MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lrrecval Structured version   Visualization version   GIF version

Theorem lrrecval 27883
Description: The next step in the development of the surreals is to establish induction and recursion across left and right sets. To that end, we are going to develop a relationship 𝑅 that is founded, partial, and set-like across the surreals. This first theorem just establishes the value of 𝑅. (Contributed by Scott Fenton, 19-Aug-2024.)
Hypothesis
Ref Expression
lrrec.1 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}
Assertion
Ref Expression
lrrecval ((𝐴 No 𝐵 No ) → (𝐴𝑅𝐵𝐴 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)

Proof of Theorem lrrecval
StepHypRef Expression
1 eleq1 2819 . 2 (𝑥 = 𝐴 → (𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦)) ↔ 𝐴 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))))
2 fveq2 6822 . . . 4 (𝑦 = 𝐵 → ( L ‘𝑦) = ( L ‘𝐵))
3 fveq2 6822 . . . 4 (𝑦 = 𝐵 → ( R ‘𝑦) = ( R ‘𝐵))
42, 3uneq12d 4119 . . 3 (𝑦 = 𝐵 → (( L ‘𝑦) ∪ ( R ‘𝑦)) = (( L ‘𝐵) ∪ ( R ‘𝐵)))
54eleq2d 2817 . 2 (𝑦 = 𝐵 → (𝐴 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦)) ↔ 𝐴 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))))
6 lrrec.1 . 2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}
71, 5, 6brabg 5479 1 ((𝐴 No 𝐵 No ) → (𝐴𝑅𝐵𝐴 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  cun 3900   class class class wbr 5091  {copab 5153  cfv 6481   No csur 27579   L cleft 27787   R cright 27788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-iota 6437  df-fv 6489
This theorem is referenced by:  lrrecval2  27884  lrrecse  27886  lrrecpred  27888
  Copyright terms: Public domain W3C validator