Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  norecov Structured version   Visualization version   GIF version

Theorem norecov 33749
Description: Calculate the value of the surreal recursion operation. (Contributed by Scott Fenton, 19-Aug-2024.)
Hypothesis
Ref Expression
norec.1 𝐹 = norec (𝐺)
Assertion
Ref Expression
norecov (𝐴 No → (𝐹𝐴) = (𝐴𝐺(𝐹 ↾ (( L ‘𝐴) ∪ ( R ‘𝐴)))))

Proof of Theorem norecov
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}
21lrrecfr 33745 . . . 4 {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Fr No
31lrrecpo 33743 . . . 4 {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Po No
41lrrecse 33744 . . . 4 {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Se No
52, 3, 43pm3.2i 1340 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Fr No ∧ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Po No ∧ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Se No )
6 norec.1 . . . . 5 𝐹 = norec (𝐺)
7 df-norec 33740 . . . . 5 norec (𝐺) = frecs({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝐺)
86, 7eqtri 2761 . . . 4 𝐹 = frecs({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝐺)
98fpr2 33462 . . 3 ((({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Fr No ∧ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Po No ∧ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Se No ) ∧ 𝐴 No ) → (𝐹𝐴) = (𝐴𝐺(𝐹 ↾ Pred({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝐴))))
105, 9mpan 690 . 2 (𝐴 No → (𝐹𝐴) = (𝐴𝐺(𝐹 ↾ Pred({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝐴))))
111lrrecpred 33746 . . . 4 (𝐴 No → Pred({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝐴) = (( L ‘𝐴) ∪ ( R ‘𝐴)))
1211reseq2d 5825 . . 3 (𝐴 No → (𝐹 ↾ Pred({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝐴)) = (𝐹 ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))))
1312oveq2d 7188 . 2 (𝐴 No → (𝐴𝐺(𝐹 ↾ Pred({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝐴))) = (𝐴𝐺(𝐹 ↾ (( L ‘𝐴) ∪ ( R ‘𝐴)))))
1410, 13eqtrd 2773 1 (𝐴 No → (𝐹𝐴) = (𝐴𝐺(𝐹 ↾ (( L ‘𝐴) ∪ ( R ‘𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088   = wceq 1542  wcel 2114  cun 3841  {copab 5092   Po wpo 5440   Fr wfr 5480   Se wse 5481  cres 5527  Predcpred 6128  cfv 6339  (class class class)co 7172  frecscfrecs 33439   No csur 33488   L cleft 33674   R cright 33675   norec cnorec 33739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7481
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7129  df-ov 7175  df-oprab 7176  df-mpo 7177  df-wrecs 7978  df-recs 8039  df-1o 8133  df-2o 8134  df-frecs 33440  df-no 33491  df-slt 33492  df-bday 33493  df-sslt 33621  df-scut 33623  df-made 33676  df-old 33677  df-left 33679  df-right 33680  df-norec 33740
This theorem is referenced by:  negsval  33768
  Copyright terms: Public domain W3C validator