| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isnrg | Structured version Visualization version GIF version | ||
| Description: A normed ring is a ring with a norm that makes it into a normed group, and such that the norm is an absolute value on the ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| isnrg.1 | ⊢ 𝑁 = (norm‘𝑅) |
| isnrg.2 | ⊢ 𝐴 = (AbsVal‘𝑅) |
| Ref | Expression |
|---|---|
| isnrg | ⊢ (𝑅 ∈ NrmRing ↔ (𝑅 ∈ NrmGrp ∧ 𝑁 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6881 | . . . 4 ⊢ (𝑟 = 𝑅 → (norm‘𝑟) = (norm‘𝑅)) | |
| 2 | isnrg.1 | . . . 4 ⊢ 𝑁 = (norm‘𝑅) | |
| 3 | 1, 2 | eqtr4di 2789 | . . 3 ⊢ (𝑟 = 𝑅 → (norm‘𝑟) = 𝑁) |
| 4 | fveq2 6881 | . . . 4 ⊢ (𝑟 = 𝑅 → (AbsVal‘𝑟) = (AbsVal‘𝑅)) | |
| 5 | isnrg.2 | . . . 4 ⊢ 𝐴 = (AbsVal‘𝑅) | |
| 6 | 4, 5 | eqtr4di 2789 | . . 3 ⊢ (𝑟 = 𝑅 → (AbsVal‘𝑟) = 𝐴) |
| 7 | 3, 6 | eleq12d 2829 | . 2 ⊢ (𝑟 = 𝑅 → ((norm‘𝑟) ∈ (AbsVal‘𝑟) ↔ 𝑁 ∈ 𝐴)) |
| 8 | df-nrg 24529 | . 2 ⊢ NrmRing = {𝑟 ∈ NrmGrp ∣ (norm‘𝑟) ∈ (AbsVal‘𝑟)} | |
| 9 | 7, 8 | elrab2 3679 | 1 ⊢ (𝑅 ∈ NrmRing ↔ (𝑅 ∈ NrmGrp ∧ 𝑁 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 AbsValcabv 20773 normcnm 24520 NrmGrpcngp 24521 NrmRingcnrg 24523 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-nrg 24529 |
| This theorem is referenced by: nrgabv 24605 nrgngp 24606 subrgnrg 24617 tngnrg 24618 cnnrg 24724 zhmnrg 34001 |
| Copyright terms: Public domain | W3C validator |