MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-nrg Structured version   Visualization version   GIF version

Definition df-nrg 23722
Description: A normed ring is a ring with an induced topology and metric such that the metric is translation-invariant and the norm (distance from 0) is an absolute value on the ring. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
df-nrg NrmRing = {𝑤 ∈ NrmGrp ∣ (norm‘𝑤) ∈ (AbsVal‘𝑤)}

Detailed syntax breakdown of Definition df-nrg
StepHypRef Expression
1 cnrg 23716 . 2 class NrmRing
2 vw . . . . . 6 setvar 𝑤
32cv 1540 . . . . 5 class 𝑤
4 cnm 23713 . . . . 5 class norm
53, 4cfv 6430 . . . 4 class (norm‘𝑤)
6 cabv 20057 . . . . 5 class AbsVal
73, 6cfv 6430 . . . 4 class (AbsVal‘𝑤)
85, 7wcel 2109 . . 3 wff (norm‘𝑤) ∈ (AbsVal‘𝑤)
9 cngp 23714 . . 3 class NrmGrp
108, 2, 9crab 3069 . 2 class {𝑤 ∈ NrmGrp ∣ (norm‘𝑤) ∈ (AbsVal‘𝑤)}
111, 10wceq 1541 1 wff NrmRing = {𝑤 ∈ NrmGrp ∣ (norm‘𝑤) ∈ (AbsVal‘𝑤)}
Colors of variables: wff setvar class
This definition is referenced by:  isnrg  23805
  Copyright terms: Public domain W3C validator