Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isnrm | Structured version Visualization version GIF version |
Description: The predicate "is a normal space." Much like the case for regular spaces, normal does not imply Hausdorff or even regular. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
isnrm | ⊢ (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥)∃𝑧 ∈ 𝐽 (𝑦 ⊆ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6825 | . . . . 5 ⊢ (𝑗 = 𝐽 → (Clsd‘𝑗) = (Clsd‘𝐽)) | |
2 | 1 | ineq1d 4158 | . . . 4 ⊢ (𝑗 = 𝐽 → ((Clsd‘𝑗) ∩ 𝒫 𝑥) = ((Clsd‘𝐽) ∩ 𝒫 𝑥)) |
3 | fveq2 6825 | . . . . . . . 8 ⊢ (𝑗 = 𝐽 → (cls‘𝑗) = (cls‘𝐽)) | |
4 | 3 | fveq1d 6827 | . . . . . . 7 ⊢ (𝑗 = 𝐽 → ((cls‘𝑗)‘𝑧) = ((cls‘𝐽)‘𝑧)) |
5 | 4 | sseq1d 3963 | . . . . . 6 ⊢ (𝑗 = 𝐽 → (((cls‘𝑗)‘𝑧) ⊆ 𝑥 ↔ ((cls‘𝐽)‘𝑧) ⊆ 𝑥)) |
6 | 5 | anbi2d 629 | . . . . 5 ⊢ (𝑗 = 𝐽 → ((𝑦 ⊆ 𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥) ↔ (𝑦 ⊆ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))) |
7 | 6 | rexeqbi1dv 3304 | . . . 4 ⊢ (𝑗 = 𝐽 → (∃𝑧 ∈ 𝑗 (𝑦 ⊆ 𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥) ↔ ∃𝑧 ∈ 𝐽 (𝑦 ⊆ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))) |
8 | 2, 7 | raleqbidv 3315 | . . 3 ⊢ (𝑗 = 𝐽 → (∀𝑦 ∈ ((Clsd‘𝑗) ∩ 𝒫 𝑥)∃𝑧 ∈ 𝑗 (𝑦 ⊆ 𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥) ↔ ∀𝑦 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥)∃𝑧 ∈ 𝐽 (𝑦 ⊆ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))) |
9 | 8 | raleqbi1dv 3303 | . 2 ⊢ (𝑗 = 𝐽 → (∀𝑥 ∈ 𝑗 ∀𝑦 ∈ ((Clsd‘𝑗) ∩ 𝒫 𝑥)∃𝑧 ∈ 𝑗 (𝑦 ⊆ 𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥) ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥)∃𝑧 ∈ 𝐽 (𝑦 ⊆ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))) |
10 | df-nrm 22574 | . 2 ⊢ Nrm = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ ((Clsd‘𝑗) ∩ 𝒫 𝑥)∃𝑧 ∈ 𝑗 (𝑦 ⊆ 𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥)} | |
11 | 9, 10 | elrab2 3637 | 1 ⊢ (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥)∃𝑧 ∈ 𝐽 (𝑦 ⊆ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ∃wrex 3070 ∩ cin 3897 ⊆ wss 3898 𝒫 cpw 4547 ‘cfv 6479 Topctop 22148 Clsdccld 22273 clsccl 22275 Nrmcnrm 22567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-iota 6431 df-fv 6487 df-nrm 22574 |
This theorem is referenced by: nrmtop 22593 nrmsep3 22612 isnrm2 22615 kqnrmlem1 23000 kqnrmlem2 23001 nrmhmph 23051 |
Copyright terms: Public domain | W3C validator |