MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  norecfn Structured version   Visualization version   GIF version

Theorem norecfn 27779
Description: Surreal recursion over one variable is a function over the surreals. (Contributed by Scott Fenton, 19-Aug-2024.)
Hypothesis
Ref Expression
norec.1 𝐹 = norec (𝐺)
Assertion
Ref Expression
norecfn 𝐹 Fn No

Proof of Theorem norecfn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2724 . . 3 {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}
21lrrecfr 27776 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Fr No
31lrrecpo 27774 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Po No
41lrrecse 27775 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Se No
5 norec.1 . . . 4 𝐹 = norec (𝐺)
6 df-norec 27771 . . . 4 norec (𝐺) = frecs({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝐺)
75, 6eqtri 2752 . . 3 𝐹 = frecs({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝐺)
87fpr1 8283 . 2 (({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Fr No ∧ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Po No ∧ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Se No ) → 𝐹 Fn No )
92, 3, 4, 8mp3an 1457 1 𝐹 Fn No
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2098  cun 3938  {copab 5200   Po wpo 5576   Fr wfr 5618   Se wse 5619   Fn wfn 6528  cfv 6533  frecscfrecs 8260   No csur 27489   L cleft 27688   R cright 27689   norec cnorec 27770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-1o 8461  df-2o 8462  df-no 27492  df-slt 27493  df-bday 27494  df-sslt 27630  df-scut 27632  df-made 27690  df-old 27691  df-left 27693  df-right 27694  df-norec 27771
This theorem is referenced by:  negsfn  27852
  Copyright terms: Public domain W3C validator