Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isnrg | Structured version Visualization version GIF version |
Description: A normed ring is a ring with a norm that makes it into a normed group, and such that the norm is an absolute value on the ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
isnrg.1 | ⊢ 𝑁 = (norm‘𝑅) |
isnrg.2 | ⊢ 𝐴 = (AbsVal‘𝑅) |
Ref | Expression |
---|---|
isnrg | ⊢ (𝑅 ∈ NrmRing ↔ (𝑅 ∈ NrmGrp ∧ 𝑁 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6804 | . . . 4 ⊢ (𝑟 = 𝑅 → (norm‘𝑟) = (norm‘𝑅)) | |
2 | isnrg.1 | . . . 4 ⊢ 𝑁 = (norm‘𝑅) | |
3 | 1, 2 | eqtr4di 2794 | . . 3 ⊢ (𝑟 = 𝑅 → (norm‘𝑟) = 𝑁) |
4 | fveq2 6804 | . . . 4 ⊢ (𝑟 = 𝑅 → (AbsVal‘𝑟) = (AbsVal‘𝑅)) | |
5 | isnrg.2 | . . . 4 ⊢ 𝐴 = (AbsVal‘𝑅) | |
6 | 4, 5 | eqtr4di 2794 | . . 3 ⊢ (𝑟 = 𝑅 → (AbsVal‘𝑟) = 𝐴) |
7 | 3, 6 | eleq12d 2831 | . 2 ⊢ (𝑟 = 𝑅 → ((norm‘𝑟) ∈ (AbsVal‘𝑟) ↔ 𝑁 ∈ 𝐴)) |
8 | df-nrg 23786 | . 2 ⊢ NrmRing = {𝑟 ∈ NrmGrp ∣ (norm‘𝑟) ∈ (AbsVal‘𝑟)} | |
9 | 7, 8 | elrab2 3632 | 1 ⊢ (𝑅 ∈ NrmRing ↔ (𝑅 ∈ NrmGrp ∧ 𝑁 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ‘cfv 6458 AbsValcabv 20121 normcnm 23777 NrmGrpcngp 23778 NrmRingcnrg 23780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-iota 6410 df-fv 6466 df-nrg 23786 |
This theorem is referenced by: nrgabv 23870 nrgngp 23871 subrgnrg 23882 tngnrg 23883 cnnrg 23989 zhmnrg 31962 |
Copyright terms: Public domain | W3C validator |