![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isnrg | Structured version Visualization version GIF version |
Description: A normed ring is a ring with a norm that makes it into a normed group, and such that the norm is an absolute value on the ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
isnrg.1 | ⊢ 𝑁 = (norm‘𝑅) |
isnrg.2 | ⊢ 𝐴 = (AbsVal‘𝑅) |
Ref | Expression |
---|---|
isnrg | ⊢ (𝑅 ∈ NrmRing ↔ (𝑅 ∈ NrmGrp ∧ 𝑁 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . . 4 ⊢ (𝑟 = 𝑅 → (norm‘𝑟) = (norm‘𝑅)) | |
2 | isnrg.1 | . . . 4 ⊢ 𝑁 = (norm‘𝑅) | |
3 | 1, 2 | eqtr4di 2798 | . . 3 ⊢ (𝑟 = 𝑅 → (norm‘𝑟) = 𝑁) |
4 | fveq2 6920 | . . . 4 ⊢ (𝑟 = 𝑅 → (AbsVal‘𝑟) = (AbsVal‘𝑅)) | |
5 | isnrg.2 | . . . 4 ⊢ 𝐴 = (AbsVal‘𝑅) | |
6 | 4, 5 | eqtr4di 2798 | . . 3 ⊢ (𝑟 = 𝑅 → (AbsVal‘𝑟) = 𝐴) |
7 | 3, 6 | eleq12d 2838 | . 2 ⊢ (𝑟 = 𝑅 → ((norm‘𝑟) ∈ (AbsVal‘𝑟) ↔ 𝑁 ∈ 𝐴)) |
8 | df-nrg 24619 | . 2 ⊢ NrmRing = {𝑟 ∈ NrmGrp ∣ (norm‘𝑟) ∈ (AbsVal‘𝑟)} | |
9 | 7, 8 | elrab2 3711 | 1 ⊢ (𝑅 ∈ NrmRing ↔ (𝑅 ∈ NrmGrp ∧ 𝑁 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 AbsValcabv 20831 normcnm 24610 NrmGrpcngp 24611 NrmRingcnrg 24613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-nrg 24619 |
This theorem is referenced by: nrgabv 24703 nrgngp 24704 subrgnrg 24715 tngnrg 24716 cnnrg 24822 zhmnrg 33913 |
Copyright terms: Public domain | W3C validator |