Detailed syntax breakdown of Definition df-nrm
| Step | Hyp | Ref
| Expression |
| 1 | | cnrm 23318 |
. 2
class
Nrm |
| 2 | | vy |
. . . . . . . . 9
setvar 𝑦 |
| 3 | 2 | cv 1539 |
. . . . . . . 8
class 𝑦 |
| 4 | | vz |
. . . . . . . . 9
setvar 𝑧 |
| 5 | 4 | cv 1539 |
. . . . . . . 8
class 𝑧 |
| 6 | 3, 5 | wss 3951 |
. . . . . . 7
wff 𝑦 ⊆ 𝑧 |
| 7 | | vj |
. . . . . . . . . . 11
setvar 𝑗 |
| 8 | 7 | cv 1539 |
. . . . . . . . . 10
class 𝑗 |
| 9 | | ccl 23026 |
. . . . . . . . . 10
class
cls |
| 10 | 8, 9 | cfv 6561 |
. . . . . . . . 9
class
(cls‘𝑗) |
| 11 | 5, 10 | cfv 6561 |
. . . . . . . 8
class
((cls‘𝑗)‘𝑧) |
| 12 | | vx |
. . . . . . . . 9
setvar 𝑥 |
| 13 | 12 | cv 1539 |
. . . . . . . 8
class 𝑥 |
| 14 | 11, 13 | wss 3951 |
. . . . . . 7
wff
((cls‘𝑗)‘𝑧) ⊆ 𝑥 |
| 15 | 6, 14 | wa 395 |
. . . . . 6
wff (𝑦 ⊆ 𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥) |
| 16 | 15, 4, 8 | wrex 3070 |
. . . . 5
wff
∃𝑧 ∈
𝑗 (𝑦 ⊆ 𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥) |
| 17 | | ccld 23024 |
. . . . . . 7
class
Clsd |
| 18 | 8, 17 | cfv 6561 |
. . . . . 6
class
(Clsd‘𝑗) |
| 19 | 13 | cpw 4600 |
. . . . . 6
class 𝒫
𝑥 |
| 20 | 18, 19 | cin 3950 |
. . . . 5
class
((Clsd‘𝑗)
∩ 𝒫 𝑥) |
| 21 | 16, 2, 20 | wral 3061 |
. . . 4
wff
∀𝑦 ∈
((Clsd‘𝑗) ∩
𝒫 𝑥)∃𝑧 ∈ 𝑗 (𝑦 ⊆ 𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥) |
| 22 | 21, 12, 8 | wral 3061 |
. . 3
wff
∀𝑥 ∈
𝑗 ∀𝑦 ∈ ((Clsd‘𝑗) ∩ 𝒫 𝑥)∃𝑧 ∈ 𝑗 (𝑦 ⊆ 𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥) |
| 23 | | ctop 22899 |
. . 3
class
Top |
| 24 | 22, 7, 23 | crab 3436 |
. 2
class {𝑗 ∈ Top ∣
∀𝑥 ∈ 𝑗 ∀𝑦 ∈ ((Clsd‘𝑗) ∩ 𝒫 𝑥)∃𝑧 ∈ 𝑗 (𝑦 ⊆ 𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥)} |
| 25 | 1, 24 | wceq 1540 |
1
wff Nrm =
{𝑗 ∈ Top ∣
∀𝑥 ∈ 𝑗 ∀𝑦 ∈ ((Clsd‘𝑗) ∩ 𝒫 𝑥)∃𝑧 ∈ 𝑗 (𝑦 ⊆ 𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥)} |