusgredgfi 27673* | In a finite simple graph the number of edges which contain a given vertex is also finite. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 21-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) | ||
Theorem | usgr1v0e 27674 | The size of a (finite) simple graph with 1 vertex is 0. (Contributed by Alexander van der Vekens, 5-Jan-2018.) (Revised by AV, 22-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 1) → (♯‘𝐸) = 0) | ||
Theorem | usgrfilem 27675* | In a finite simple graph, the number of edges is finite iff the number of edges not containing one of the vertices is finite. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 9-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} ⇒ ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (𝐸 ∈ Fin ↔ 𝐹 ∈ Fin)) | ||
Theorem | fusgrfisbase 27676 | Induction base for fusgrfis 27678. Main work is done in uhgr0v0e 27586. (Contributed by Alexander van der Vekens, 5-Jan-2018.) (Revised by AV, 23-Oct-2020.) |
⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ USGraph ∧ (♯‘𝑉) = 0) → 𝐸 ∈ Fin) | ||
Theorem | fusgrfisstep 27677* | Induction step in fusgrfis 27678: In a finite simple graph, the number of edges is finite if the number of edges not containing one of the vertices is finite. (Contributed by Alexander van der Vekens, 5-Jan-2018.) (Revised by AV, 23-Oct-2020.) |
⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (( I ↾ {𝑝 ∈ (Edg‘〈𝑉, 𝐸〉) ∣ 𝑁 ∉ 𝑝}) ∈ Fin → 𝐸 ∈ Fin)) | ||
Theorem | fusgrfis 27678 | A finite simple graph is of finite size, i.e. has a finite number of edges. (Contributed by Alexander van der Vekens, 6-Jan-2018.) (Revised by AV, 8-Nov-2020.) |
⊢ (𝐺 ∈ FinUSGraph → (Edg‘𝐺) ∈ Fin) | ||
Theorem | fusgrfupgrfs 27679 | A finite simple graph is a finite pseudograph of finite size. (Contributed by AV, 27-Dec-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ FinUSGraph → (𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin)) | ||
Syntax | cnbgr 27680 | Extend class notation with neighbors (of a vertex in a graph). |
class NeighbVtx | ||
Definition | df-nbgr 27681* |
Define the (open) neighborhood resp. the class of all neighbors of a
vertex (in a graph), see definition in section I.1 of [Bollobas] p. 3 or
definition in section 1.1 of [Diestel]
p. 3. The neighborhood/neighbors
of a vertex are all (other) vertices which are connected with this
vertex by an edge. In contrast to a closed neighborhood, a vertex is
not a neighbor of itself. This definition is applicable even for
arbitrary hypergraphs.
Remark: To distinguish this definition from other definitions for neighborhoods resp. neighbors (e.g., nei in Topology, see df-nei 22230), the suffix Vtx is added to the class constant NeighbVtx. (Contributed by Alexander van der Vekens and Mario Carneiro, 7-Oct-2017.) (Revised by AV, 24-Oct-2020.) |
⊢ NeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ {𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒}) | ||
Theorem | nbgrprc0 27682 | The set of neighbors is empty if the graph 𝐺 or the vertex 𝑁 are proper classes. (Contributed by AV, 26-Oct-2020.) |
⊢ (¬ (𝐺 ∈ V ∧ 𝑁 ∈ V) → (𝐺 NeighbVtx 𝑁) = ∅) | ||
Theorem | nbgrcl 27683 | If a class 𝑋 has at least one neighbor, this class must be a vertex. (Contributed by AV, 6-Jun-2021.) (Revised by AV, 12-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ (𝐺 NeighbVtx 𝑋) → 𝑋 ∈ 𝑉) | ||
Theorem | nbgrval 27684* | The set of neighbors of a vertex 𝑉 in a graph 𝐺. (Contributed by Alexander van der Vekens, 7-Oct-2017.) (Revised by AV, 24-Oct-2020.) (Revised by AV, 21-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒}) | ||
Theorem | dfnbgr2 27685* | Alternate definition of the neighbors of a vertex breaking up the subset relationship of an unordered pair. (Contributed by AV, 15-Nov-2020.) (Revised by AV, 21-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) | ||
Theorem | dfnbgr3 27686* | Alternate definition of the neighbors of a vertex using the edge function instead of the edges themselves (see also nbgrval 27684). (Contributed by Alexander van der Vekens, 17-Dec-2017.) (Revised by AV, 25-Oct-2020.) (Revised by AV, 21-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖)}) | ||
Theorem | nbgrnvtx0 27687 | If a class 𝑋 is not a vertex of a graph 𝐺, then it has no neighbors in 𝐺. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 26-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑋 ∉ 𝑉 → (𝐺 NeighbVtx 𝑋) = ∅) | ||
Theorem | nbgrel 27688* | Characterization of a neighbor 𝑁 of a vertex 𝑋 in a graph 𝐺. (Contributed by Alexander van der Vekens and Mario Carneiro, 9-Oct-2017.) (Revised by AV, 26-Oct-2020.) (Revised by AV, 12-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑁 ∈ (𝐺 NeighbVtx 𝑋) ↔ ((𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ 𝑁 ≠ 𝑋 ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)) | ||
Theorem | nbgrisvtx 27689 | Every neighbor 𝑁 of a vertex 𝐾 is a vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 26-Oct-2020.) (Revised by AV, 12-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ (𝐺 NeighbVtx 𝐾) → 𝑁 ∈ 𝑉) | ||
Theorem | nbgrssvtx 27690 | The neighbors of a vertex 𝐾 in a graph form a subset of all vertices of the graph. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 26-Oct-2020.) (Revised by AV, 12-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 NeighbVtx 𝐾) ⊆ 𝑉 | ||
Theorem | nbuhgr 27691* | The set of neighbors of a vertex in a hypergraph. This version of nbgrval 27684 (with 𝑁 being an arbitrary set instead of being a vertex) only holds for classes whose edges are subsets of the set of vertices (hypergraphs!). (Contributed by AV, 26-Oct-2020.) (Proof shortened by AV, 15-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑋) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒}) | ||
Theorem | nbupgr 27692* | The set of neighbors of a vertex in a pseudograph. (Contributed by AV, 5-Nov-2020.) (Proof shortened by AV, 30-Dec-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ {𝑁, 𝑛} ∈ 𝐸}) | ||
Theorem | nbupgrel 27693 | A neighbor of a vertex in a pseudograph. (Contributed by AV, 5-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉) ∧ (𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝐾)) → (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ {𝑁, 𝐾} ∈ 𝐸)) | ||
Theorem | nbumgrvtx 27694* | The set of neighbors of a vertex in a multigraph. (Contributed by AV, 27-Nov-2020.) (Proof shortened by AV, 30-Dec-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸}) | ||
Theorem | nbumgr 27695* | The set of neighbors of an arbitrary class in a multigraph. (Contributed by AV, 27-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ UMGraph → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸}) | ||
Theorem | nbusgrvtx 27696* | The set of neighbors of a vertex in a simple graph. (Contributed by Alexander van der Vekens, 9-Oct-2017.) (Revised by AV, 26-Oct-2020.) (Proof shortened by AV, 27-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸}) | ||
Theorem | nbusgr 27697* | The set of neighbors of an arbitrary class in a simple graph. (Contributed by Alexander van der Vekens, 9-Oct-2017.) (Revised by AV, 26-Oct-2020.) (Proof shortened by AV, 27-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ USGraph → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸}) | ||
Theorem | nbgr2vtx1edg 27698* | If a graph has two vertices, and there is an edge between the vertices, then each vertex is the neighbor of the other vertex. (Contributed by AV, 2-Nov-2020.) (Revised by AV, 25-Mar-2021.) (Proof shortened by AV, 13-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((♯‘𝑉) = 2 ∧ 𝑉 ∈ 𝐸) → ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)) | ||
Theorem | nbuhgr2vtx1edgblem 27699* | Lemma for nbuhgr2vtx1edgb 27700. This reverse direction of nbgr2vtx1edg 27698 only holds for classes whose edges are subsets of the set of vertices, which is the property of hypergraphs. (Contributed by AV, 2-Nov-2020.) (Proof shortened by AV, 13-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏} ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)) → {𝑎, 𝑏} ∈ 𝐸) | ||
Theorem | nbuhgr2vtx1edgb 27700* | If a hypergraph has two vertices, and there is an edge between the vertices, then each vertex is the neighbor of the other vertex. (Contributed by AV, 2-Nov-2020.) (Proof shortened by AV, 13-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 2) → (𝑉 ∈ 𝐸 ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |