| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-nrg | Structured version Visualization version GIF version | ||
| Description: A normed ring is a ring with an induced topology and metric such that the metric is translation-invariant and the norm (distance from 0) is an absolute value on the ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| df-nrg | ⊢ NrmRing = {𝑤 ∈ NrmGrp ∣ (norm‘𝑤) ∈ (AbsVal‘𝑤)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnrg 24592 | . 2 class NrmRing | |
| 2 | vw | . . . . . 6 setvar 𝑤 | |
| 3 | 2 | cv 1539 | . . . . 5 class 𝑤 |
| 4 | cnm 24589 | . . . . 5 class norm | |
| 5 | 3, 4 | cfv 6561 | . . . 4 class (norm‘𝑤) |
| 6 | cabv 20809 | . . . . 5 class AbsVal | |
| 7 | 3, 6 | cfv 6561 | . . . 4 class (AbsVal‘𝑤) |
| 8 | 5, 7 | wcel 2108 | . . 3 wff (norm‘𝑤) ∈ (AbsVal‘𝑤) |
| 9 | cngp 24590 | . . 3 class NrmGrp | |
| 10 | 8, 2, 9 | crab 3436 | . 2 class {𝑤 ∈ NrmGrp ∣ (norm‘𝑤) ∈ (AbsVal‘𝑤)} |
| 11 | 1, 10 | wceq 1540 | 1 wff NrmRing = {𝑤 ∈ NrmGrp ∣ (norm‘𝑤) ∈ (AbsVal‘𝑤)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: isnrg 24681 |
| Copyright terms: Public domain | W3C validator |