![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > norecov | Structured version Visualization version GIF version |
Description: Calculate the value of the surreal recursion operation. (Contributed by Scott Fenton, 19-Aug-2024.) |
Ref | Expression |
---|---|
norec.1 | ⊢ 𝐹 = norec (𝐺) |
Ref | Expression |
---|---|
norecov | ⊢ (𝐴 ∈ No → (𝐹‘𝐴) = (𝐴𝐺(𝐹 ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . . . 5 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} | |
2 | 1 | lrrecfr 27810 | . . . 4 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Fr No |
3 | 1 | lrrecpo 27808 | . . . 4 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Po No |
4 | 1 | lrrecse 27809 | . . . 4 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Se No |
5 | 2, 3, 4 | 3pm3.2i 1336 | . . 3 ⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Fr No ∧ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Po No ∧ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Se No ) |
6 | norec.1 | . . . . 5 ⊢ 𝐹 = norec (𝐺) | |
7 | df-norec 27805 | . . . . 5 ⊢ norec (𝐺) = frecs({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝐺) | |
8 | 6, 7 | eqtri 2754 | . . . 4 ⊢ 𝐹 = frecs({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝐺) |
9 | 8 | fpr2 8287 | . . 3 ⊢ ((({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Fr No ∧ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Po No ∧ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Se No ) ∧ 𝐴 ∈ No ) → (𝐹‘𝐴) = (𝐴𝐺(𝐹 ↾ Pred({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝐴)))) |
10 | 5, 9 | mpan 687 | . 2 ⊢ (𝐴 ∈ No → (𝐹‘𝐴) = (𝐴𝐺(𝐹 ↾ Pred({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝐴)))) |
11 | 1 | lrrecpred 27811 | . . . 4 ⊢ (𝐴 ∈ No → Pred({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝐴) = (( L ‘𝐴) ∪ ( R ‘𝐴))) |
12 | 11 | reseq2d 5974 | . . 3 ⊢ (𝐴 ∈ No → (𝐹 ↾ Pred({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝐴)) = (𝐹 ↾ (( L ‘𝐴) ∪ ( R ‘𝐴)))) |
13 | 12 | oveq2d 7420 | . 2 ⊢ (𝐴 ∈ No → (𝐴𝐺(𝐹 ↾ Pred({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝐴))) = (𝐴𝐺(𝐹 ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))))) |
14 | 10, 13 | eqtrd 2766 | 1 ⊢ (𝐴 ∈ No → (𝐹‘𝐴) = (𝐴𝐺(𝐹 ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∪ cun 3941 {copab 5203 Po wpo 5579 Fr wfr 5621 Se wse 5622 ↾ cres 5671 Predcpred 6292 ‘cfv 6536 (class class class)co 7404 frecscfrecs 8263 No csur 27523 L cleft 27722 R cright 27723 norec cnorec 27804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-1o 8464 df-2o 8465 df-no 27526 df-slt 27527 df-bday 27528 df-sslt 27664 df-scut 27666 df-made 27724 df-old 27725 df-left 27727 df-right 27728 df-norec 27805 |
This theorem is referenced by: negsval 27888 |
Copyright terms: Public domain | W3C validator |