MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnrm Structured version   Visualization version   GIF version

Theorem isnrm 23364
Description: The predicate "is a normal space." Much like the case for regular spaces, normal does not imply Hausdorff or even regular. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
isnrm (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥)∃𝑧𝐽 (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐽

Proof of Theorem isnrm
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6920 . . . . 5 (𝑗 = 𝐽 → (Clsd‘𝑗) = (Clsd‘𝐽))
21ineq1d 4240 . . . 4 (𝑗 = 𝐽 → ((Clsd‘𝑗) ∩ 𝒫 𝑥) = ((Clsd‘𝐽) ∩ 𝒫 𝑥))
3 fveq2 6920 . . . . . . . 8 (𝑗 = 𝐽 → (cls‘𝑗) = (cls‘𝐽))
43fveq1d 6922 . . . . . . 7 (𝑗 = 𝐽 → ((cls‘𝑗)‘𝑧) = ((cls‘𝐽)‘𝑧))
54sseq1d 4040 . . . . . 6 (𝑗 = 𝐽 → (((cls‘𝑗)‘𝑧) ⊆ 𝑥 ↔ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))
65anbi2d 629 . . . . 5 (𝑗 = 𝐽 → ((𝑦𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥) ↔ (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥)))
76rexeqbi1dv 3347 . . . 4 (𝑗 = 𝐽 → (∃𝑧𝑗 (𝑦𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥) ↔ ∃𝑧𝐽 (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥)))
82, 7raleqbidv 3354 . . 3 (𝑗 = 𝐽 → (∀𝑦 ∈ ((Clsd‘𝑗) ∩ 𝒫 𝑥)∃𝑧𝑗 (𝑦𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥) ↔ ∀𝑦 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥)∃𝑧𝐽 (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥)))
98raleqbi1dv 3346 . 2 (𝑗 = 𝐽 → (∀𝑥𝑗𝑦 ∈ ((Clsd‘𝑗) ∩ 𝒫 𝑥)∃𝑧𝑗 (𝑦𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥) ↔ ∀𝑥𝐽𝑦 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥)∃𝑧𝐽 (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥)))
10 df-nrm 23346 . 2 Nrm = {𝑗 ∈ Top ∣ ∀𝑥𝑗𝑦 ∈ ((Clsd‘𝑗) ∩ 𝒫 𝑥)∃𝑧𝑗 (𝑦𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥)}
119, 10elrab2 3711 1 (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥)∃𝑧𝐽 (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  cin 3975  wss 3976  𝒫 cpw 4622  cfv 6573  Topctop 22920  Clsdccld 23045  clsccl 23047  Nrmcnrm 23339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-nrm 23346
This theorem is referenced by:  nrmtop  23365  nrmsep3  23384  isnrm2  23387  kqnrmlem1  23772  kqnrmlem2  23773  nrmhmph  23823
  Copyright terms: Public domain W3C validator