| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > norecov | Structured version Visualization version GIF version | ||
| Description: Calculate the value of the surreal recursion operation. (Contributed by Scott Fenton, 19-Aug-2024.) |
| Ref | Expression |
|---|---|
| norec.1 | ⊢ 𝐹 = norec (𝐺) |
| Ref | Expression |
|---|---|
| norecov | ⊢ (𝐴 ∈ No → (𝐹‘𝐴) = (𝐴𝐺(𝐹 ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . 5 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} | |
| 2 | 1 | lrrecfr 27850 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Fr No |
| 3 | 1 | lrrecpo 27848 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Po No |
| 4 | 1 | lrrecse 27849 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Se No |
| 5 | 2, 3, 4 | 3pm3.2i 1340 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Fr No ∧ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Po No ∧ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Se No ) |
| 6 | norec.1 | . . . . 5 ⊢ 𝐹 = norec (𝐺) | |
| 7 | df-norec 27845 | . . . . 5 ⊢ norec (𝐺) = frecs({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝐺) | |
| 8 | 6, 7 | eqtri 2752 | . . . 4 ⊢ 𝐹 = frecs({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝐺) |
| 9 | 8 | fpr2 8283 | . . 3 ⊢ ((({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Fr No ∧ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Po No ∧ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Se No ) ∧ 𝐴 ∈ No ) → (𝐹‘𝐴) = (𝐴𝐺(𝐹 ↾ Pred({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝐴)))) |
| 10 | 5, 9 | mpan 690 | . 2 ⊢ (𝐴 ∈ No → (𝐹‘𝐴) = (𝐴𝐺(𝐹 ↾ Pred({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝐴)))) |
| 11 | 1 | lrrecpred 27851 | . . . 4 ⊢ (𝐴 ∈ No → Pred({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝐴) = (( L ‘𝐴) ∪ ( R ‘𝐴))) |
| 12 | 11 | reseq2d 5950 | . . 3 ⊢ (𝐴 ∈ No → (𝐹 ↾ Pred({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝐴)) = (𝐹 ↾ (( L ‘𝐴) ∪ ( R ‘𝐴)))) |
| 13 | 12 | oveq2d 7403 | . 2 ⊢ (𝐴 ∈ No → (𝐴𝐺(𝐹 ↾ Pred({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝐴))) = (𝐴𝐺(𝐹 ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))))) |
| 14 | 10, 13 | eqtrd 2764 | 1 ⊢ (𝐴 ∈ No → (𝐹‘𝐴) = (𝐴𝐺(𝐹 ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∪ cun 3912 {copab 5169 Po wpo 5544 Fr wfr 5588 Se wse 5589 ↾ cres 5640 Predcpred 6273 ‘cfv 6511 (class class class)co 7387 frecscfrecs 8259 No csur 27551 L cleft 27753 R cright 27754 norec cnorec 27844 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-1o 8434 df-2o 8435 df-no 27554 df-slt 27555 df-bday 27556 df-sslt 27693 df-scut 27695 df-made 27755 df-old 27756 df-left 27758 df-right 27759 df-norec 27845 |
| This theorem is referenced by: negsval 27931 |
| Copyright terms: Public domain | W3C validator |