MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnrg Structured version   Visualization version   GIF version

Theorem isnrg 24604
Description: A normed ring is a ring with a norm that makes it into a normed group, and such that the norm is an absolute value on the ring. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
isnrg.1 𝑁 = (norm‘𝑅)
isnrg.2 𝐴 = (AbsVal‘𝑅)
Assertion
Ref Expression
isnrg (𝑅 ∈ NrmRing ↔ (𝑅 ∈ NrmGrp ∧ 𝑁𝐴))

Proof of Theorem isnrg
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6881 . . . 4 (𝑟 = 𝑅 → (norm‘𝑟) = (norm‘𝑅))
2 isnrg.1 . . . 4 𝑁 = (norm‘𝑅)
31, 2eqtr4di 2789 . . 3 (𝑟 = 𝑅 → (norm‘𝑟) = 𝑁)
4 fveq2 6881 . . . 4 (𝑟 = 𝑅 → (AbsVal‘𝑟) = (AbsVal‘𝑅))
5 isnrg.2 . . . 4 𝐴 = (AbsVal‘𝑅)
64, 5eqtr4di 2789 . . 3 (𝑟 = 𝑅 → (AbsVal‘𝑟) = 𝐴)
73, 6eleq12d 2829 . 2 (𝑟 = 𝑅 → ((norm‘𝑟) ∈ (AbsVal‘𝑟) ↔ 𝑁𝐴))
8 df-nrg 24529 . 2 NrmRing = {𝑟 ∈ NrmGrp ∣ (norm‘𝑟) ∈ (AbsVal‘𝑟)}
97, 8elrab2 3679 1 (𝑅 ∈ NrmRing ↔ (𝑅 ∈ NrmGrp ∧ 𝑁𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  cfv 6536  AbsValcabv 20773  normcnm 24520  NrmGrpcngp 24521  NrmRingcnrg 24523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-iota 6489  df-fv 6544  df-nrg 24529
This theorem is referenced by:  nrgabv  24605  nrgngp  24606  subrgnrg  24617  tngnrg  24618  cnnrg  24724  zhmnrg  34001
  Copyright terms: Public domain W3C validator