![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isnrg | Structured version Visualization version GIF version |
Description: A normed ring is a ring with a norm that makes it into a normed group, and such that the norm is an absolute value on the ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
isnrg.1 | β’ π = (normβπ ) |
isnrg.2 | β’ π΄ = (AbsValβπ ) |
Ref | Expression |
---|---|
isnrg | β’ (π β NrmRing β (π β NrmGrp β§ π β π΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6888 | . . . 4 β’ (π = π β (normβπ) = (normβπ )) | |
2 | isnrg.1 | . . . 4 β’ π = (normβπ ) | |
3 | 1, 2 | eqtr4di 2790 | . . 3 β’ (π = π β (normβπ) = π) |
4 | fveq2 6888 | . . . 4 β’ (π = π β (AbsValβπ) = (AbsValβπ )) | |
5 | isnrg.2 | . . . 4 β’ π΄ = (AbsValβπ ) | |
6 | 4, 5 | eqtr4di 2790 | . . 3 β’ (π = π β (AbsValβπ) = π΄) |
7 | 3, 6 | eleq12d 2827 | . 2 β’ (π = π β ((normβπ) β (AbsValβπ) β π β π΄)) |
8 | df-nrg 24085 | . 2 β’ NrmRing = {π β NrmGrp β£ (normβπ) β (AbsValβπ)} | |
9 | 7, 8 | elrab2 3685 | 1 β’ (π β NrmRing β (π β NrmGrp β§ π β π΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 βcfv 6540 AbsValcabv 20416 normcnm 24076 NrmGrpcngp 24077 NrmRingcnrg 24079 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-iota 6492 df-fv 6548 df-nrg 24085 |
This theorem is referenced by: nrgabv 24169 nrgngp 24170 subrgnrg 24181 tngnrg 24182 cnnrg 24288 zhmnrg 32935 |
Copyright terms: Public domain | W3C validator |