Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-nrg | Structured version Visualization version GIF version |
Description: A normed ring is a ring with an induced topology and metric such that the metric is translation-invariant and the norm (distance from 0) is an absolute value on the ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
df-nrg | ⊢ NrmRing = {𝑤 ∈ NrmGrp ∣ (norm‘𝑤) ∈ (AbsVal‘𝑤)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnrg 23716 | . 2 class NrmRing | |
2 | vw | . . . . . 6 setvar 𝑤 | |
3 | 2 | cv 1540 | . . . . 5 class 𝑤 |
4 | cnm 23713 | . . . . 5 class norm | |
5 | 3, 4 | cfv 6430 | . . . 4 class (norm‘𝑤) |
6 | cabv 20057 | . . . . 5 class AbsVal | |
7 | 3, 6 | cfv 6430 | . . . 4 class (AbsVal‘𝑤) |
8 | 5, 7 | wcel 2109 | . . 3 wff (norm‘𝑤) ∈ (AbsVal‘𝑤) |
9 | cngp 23714 | . . 3 class NrmGrp | |
10 | 8, 2, 9 | crab 3069 | . 2 class {𝑤 ∈ NrmGrp ∣ (norm‘𝑤) ∈ (AbsVal‘𝑤)} |
11 | 1, 10 | wceq 1541 | 1 wff NrmRing = {𝑤 ∈ NrmGrp ∣ (norm‘𝑤) ∈ (AbsVal‘𝑤)} |
Colors of variables: wff setvar class |
This definition is referenced by: isnrg 23805 |
Copyright terms: Public domain | W3C validator |