![]() |
Metamath
Proof Explorer Theorem List (p. 277 of 485) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30843) |
![]() (30844-32366) |
![]() (32367-48490) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | pntrlog2bndlem4 27601* | Lemma for pntrlog2bnd 27605. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.) |
⊢ 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) & ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0)) ⇒ ⊢ (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇‘𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥)) ∈ ≤𝑂(1) | ||
Theorem | pntrlog2bndlem5 27602* | Lemma for pntrlog2bnd 27605. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.) |
⊢ 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) & ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0)) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑦 ∈ ℝ+ (abs‘((𝑅‘𝑦) / 𝑦)) ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1)) | ||
Theorem | pntrlog2bndlem6a 27603* | Lemma for pntrlog2bndlem6 27604. (Contributed by Mario Carneiro, 7-Jun-2016.) |
⊢ 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) & ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0)) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑦 ∈ ℝ+ (abs‘((𝑅‘𝑦) / 𝑦)) ≤ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 1 ≤ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) = ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)))) | ||
Theorem | pntrlog2bndlem6 27604* | Lemma for pntrlog2bnd 27605. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.) |
⊢ 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) & ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0)) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑦 ∈ ℝ+ (abs‘((𝑅‘𝑦) / 𝑦)) ≤ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 1 ≤ 𝐴) ⇒ ⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1)) | ||
Theorem | pntrlog2bnd 27605* | A bound on 𝑅(𝑥)log↑2(𝑥). Equation 10.6.15 of [Shapiro], p. 431. (Contributed by Mario Carneiro, 1-Jun-2016.) |
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ∃𝑐 ∈ ℝ+ ∀𝑥 ∈ (1(,)+∞)((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ≤ 𝑐) | ||
Theorem | pntpbnd1a 27606* | Lemma for pntpbnd 27609. (Contributed by Mario Carneiro, 11-Apr-2016.) Replace reference to OLD theorem. (Revised by Wolf Lammen, 8-Sep-2020.) |
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐸 ∈ (0(,)1)) & ⊢ 𝑋 = (exp‘(2 / 𝐸)) & ⊢ (𝜑 → 𝑌 ∈ (𝑋(,)+∞)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (𝑌 < 𝑁 ∧ 𝑁 ≤ (𝐾 · 𝑌))) & ⊢ (𝜑 → (abs‘(𝑅‘𝑁)) ≤ (abs‘((𝑅‘(𝑁 + 1)) − (𝑅‘𝑁)))) ⇒ ⊢ (𝜑 → (abs‘((𝑅‘𝑁) / 𝑁)) ≤ 𝐸) | ||
Theorem | pntpbnd1 27607* | Lemma for pntpbnd 27609. (Contributed by Mario Carneiro, 11-Apr-2016.) |
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐸 ∈ (0(,)1)) & ⊢ 𝑋 = (exp‘(2 / 𝐸)) & ⊢ (𝜑 → 𝑌 ∈ (𝑋(,)+∞)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑦 ∈ (𝑖...𝑗)((𝑅‘𝑦) / (𝑦 · (𝑦 + 1)))) ≤ 𝐴) & ⊢ 𝐶 = (𝐴 + 2) & ⊢ (𝜑 → 𝐾 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) & ⊢ (𝜑 → ¬ ∃𝑦 ∈ ℕ ((𝑌 < 𝑦 ∧ 𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅‘𝑦) / 𝑦)) ≤ 𝐸)) ⇒ ⊢ (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(abs‘((𝑅‘𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝐴) | ||
Theorem | pntpbnd2 27608* | Lemma for pntpbnd 27609. (Contributed by Mario Carneiro, 11-Apr-2016.) |
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐸 ∈ (0(,)1)) & ⊢ 𝑋 = (exp‘(2 / 𝐸)) & ⊢ (𝜑 → 𝑌 ∈ (𝑋(,)+∞)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑦 ∈ (𝑖...𝑗)((𝑅‘𝑦) / (𝑦 · (𝑦 + 1)))) ≤ 𝐴) & ⊢ 𝐶 = (𝐴 + 2) & ⊢ (𝜑 → 𝐾 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) & ⊢ (𝜑 → ¬ ∃𝑦 ∈ ℕ ((𝑌 < 𝑦 ∧ 𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅‘𝑦) / 𝑦)) ≤ 𝐸)) ⇒ ⊢ ¬ 𝜑 | ||
Theorem | pntpbnd 27609* | Lemma for pnt 27635. Establish smallness of 𝑅 at a point. Lemma 10.6.1 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 10-Apr-2016.) |
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) ⇒ ⊢ ∃𝑐 ∈ ℝ+ ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+ ∀𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛 ∧ 𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅‘𝑛) / 𝑛)) ≤ 𝑒) | ||
Theorem | pntibndlem1 27610 | Lemma for pntibnd 27614. (Contributed by Mario Carneiro, 10-Apr-2016.) |
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ 𝐿 = ((1 / 4) / (𝐴 + 3)) ⇒ ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) | ||
Theorem | pntibndlem2a 27611* | Lemma for pntibndlem2 27612. (Contributed by Mario Carneiro, 7-Jun-2016.) |
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ 𝐿 = ((1 / 4) / (𝐴 + 3)) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ 𝐾 = (exp‘(𝐵 / (𝐸 / 2))) & ⊢ 𝐶 = ((2 · 𝐵) + (log‘2)) & ⊢ (𝜑 → 𝐸 ∈ (0(,)1)) & ⊢ (𝜑 → 𝑍 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ ((𝜑 ∧ 𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 ∈ ℝ ∧ 𝑁 ≤ 𝑢 ∧ 𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁))) | ||
Theorem | pntibndlem2 27612* | Lemma for pntibnd 27614. The main work, after eliminating all the quantifiers. (Contributed by Mario Carneiro, 10-Apr-2016.) |
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ 𝐿 = ((1 / 4) / (𝐴 + 3)) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ 𝐾 = (exp‘(𝐵 / (𝐸 / 2))) & ⊢ 𝐶 = ((2 · 𝐵) + (log‘2)) & ⊢ (𝜑 → 𝐸 ∈ (0(,)1)) & ⊢ (𝜑 → 𝑍 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](2 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦 − 𝑥)) + (𝑇 · (𝑥 / (log‘𝑥))))) & ⊢ 𝑋 = ((exp‘(𝑇 / (𝐸 / 4))) + 𝑍) & ⊢ (𝜑 → 𝑀 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) & ⊢ (𝜑 → 𝑌 ∈ (𝑋(,)+∞)) & ⊢ (𝜑 → ((𝑌 < 𝑁 ∧ 𝑁 ≤ ((𝑀 / 2) · 𝑌)) ∧ (abs‘((𝑅‘𝑁) / 𝑁)) ≤ (𝐸 / 2))) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ ℝ+ ((𝑌 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑀 · 𝑌)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) | ||
Theorem | pntibndlem3 27613* | Lemma for pntibnd 27614. Package up pntibndlem2 27612 in quantifiers. (Contributed by Mario Carneiro, 10-Apr-2016.) |
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ 𝐿 = ((1 / 4) / (𝐴 + 3)) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ 𝐾 = (exp‘(𝐵 / (𝐸 / 2))) & ⊢ 𝐶 = ((2 · 𝐵) + (log‘2)) & ⊢ (𝜑 → 𝐸 ∈ (0(,)1)) & ⊢ (𝜑 → 𝑍 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑚 ∈ (𝐾[,)+∞)∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖 ∧ 𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅‘𝑖) / 𝑖)) ≤ (𝐸 / 2))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) | ||
Theorem | pntibnd 27614* | Lemma for pnt 27635. Establish smallness of 𝑅 on an interval. Lemma 10.6.2 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 10-Apr-2016.) |
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) ⇒ ⊢ ∃𝑐 ∈ ℝ+ ∃𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+ ∀𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝑒) | ||
Theorem | pntlemd 27615 | Lemma for pnt 27635. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝐴 is C^*, 𝐵 is c1, 𝐿 is λ, 𝐷 is c2, and 𝐹 is c3. (Contributed by Mario Carneiro, 13-Apr-2016.) |
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) ⇒ ⊢ (𝜑 → (𝐿 ∈ ℝ+ ∧ 𝐷 ∈ ℝ+ ∧ 𝐹 ∈ ℝ+)) | ||
Theorem | pntlemc 27616* | Lemma for pnt 27635. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑈 is α, 𝐸 is ε, and 𝐾 is K. (Contributed by Mario Carneiro, 13-Apr-2016.) |
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) ⇒ ⊢ (𝜑 → (𝐸 ∈ ℝ+ ∧ 𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈ ℝ+))) | ||
Theorem | pntlema 27617* | Lemma for pnt 27635. Closure for the constants used in the proof. The mammoth expression 𝑊 is a number large enough to satisfy all the lower bounds needed for 𝑍. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑌 is x2, 𝑋 is x1, 𝐶 is the big-O constant in Equation 10.6.29 of [Shapiro], p. 435, and 𝑊 is the unnamed lower bound of "for sufficiently large x" in Equation 10.6.34 of [Shapiro], p. 436. (Contributed by Mario Carneiro, 13-Apr-2016.) |
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) ⇒ ⊢ (𝜑 → 𝑊 ∈ ℝ+) | ||
Theorem | pntlemb 27618* | Lemma for pnt 27635. Unpack all the lower bounds contained in 𝑊, in the form they will be used. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑍 is x. (Contributed by Mario Carneiro, 13-Apr-2016.) |
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) ⇒ ⊢ (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍))))) | ||
Theorem | pntlemg 27619* | Lemma for pnt 27635. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑀 is j^* and 𝑁 is ĵ. (Contributed by Mario Carneiro, 13-Apr-2016.) |
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) ⇒ ⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ≥‘𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁 − 𝑀))) | ||
Theorem | pntlemh 27620* | Lemma for pnt 27635. Bounds on the subintervals in the induction. (Contributed by Mario Carneiro, 13-Apr-2016.) |
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) ⇒ ⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → (𝑋 < (𝐾↑𝐽) ∧ (𝐾↑𝐽) ≤ (√‘𝑍))) | ||
Theorem | pntlemn 27621* | Lemma for pnt 27635. The "naive" base bound, which we will slightly improve. (Contributed by Mario Carneiro, 13-Apr-2016.) |
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) ⇒ ⊢ ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 0 ≤ (((𝑈 / 𝐽) − (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍))) · (log‘𝐽))) | ||
Theorem | pntlemq 27622* | Lemma for pntlemj 27624. (Contributed by Mario Carneiro, 7-Jun-2016.) |
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) & ⊢ (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) & ⊢ 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾↑𝐽)))) & ⊢ (𝜑 → 𝑉 ∈ ℝ+) & ⊢ (𝜑 → (((𝐾↑𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾↑𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) & ⊢ (𝜑 → 𝐽 ∈ (𝑀..^𝑁)) & ⊢ 𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) ⇒ ⊢ (𝜑 → 𝐼 ⊆ 𝑂) | ||
Theorem | pntlemr 27623* | Lemma for pntlemj 27624. (Contributed by Mario Carneiro, 7-Jun-2016.) |
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) & ⊢ (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) & ⊢ 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾↑𝐽)))) & ⊢ (𝜑 → 𝑉 ∈ ℝ+) & ⊢ (𝜑 → (((𝐾↑𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾↑𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) & ⊢ (𝜑 → 𝐽 ∈ (𝑀..^𝑁)) & ⊢ 𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) ⇒ ⊢ (𝜑 → ((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ ((♯‘𝐼) · ((𝑈 − 𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))))) | ||
Theorem | pntlemj 27624* | Lemma for pnt 27635. The induction step. Using pntibnd 27614, we find an interval in 𝐾↑𝐽...𝐾↑(𝐽 + 1) which is sufficiently large and has a much smaller value, 𝑅(𝑧) / 𝑧 ≤ 𝐸 (instead of our original bound 𝑅(𝑧) / 𝑧 ≤ 𝑈). (Contributed by Mario Carneiro, 13-Apr-2016.) |
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) & ⊢ (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) & ⊢ 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾↑𝐽)))) & ⊢ (𝜑 → 𝑉 ∈ ℝ+) & ⊢ (𝜑 → (((𝐾↑𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾↑𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) & ⊢ (𝜑 → 𝐽 ∈ (𝑀..^𝑁)) & ⊢ 𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) ⇒ ⊢ (𝜑 → ((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛 ∈ 𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) | ||
Theorem | pntlemi 27625* | Lemma for pnt 27635. Eliminate some assumptions from pntlemj 27624. (Contributed by Mario Carneiro, 13-Apr-2016.) |
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) & ⊢ (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) & ⊢ 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾↑𝐽)))) ⇒ ⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀..^𝑁)) → ((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛 ∈ 𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) | ||
Theorem | pntlemf 27626* | Lemma for pnt 27635. Add up the pieces in pntlemi 27625 to get an estimate slightly better than the naive lower bound 0. (Contributed by Mario Carneiro, 13-Apr-2016.) |
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) & ⊢ (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) ⇒ ⊢ (𝜑 → ((𝑈 − 𝐸) · (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) | ||
Theorem | pntlemk 27627* | Lemma for pnt 27635. Evaluate the naive part of the estimate. (Contributed by Mario Carneiro, 14-Apr-2016.) |
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) & ⊢ (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) ⇒ ⊢ (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) ≤ ((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍))) | ||
Theorem | pntlemo 27628* | Lemma for pnt 27635. Combine all the estimates to establish a smaller eventual bound on 𝑅(𝑍) / 𝑍. (Contributed by Mario Carneiro, 14-Apr-2016.) |
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) & ⊢ (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) & ⊢ (𝜑 → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶) ⇒ ⊢ (𝜑 → (abs‘((𝑅‘𝑍) / 𝑍)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))) | ||
Theorem | pntleme 27629* | Lemma for pnt 27635. Package up pntlemo 27628 in quantifiers. (Contributed by Mario Carneiro, 14-Apr-2016.) |
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) & ⊢ (𝜑 → ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) & ⊢ (𝜑 → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶) ⇒ ⊢ (𝜑 → ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))) | ||
Theorem | pntlem3 27630* | Lemma for pnt 27635. Equation 10.6.35 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 8-Apr-2016.) (Proof shortened by AV, 27-Sep-2020.) |
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝐴) & ⊢ 𝑇 = {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡} & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ ((𝜑 ∧ 𝑢 ∈ 𝑇) → (𝑢 − (𝐶 · (𝑢↑3))) ∈ 𝑇) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1) | ||
Theorem | pntlemp 27631* | Lemma for pnt 27635. Wrapping up more quantifiers. (Contributed by Mario Carneiro, 14-Apr-2016.) |
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+ ∀𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝑒)) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) ⇒ ⊢ (𝜑 → ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))) | ||
Theorem | pntleml 27632* | Lemma for pnt 27635. Equation 10.6.35 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 14-Apr-2016.) |
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+ ∀𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝑒)) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1) | ||
Theorem | pnt3 27633 | The Prime Number Theorem, version 3: the second Chebyshev function tends asymptotically to 𝑥. (Contributed by Mario Carneiro, 1-Jun-2016.) |
⊢ (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1 | ||
Theorem | pnt2 27634 | The Prime Number Theorem, version 2: the first Chebyshev function tends asymptotically to 𝑥. (Contributed by Mario Carneiro, 1-Jun-2016.) |
⊢ (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟 1 | ||
Theorem | pnt 27635 | The Prime Number Theorem: the number of prime numbers less than 𝑥 tends asymptotically to 𝑥 / log(𝑥) as 𝑥 goes to infinity. This is Metamath 100 proof #5. (Contributed by Mario Carneiro, 1-Jun-2016.) |
⊢ (𝑥 ∈ (1(,)+∞) ↦ ((π‘𝑥) / (𝑥 / (log‘𝑥)))) ⇝𝑟 1 | ||
Theorem | abvcxp 27636* | Raising an absolute value to a power less than one yields another absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ ((𝐹‘𝑥)↑𝑐𝑆)) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) → 𝐺 ∈ 𝐴) | ||
Theorem | padicfval 27637* | Value of the p-adic absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) ⇒ ⊢ (𝑃 ∈ ℙ → (𝐽‘𝑃) = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑥))))) | ||
Theorem | padicval 27638* | Value of the p-adic absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ 𝑋 ∈ ℚ) → ((𝐽‘𝑃)‘𝑋) = if(𝑋 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑋)))) | ||
Theorem | ostth2lem1 27639* | Lemma for ostth2 27658, although it is just a simple statement about exponentials which does not involve any specifics of ostth2 27658. If a power is upper bounded by a linear term, the exponent must be less than one. Or in big-O notation, 𝑛 ∈ 𝑜(𝐴↑𝑛) for any 1 < 𝐴. (Contributed by Mario Carneiro, 10-Sep-2014.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴↑𝑛) ≤ (𝑛 · 𝐵)) ⇒ ⊢ (𝜑 → 𝐴 ≤ 1) | ||
Theorem | qrngbas 27640 | The base set of the field of rationals. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝑄 = (ℂfld ↾s ℚ) ⇒ ⊢ ℚ = (Base‘𝑄) | ||
Theorem | qdrng 27641 | The rationals form a division ring. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝑄 = (ℂfld ↾s ℚ) ⇒ ⊢ 𝑄 ∈ DivRing | ||
Theorem | qrng0 27642 | The zero element of the field of rationals. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝑄 = (ℂfld ↾s ℚ) ⇒ ⊢ 0 = (0g‘𝑄) | ||
Theorem | qrng1 27643 | The unity element of the field of rationals. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝑄 = (ℂfld ↾s ℚ) ⇒ ⊢ 1 = (1r‘𝑄) | ||
Theorem | qrngneg 27644 | The additive inverse in the field of rationals. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝑄 = (ℂfld ↾s ℚ) ⇒ ⊢ (𝑋 ∈ ℚ → ((invg‘𝑄)‘𝑋) = -𝑋) | ||
Theorem | qrngdiv 27645 | The division operation in the field of rationals. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝑄 = (ℂfld ↾s ℚ) ⇒ ⊢ ((𝑋 ∈ ℚ ∧ 𝑌 ∈ ℚ ∧ 𝑌 ≠ 0) → (𝑋(/r‘𝑄)𝑌) = (𝑋 / 𝑌)) | ||
Theorem | qabvle 27646 | By using induction on 𝑁, we show a long-range inequality coming from the triangle inequality. (Contributed by Mario Carneiro, 10-Sep-2014.) |
⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0) → (𝐹‘𝑁) ≤ 𝑁) | ||
Theorem | qabvexp 27647 | Induct the product rule abvmul 20749 to find the absolute value of a power. (Contributed by Mario Carneiro, 10-Sep-2014.) |
⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐹‘(𝑀↑𝑁)) = ((𝐹‘𝑀)↑𝑁)) | ||
Theorem | ostthlem1 27648* | Lemma for ostth 27660. If two absolute values agree on the positive integers greater than one, then they agree for all rational numbers and thus are equal as functions. (Contributed by Mario Carneiro, 9-Sep-2014.) |
⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) & ⊢ (𝜑 → 𝐺 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘2)) → (𝐹‘𝑛) = (𝐺‘𝑛)) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
Theorem | ostthlem2 27649* | Lemma for ostth 27660. Refine ostthlem1 27648 so that it is sufficient to only show equality on the primes. (Contributed by Mario Carneiro, 9-Sep-2014.) (Revised by Mario Carneiro, 20-Jun-2015.) |
⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) & ⊢ (𝜑 → 𝐺 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑝 ∈ ℙ) → (𝐹‘𝑝) = (𝐺‘𝑝)) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
Theorem | qabsabv 27650 | The regular absolute value function on the rationals is in fact an absolute value under our definition. (Contributed by Mario Carneiro, 9-Sep-2014.) |
⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) ⇒ ⊢ (abs ↾ ℚ) ∈ 𝐴 | ||
Theorem | padicabv 27651* | The p-adic absolute value (with arbitrary base) is an absolute value. (Contributed by Mario Carneiro, 9-Sep-2014.) |
⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐹 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑁↑(𝑃 pCnt 𝑥)))) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝐹 ∈ 𝐴) | ||
Theorem | padicabvf 27652* | The p-adic absolute value is an absolute value. (Contributed by Mario Carneiro, 9-Sep-2014.) |
⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) ⇒ ⊢ 𝐽:ℙ⟶𝐴 | ||
Theorem | padicabvcxp 27653* | All positive powers of the p-adic absolute value are absolute values. (Contributed by Mario Carneiro, 9-Sep-2014.) |
⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑦 ∈ ℚ ↦ (((𝐽‘𝑃)‘𝑦)↑𝑐𝑅)) ∈ 𝐴) | ||
Theorem | ostth1 27654* | - Lemma for ostth 27660: trivial case. (Not that the proof is trivial, but that we are proving that the function is trivial.) If 𝐹 is equal to 1 on the primes, then by complete induction and the multiplicative property abvmul 20749 of the absolute value, 𝐹 is equal to 1 on all the integers, and ostthlem1 27648 extends this to the other rational numbers. (Contributed by Mario Carneiro, 10-Sep-2014.) |
⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) & ⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛)) & ⊢ (𝜑 → ∀𝑛 ∈ ℙ ¬ (𝐹‘𝑛) < 1) ⇒ ⊢ (𝜑 → 𝐹 = 𝐾) | ||
Theorem | ostth2lem2 27655* | Lemma for ostth2 27658. (Contributed by Mario Carneiro, 10-Sep-2014.) |
⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) & ⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 1 < (𝐹‘𝑁)) & ⊢ 𝑅 = ((log‘(𝐹‘𝑁)) / (log‘𝑁)) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) & ⊢ 𝑆 = ((log‘(𝐹‘𝑀)) / (log‘𝑀)) & ⊢ 𝑇 = if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ (0...((𝑀↑𝑋) − 1))) → (𝐹‘𝑌) ≤ ((𝑀 · 𝑋) · (𝑇↑𝑋))) | ||
Theorem | ostth2lem3 27656* | Lemma for ostth2 27658. (Contributed by Mario Carneiro, 10-Sep-2014.) |
⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) & ⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 1 < (𝐹‘𝑁)) & ⊢ 𝑅 = ((log‘(𝐹‘𝑁)) / (log‘𝑁)) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) & ⊢ 𝑆 = ((log‘(𝐹‘𝑀)) / (log‘𝑀)) & ⊢ 𝑇 = if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀)) & ⊢ 𝑈 = ((log‘𝑁) / (log‘𝑀)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ ℕ) → (((𝐹‘𝑁) / (𝑇↑𝑐𝑈))↑𝑋) ≤ (𝑋 · ((𝑀 · 𝑇) · (𝑈 + 1)))) | ||
Theorem | ostth2lem4 27657* | Lemma for ostth2 27658. (Contributed by Mario Carneiro, 10-Sep-2014.) |
⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) & ⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 1 < (𝐹‘𝑁)) & ⊢ 𝑅 = ((log‘(𝐹‘𝑁)) / (log‘𝑁)) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) & ⊢ 𝑆 = ((log‘(𝐹‘𝑀)) / (log‘𝑀)) & ⊢ 𝑇 = if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀)) & ⊢ 𝑈 = ((log‘𝑁) / (log‘𝑀)) ⇒ ⊢ (𝜑 → (1 < (𝐹‘𝑀) ∧ 𝑅 ≤ 𝑆)) | ||
Theorem | ostth2 27658* | - Lemma for ostth 27660: regular case. (Contributed by Mario Carneiro, 10-Sep-2014.) |
⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) & ⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 1 < (𝐹‘𝑁)) & ⊢ 𝑅 = ((log‘(𝐹‘𝑁)) / (log‘𝑁)) ⇒ ⊢ (𝜑 → ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎))) | ||
Theorem | ostth3 27659* | - Lemma for ostth 27660: p-adic case. (Contributed by Mario Carneiro, 10-Sep-2014.) |
⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) & ⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛)) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → (𝐹‘𝑃) < 1) & ⊢ 𝑅 = -((log‘(𝐹‘𝑃)) / (log‘𝑃)) & ⊢ 𝑆 = if((𝐹‘𝑃) ≤ (𝐹‘𝑝), (𝐹‘𝑝), (𝐹‘𝑃)) ⇒ ⊢ (𝜑 → ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽‘𝑃)‘𝑦)↑𝑐𝑎))) | ||
Theorem | ostth 27660* | Ostrowski's theorem, which classifies all absolute values on ℚ. Any such absolute value must either be the trivial absolute value 𝐾, a constant exponent 0 < 𝑎 ≤ 1 times the regular absolute value, or a positive exponent times the p-adic absolute value. (Contributed by Mario Carneiro, 10-Sep-2014.) |
⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) & ⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) ⇒ ⊢ (𝐹 ∈ 𝐴 ↔ (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+ ∃𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔‘𝑦)↑𝑐𝑎)))) | ||
The surreal numbers can be represented in several equivalent ways. In [Alling], Norman Alling made this notion explicit by giving a set of axioms that all representations admit, then proving that there is an order and birthday preserving bijection between any systems that satisfy these axioms. In this section, we start with the definition of surreal numbers given in [Gonshor] and derive Alling's axioms. After deriving them we no longer refer to the explicit definition of surreals. In particular, we never take advantage of the fact that the empty set is a surreal number under our definition. | ||
Syntax | csur 27661 | Declare the class of all surreal numbers (see df-no 27664). |
class No | ||
Syntax | cslt 27662 | Declare the less-than relation over surreal numbers (see df-slt 27665). |
class <s | ||
Syntax | cbday 27663 | Declare the birthday function for surreal numbers (see df-bday 27666). |
class bday | ||
Definition | df-no 27664* |
Define the class of surreal numbers. The surreal numbers are a proper
class of numbers developed by John H. Conway and introduced by Donald
Knuth in 1975. They form a proper class into which all ordered fields
can be embedded. The approach we take to defining them was first
introduced by Hary Gonshor, and is based on the conception of a
"sign
expansion" of a surreal number. We define the surreals as
ordinal-indexed sequences of 1o and
2o, analogous to Gonshor's
( − ) and ( + ).
After introducing this definition, we will abstract away from it using axioms that Norman Alling developed in "Foundations of Analysis over Surreal Number Fields." This is done in an effort to be agnostic towards the exact implementation of surreals. (Contributed by Scott Fenton, 9-Jun-2011.) |
⊢ No = {𝑓 ∣ ∃𝑎 ∈ On 𝑓:𝑎⟶{1o, 2o}} | ||
Definition | df-slt 27665* | Next, we introduce surreal less-than, a comparison relation over the surreals by lexicographically ordering them. (Contributed by Scott Fenton, 9-Jun-2011.) |
⊢ <s = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ No ∧ 𝑔 ∈ No ) ∧ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥){〈1o, ∅〉, 〈1o, 2o〉, 〈∅, 2o〉} (𝑔‘𝑥)))} | ||
Definition | df-bday 27666 | Finally, we introduce the birthday function. This function maps each surreal to an ordinal. In our implementation, this is the domain of the sign function. The important properties of this function are established later. (Contributed by Scott Fenton, 11-Jun-2011.) |
⊢ bday = (𝑥 ∈ No ↦ dom 𝑥) | ||
Theorem | elno 27667* | Membership in the surreals. (Contributed by Scott Fenton, 11-Jun-2011.) (Proof shortened by SF, 14-Apr-2012.) Avoid ax-rep 5289. (Revised by SN, 5-Jun-2025.) |
⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) | ||
Theorem | elnoOLD 27668* | Obsolete version of elno 27667 as of 5-Jun-2025. (Contributed by Scott Fenton, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) | ||
Theorem | sltval 27669* | The value of the surreal less-than relation. (Contributed by Scott Fenton, 14-Jun-2011.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦) ∧ (𝐴‘𝑥){〈1o, ∅〉, 〈1o, 2o〉, 〈∅, 2o〉} (𝐵‘𝑥)))) | ||
Theorem | bdayval 27670 | The value of the birthday function within the surreals. (Contributed by Scott Fenton, 14-Jun-2011.) |
⊢ (𝐴 ∈ No → ( bday ‘𝐴) = dom 𝐴) | ||
Theorem | nofun 27671 | A surreal is a function. (Contributed by Scott Fenton, 16-Jun-2011.) |
⊢ (𝐴 ∈ No → Fun 𝐴) | ||
Theorem | nodmon 27672 | The domain of a surreal is an ordinal. (Contributed by Scott Fenton, 16-Jun-2011.) |
⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) | ||
Theorem | norn 27673 | The range of a surreal is a subset of the surreal signs. (Contributed by Scott Fenton, 16-Jun-2011.) |
⊢ (𝐴 ∈ No → ran 𝐴 ⊆ {1o, 2o}) | ||
Theorem | nofnbday 27674 | A surreal is a function over its birthday. (Contributed by Scott Fenton, 16-Jun-2011.) |
⊢ (𝐴 ∈ No → 𝐴 Fn ( bday ‘𝐴)) | ||
Theorem | nodmord 27675 | The domain of a surreal has the ordinal property. (Contributed by Scott Fenton, 16-Jun-2011.) |
⊢ (𝐴 ∈ No → Ord dom 𝐴) | ||
Theorem | elno2 27676 | An alternative condition for membership in No . (Contributed by Scott Fenton, 21-Mar-2012.) |
⊢ (𝐴 ∈ No ↔ (Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o})) | ||
Theorem | elno3 27677 | Another condition for membership in No . (Contributed by Scott Fenton, 14-Apr-2012.) |
⊢ (𝐴 ∈ No ↔ (𝐴:dom 𝐴⟶{1o, 2o} ∧ dom 𝐴 ∈ On)) | ||
Theorem | sltval2 27678* | Alternate expression for surreal less-than. Two surreals obey surreal less-than iff they obey the sign ordering at the first place they differ. (Contributed by Scott Fenton, 17-Jun-2011.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 ↔ (𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}){〈1o, ∅〉, 〈1o, 2o〉, 〈∅, 2o〉} (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}))) | ||
Theorem | nofv 27679 | The function value of a surreal is either a sign or the empty set. (Contributed by Scott Fenton, 22-Jun-2011.) |
⊢ (𝐴 ∈ No → ((𝐴‘𝑋) = ∅ ∨ (𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o)) | ||
Theorem | nosgnn0 27680 | ∅ is not a surreal sign. (Contributed by Scott Fenton, 16-Jun-2011.) |
⊢ ¬ ∅ ∈ {1o, 2o} | ||
Theorem | nosgnn0i 27681 | If 𝑋 is a surreal sign, then it is not null. (Contributed by Scott Fenton, 3-Aug-2011.) |
⊢ 𝑋 ∈ {1o, 2o} ⇒ ⊢ ∅ ≠ 𝑋 | ||
Theorem | noreson 27682 | The restriction of a surreal to an ordinal is still a surreal. (Contributed by Scott Fenton, 4-Sep-2011.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ On) → (𝐴 ↾ 𝐵) ∈ No ) | ||
Theorem | sltintdifex 27683* | If 𝐴 <s 𝐵, then the intersection of all the ordinals that have differing signs in 𝐴 and 𝐵 exists. (Contributed by Scott Fenton, 22-Feb-2012.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 → ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ V)) | ||
Theorem | sltres 27684 | If the restrictions of two surreals to a given ordinal obey surreal less-than, then so do the two surreals themselves. (Contributed by Scott Fenton, 4-Sep-2011.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On) → ((𝐴 ↾ 𝑋) <s (𝐵 ↾ 𝑋) → 𝐴 <s 𝐵)) | ||
Theorem | noxp1o 27685 | The Cartesian product of an ordinal and {1o} is a surreal. (Contributed by Scott Fenton, 12-Jun-2011.) |
⊢ (𝐴 ∈ On → (𝐴 × {1o}) ∈ No ) | ||
Theorem | noseponlem 27686* | Lemma for nosepon 27687. Consider a case of proper subset domain. (Contributed by Scott Fenton, 21-Sep-2020.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ dom 𝐴 ∈ dom 𝐵) → ¬ ∀𝑥 ∈ On (𝐴‘𝑥) = (𝐵‘𝑥)) | ||
Theorem | nosepon 27687* | Given two unequal surreals, the minimal ordinal at which they differ is an ordinal. (Contributed by Scott Fenton, 21-Sep-2020.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ On) | ||
Theorem | noextend 27688 | Extending a surreal by one sign value results in a new surreal. (Contributed by Scott Fenton, 22-Nov-2021.) |
⊢ 𝑋 ∈ {1o, 2o} ⇒ ⊢ (𝐴 ∈ No → (𝐴 ∪ {〈dom 𝐴, 𝑋〉}) ∈ No ) | ||
Theorem | noextendseq 27689 | Extend a surreal by a sequence of ordinals. (Contributed by Scott Fenton, 30-Nov-2021.) |
⊢ 𝑋 ∈ {1o, 2o} ⇒ ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ On) → (𝐴 ∪ ((𝐵 ∖ dom 𝐴) × {𝑋})) ∈ No ) | ||
Theorem | noextenddif 27690* | Calculate the place where a surreal and its extension differ. (Contributed by Scott Fenton, 22-Nov-2021.) |
⊢ 𝑋 ∈ {1o, 2o} ⇒ ⊢ (𝐴 ∈ No → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ ((𝐴 ∪ {〈dom 𝐴, 𝑋〉})‘𝑥)} = dom 𝐴) | ||
Theorem | noextendlt 27691 | Extending a surreal with a negative sign results in a smaller surreal. (Contributed by Scott Fenton, 22-Nov-2021.) |
⊢ (𝐴 ∈ No → (𝐴 ∪ {〈dom 𝐴, 1o〉}) <s 𝐴) | ||
Theorem | noextendgt 27692 | Extending a surreal with a positive sign results in a bigger surreal. (Contributed by Scott Fenton, 22-Nov-2021.) |
⊢ (𝐴 ∈ No → 𝐴 <s (𝐴 ∪ {〈dom 𝐴, 2o〉})) | ||
Theorem | nolesgn2o 27693 | Given 𝐴 less-than or equal to 𝐵, equal to 𝐵 up to 𝑋, and 𝐴(𝑋) = 2o, then 𝐵(𝑋) = 2o. (Contributed by Scott Fenton, 6-Dec-2021.) |
⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝐵‘𝑋) = 2o) | ||
Theorem | nolesgn2ores 27694 | Given 𝐴 less-than or equal to 𝐵, equal to 𝐵 up to 𝑋, and 𝐴(𝑋) = 2o, then (𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋). (Contributed by Scott Fenton, 6-Dec-2021.) |
⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋)) | ||
Theorem | nogesgn1o 27695 | Given 𝐴 greater than or equal to 𝐵, equal to 𝐵 up to 𝑋, and 𝐴(𝑋) = 1o, then 𝐵(𝑋) = 1o. (Contributed by Scott Fenton, 9-Aug-2024.) |
⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → (𝐵‘𝑋) = 1o) | ||
Theorem | nogesgn1ores 27696 | Given 𝐴 greater than or equal to 𝐵, equal to 𝐵 up to 𝑋, and 𝐴(𝑋) = 1o, then (𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋). (Contributed by Scott Fenton, 6-Dec-2021.) |
⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → (𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋)) | ||
Theorem | sltsolem1 27697 | Lemma for sltso 27698. The "sign expansion" binary relation totally orders the surreal signs. (Contributed by Scott Fenton, 8-Jun-2011.) |
⊢ {〈1o, ∅〉, 〈1o, 2o〉, 〈∅, 2o〉} Or ({1o, 2o} ∪ {∅}) | ||
Theorem | sltso 27698 | Less-than totally orders the surreals. Axiom O of [Alling] p. 184. (Contributed by Scott Fenton, 9-Jun-2011.) |
⊢ <s Or No | ||
Theorem | bdayfo 27699 | The birthday function maps the surreals onto the ordinals. Axiom B of [Alling] p. 184. (Proof shortened on 14-Apr-2012 by SF). (Contributed by Scott Fenton, 11-Jun-2011.) |
⊢ bday : No –onto→On | ||
Theorem | fvnobday 27700 | The value of a surreal at its birthday is ∅. (Contributed by Scott Fenton, 14-Jun-2011.) (Proof shortened by SF, 14-Apr-2012.) |
⊢ (𝐴 ∈ No → (𝐴‘( bday ‘𝐴)) = ∅) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |