![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > norecfn | Structured version Visualization version GIF version |
Description: Surreal recursion over one variable is a function over the surreals. (Contributed by Scott Fenton, 19-Aug-2024.) |
Ref | Expression |
---|---|
norec.1 | ⊢ 𝐹 = norec (𝐺) |
Ref | Expression |
---|---|
norecfn | ⊢ 𝐹 Fn No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} | |
2 | 1 | lrrecfr 27994 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Fr No |
3 | 1 | lrrecpo 27992 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Po No |
4 | 1 | lrrecse 27993 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Se No |
5 | norec.1 | . . . 4 ⊢ 𝐹 = norec (𝐺) | |
6 | df-norec 27989 | . . . 4 ⊢ norec (𝐺) = frecs({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝐺) | |
7 | 5, 6 | eqtri 2768 | . . 3 ⊢ 𝐹 = frecs({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝐺) |
8 | 7 | fpr1 8344 | . 2 ⊢ (({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Fr No ∧ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Po No ∧ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Se No ) → 𝐹 Fn No ) |
9 | 2, 3, 4, 8 | mp3an 1461 | 1 ⊢ 𝐹 Fn No |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 ∪ cun 3974 {copab 5228 Po wpo 5605 Fr wfr 5649 Se wse 5650 Fn wfn 6568 ‘cfv 6573 frecscfrecs 8321 No csur 27702 L cleft 27902 R cright 27903 norec cnorec 27988 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-1o 8522 df-2o 8523 df-no 27705 df-slt 27706 df-bday 27707 df-sslt 27844 df-scut 27846 df-made 27904 df-old 27905 df-left 27907 df-right 27908 df-norec 27989 |
This theorem is referenced by: negsfn 28073 |
Copyright terms: Public domain | W3C validator |