Detailed syntax breakdown of Definition df-nrm
Step | Hyp | Ref
| Expression |
1 | | cnrm 22461 |
. 2
class
Nrm |
2 | | vy |
. . . . . . . . 9
setvar 𝑦 |
3 | 2 | cv 1538 |
. . . . . . . 8
class 𝑦 |
4 | | vz |
. . . . . . . . 9
setvar 𝑧 |
5 | 4 | cv 1538 |
. . . . . . . 8
class 𝑧 |
6 | 3, 5 | wss 3887 |
. . . . . . 7
wff 𝑦 ⊆ 𝑧 |
7 | | vj |
. . . . . . . . . . 11
setvar 𝑗 |
8 | 7 | cv 1538 |
. . . . . . . . . 10
class 𝑗 |
9 | | ccl 22169 |
. . . . . . . . . 10
class
cls |
10 | 8, 9 | cfv 6433 |
. . . . . . . . 9
class
(cls‘𝑗) |
11 | 5, 10 | cfv 6433 |
. . . . . . . 8
class
((cls‘𝑗)‘𝑧) |
12 | | vx |
. . . . . . . . 9
setvar 𝑥 |
13 | 12 | cv 1538 |
. . . . . . . 8
class 𝑥 |
14 | 11, 13 | wss 3887 |
. . . . . . 7
wff
((cls‘𝑗)‘𝑧) ⊆ 𝑥 |
15 | 6, 14 | wa 396 |
. . . . . 6
wff (𝑦 ⊆ 𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥) |
16 | 15, 4, 8 | wrex 3065 |
. . . . 5
wff
∃𝑧 ∈
𝑗 (𝑦 ⊆ 𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥) |
17 | | ccld 22167 |
. . . . . . 7
class
Clsd |
18 | 8, 17 | cfv 6433 |
. . . . . 6
class
(Clsd‘𝑗) |
19 | 13 | cpw 4533 |
. . . . . 6
class 𝒫
𝑥 |
20 | 18, 19 | cin 3886 |
. . . . 5
class
((Clsd‘𝑗)
∩ 𝒫 𝑥) |
21 | 16, 2, 20 | wral 3064 |
. . . 4
wff
∀𝑦 ∈
((Clsd‘𝑗) ∩
𝒫 𝑥)∃𝑧 ∈ 𝑗 (𝑦 ⊆ 𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥) |
22 | 21, 12, 8 | wral 3064 |
. . 3
wff
∀𝑥 ∈
𝑗 ∀𝑦 ∈ ((Clsd‘𝑗) ∩ 𝒫 𝑥)∃𝑧 ∈ 𝑗 (𝑦 ⊆ 𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥) |
23 | | ctop 22042 |
. . 3
class
Top |
24 | 22, 7, 23 | crab 3068 |
. 2
class {𝑗 ∈ Top ∣
∀𝑥 ∈ 𝑗 ∀𝑦 ∈ ((Clsd‘𝑗) ∩ 𝒫 𝑥)∃𝑧 ∈ 𝑗 (𝑦 ⊆ 𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥)} |
25 | 1, 24 | wceq 1539 |
1
wff Nrm =
{𝑗 ∈ Top ∣
∀𝑥 ∈ 𝑗 ∀𝑦 ∈ ((Clsd‘𝑗) ∩ 𝒫 𝑥)∃𝑧 ∈ 𝑗 (𝑦 ⊆ 𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥)} |