| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lrrecval | Structured version Visualization version GIF version | ||
| Description: The next step in the development of the surreals is to establish induction and recursion across left and right sets. To that end, we are going to develop a relationship 𝑅 that is founded, partial, and set-like across the surreals. This first theorem just establishes the value of 𝑅. (Contributed by Scott Fenton, 19-Aug-2024.) |
| Ref | Expression |
|---|---|
| lrrec.1 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} |
| Ref | Expression |
|---|---|
| lrrecval | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴𝑅𝐵 ↔ 𝐴 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2823 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦)) ↔ 𝐴 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦)))) | |
| 2 | fveq2 6881 | . . . 4 ⊢ (𝑦 = 𝐵 → ( L ‘𝑦) = ( L ‘𝐵)) | |
| 3 | fveq2 6881 | . . . 4 ⊢ (𝑦 = 𝐵 → ( R ‘𝑦) = ( R ‘𝐵)) | |
| 4 | 2, 3 | uneq12d 4149 | . . 3 ⊢ (𝑦 = 𝐵 → (( L ‘𝑦) ∪ ( R ‘𝑦)) = (( L ‘𝐵) ∪ ( R ‘𝐵))) |
| 5 | 4 | eleq2d 2821 | . 2 ⊢ (𝑦 = 𝐵 → (𝐴 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦)) ↔ 𝐴 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)))) |
| 6 | lrrec.1 | . 2 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} | |
| 7 | 1, 5, 6 | brabg 5519 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴𝑅𝐵 ↔ 𝐴 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cun 3929 class class class wbr 5124 {copab 5186 ‘cfv 6536 No csur 27608 L cleft 27810 R cright 27811 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-iota 6489 df-fv 6544 |
| This theorem is referenced by: lrrecval2 27904 lrrecse 27906 lrrecpred 27908 |
| Copyright terms: Public domain | W3C validator |