Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isnrg | Structured version Visualization version GIF version |
Description: A normed ring is a ring with a norm that makes it into a normed group, and such that the norm is an absolute value on the ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
isnrg.1 | ⊢ 𝑁 = (norm‘𝑅) |
isnrg.2 | ⊢ 𝐴 = (AbsVal‘𝑅) |
Ref | Expression |
---|---|
isnrg | ⊢ (𝑅 ∈ NrmRing ↔ (𝑅 ∈ NrmGrp ∧ 𝑁 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6768 | . . . 4 ⊢ (𝑟 = 𝑅 → (norm‘𝑟) = (norm‘𝑅)) | |
2 | isnrg.1 | . . . 4 ⊢ 𝑁 = (norm‘𝑅) | |
3 | 1, 2 | eqtr4di 2797 | . . 3 ⊢ (𝑟 = 𝑅 → (norm‘𝑟) = 𝑁) |
4 | fveq2 6768 | . . . 4 ⊢ (𝑟 = 𝑅 → (AbsVal‘𝑟) = (AbsVal‘𝑅)) | |
5 | isnrg.2 | . . . 4 ⊢ 𝐴 = (AbsVal‘𝑅) | |
6 | 4, 5 | eqtr4di 2797 | . . 3 ⊢ (𝑟 = 𝑅 → (AbsVal‘𝑟) = 𝐴) |
7 | 3, 6 | eleq12d 2834 | . 2 ⊢ (𝑟 = 𝑅 → ((norm‘𝑟) ∈ (AbsVal‘𝑟) ↔ 𝑁 ∈ 𝐴)) |
8 | df-nrg 23722 | . 2 ⊢ NrmRing = {𝑟 ∈ NrmGrp ∣ (norm‘𝑟) ∈ (AbsVal‘𝑟)} | |
9 | 7, 8 | elrab2 3628 | 1 ⊢ (𝑅 ∈ NrmRing ↔ (𝑅 ∈ NrmGrp ∧ 𝑁 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ‘cfv 6430 AbsValcabv 20057 normcnm 23713 NrmGrpcngp 23714 NrmRingcnrg 23716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-iota 6388 df-fv 6438 df-nrg 23722 |
This theorem is referenced by: nrgabv 23806 nrgngp 23807 subrgnrg 23818 tngnrg 23819 cnnrg 23925 zhmnrg 31896 |
Copyright terms: Public domain | W3C validator |