MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnrg Structured version   Visualization version   GIF version

Theorem isnrg 23869
Description: A normed ring is a ring with a norm that makes it into a normed group, and such that the norm is an absolute value on the ring. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
isnrg.1 𝑁 = (norm‘𝑅)
isnrg.2 𝐴 = (AbsVal‘𝑅)
Assertion
Ref Expression
isnrg (𝑅 ∈ NrmRing ↔ (𝑅 ∈ NrmGrp ∧ 𝑁𝐴))

Proof of Theorem isnrg
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6804 . . . 4 (𝑟 = 𝑅 → (norm‘𝑟) = (norm‘𝑅))
2 isnrg.1 . . . 4 𝑁 = (norm‘𝑅)
31, 2eqtr4di 2794 . . 3 (𝑟 = 𝑅 → (norm‘𝑟) = 𝑁)
4 fveq2 6804 . . . 4 (𝑟 = 𝑅 → (AbsVal‘𝑟) = (AbsVal‘𝑅))
5 isnrg.2 . . . 4 𝐴 = (AbsVal‘𝑅)
64, 5eqtr4di 2794 . . 3 (𝑟 = 𝑅 → (AbsVal‘𝑟) = 𝐴)
73, 6eleq12d 2831 . 2 (𝑟 = 𝑅 → ((norm‘𝑟) ∈ (AbsVal‘𝑟) ↔ 𝑁𝐴))
8 df-nrg 23786 . 2 NrmRing = {𝑟 ∈ NrmGrp ∣ (norm‘𝑟) ∈ (AbsVal‘𝑟)}
97, 8elrab2 3632 1 (𝑅 ∈ NrmRing ↔ (𝑅 ∈ NrmGrp ∧ 𝑁𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1539  wcel 2104  cfv 6458  AbsValcabv 20121  normcnm 23777  NrmGrpcngp 23778  NrmRingcnrg 23780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-iota 6410  df-fv 6466  df-nrg 23786
This theorem is referenced by:  nrgabv  23870  nrgngp  23871  subrgnrg  23882  tngnrg  23883  cnnrg  23989  zhmnrg  31962
  Copyright terms: Public domain W3C validator