Detailed syntax breakdown of Definition df-nsg
| Step | Hyp | Ref
| Expression |
| 1 | | cnsg 19113 |
. 2
class
NrmSGrp |
| 2 | | vw |
. . 3
setvar 𝑤 |
| 3 | | cgrp 18925 |
. . 3
class
Grp |
| 4 | | vx |
. . . . . . . . . . . 12
setvar 𝑥 |
| 5 | 4 | cv 1538 |
. . . . . . . . . . 11
class 𝑥 |
| 6 | | vy |
. . . . . . . . . . . 12
setvar 𝑦 |
| 7 | 6 | cv 1538 |
. . . . . . . . . . 11
class 𝑦 |
| 8 | | vp |
. . . . . . . . . . . 12
setvar 𝑝 |
| 9 | 8 | cv 1538 |
. . . . . . . . . . 11
class 𝑝 |
| 10 | 5, 7, 9 | co 7414 |
. . . . . . . . . 10
class (𝑥𝑝𝑦) |
| 11 | | vs |
. . . . . . . . . . 11
setvar 𝑠 |
| 12 | 11 | cv 1538 |
. . . . . . . . . 10
class 𝑠 |
| 13 | 10, 12 | wcel 2107 |
. . . . . . . . 9
wff (𝑥𝑝𝑦) ∈ 𝑠 |
| 14 | 7, 5, 9 | co 7414 |
. . . . . . . . . 10
class (𝑦𝑝𝑥) |
| 15 | 14, 12 | wcel 2107 |
. . . . . . . . 9
wff (𝑦𝑝𝑥) ∈ 𝑠 |
| 16 | 13, 15 | wb 206 |
. . . . . . . 8
wff ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) |
| 17 | | vb |
. . . . . . . . 9
setvar 𝑏 |
| 18 | 17 | cv 1538 |
. . . . . . . 8
class 𝑏 |
| 19 | 16, 6, 18 | wral 3050 |
. . . . . . 7
wff
∀𝑦 ∈
𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) |
| 20 | 19, 4, 18 | wral 3050 |
. . . . . 6
wff
∀𝑥 ∈
𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) |
| 21 | 2 | cv 1538 |
. . . . . . 7
class 𝑤 |
| 22 | | cplusg 17277 |
. . . . . . 7
class
+g |
| 23 | 21, 22 | cfv 6542 |
. . . . . 6
class
(+g‘𝑤) |
| 24 | 20, 8, 23 | wsbc 3772 |
. . . . 5
wff
[(+g‘𝑤) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) |
| 25 | | cbs 17230 |
. . . . . 6
class
Base |
| 26 | 21, 25 | cfv 6542 |
. . . . 5
class
(Base‘𝑤) |
| 27 | 24, 17, 26 | wsbc 3772 |
. . . 4
wff
[(Base‘𝑤) / 𝑏][(+g‘𝑤) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) |
| 28 | | csubg 19112 |
. . . . 5
class
SubGrp |
| 29 | 21, 28 | cfv 6542 |
. . . 4
class
(SubGrp‘𝑤) |
| 30 | 27, 11, 29 | crab 3420 |
. . 3
class {𝑠 ∈ (SubGrp‘𝑤) ∣
[(Base‘𝑤) /
𝑏][(+g‘𝑤) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠)} |
| 31 | 2, 3, 30 | cmpt 5207 |
. 2
class (𝑤 ∈ Grp ↦ {𝑠 ∈ (SubGrp‘𝑤) ∣
[(Base‘𝑤) /
𝑏][(+g‘𝑤) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠)}) |
| 32 | 1, 31 | wceq 1539 |
1
wff NrmSGrp =
(𝑤 ∈ Grp ↦
{𝑠 ∈
(SubGrp‘𝑤) ∣
[(Base‘𝑤) /
𝑏][(+g‘𝑤) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠)}) |