Detailed syntax breakdown of Definition df-nsg
Step | Hyp | Ref
| Expression |
1 | | cnsg 18665 |
. 2
class
NrmSGrp |
2 | | vw |
. . 3
setvar 𝑤 |
3 | | cgrp 18492 |
. . 3
class
Grp |
4 | | vx |
. . . . . . . . . . . 12
setvar 𝑥 |
5 | 4 | cv 1538 |
. . . . . . . . . . 11
class 𝑥 |
6 | | vy |
. . . . . . . . . . . 12
setvar 𝑦 |
7 | 6 | cv 1538 |
. . . . . . . . . . 11
class 𝑦 |
8 | | vp |
. . . . . . . . . . . 12
setvar 𝑝 |
9 | 8 | cv 1538 |
. . . . . . . . . . 11
class 𝑝 |
10 | 5, 7, 9 | co 7255 |
. . . . . . . . . 10
class (𝑥𝑝𝑦) |
11 | | vs |
. . . . . . . . . . 11
setvar 𝑠 |
12 | 11 | cv 1538 |
. . . . . . . . . 10
class 𝑠 |
13 | 10, 12 | wcel 2108 |
. . . . . . . . 9
wff (𝑥𝑝𝑦) ∈ 𝑠 |
14 | 7, 5, 9 | co 7255 |
. . . . . . . . . 10
class (𝑦𝑝𝑥) |
15 | 14, 12 | wcel 2108 |
. . . . . . . . 9
wff (𝑦𝑝𝑥) ∈ 𝑠 |
16 | 13, 15 | wb 205 |
. . . . . . . 8
wff ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) |
17 | | vb |
. . . . . . . . 9
setvar 𝑏 |
18 | 17 | cv 1538 |
. . . . . . . 8
class 𝑏 |
19 | 16, 6, 18 | wral 3063 |
. . . . . . 7
wff
∀𝑦 ∈
𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) |
20 | 19, 4, 18 | wral 3063 |
. . . . . 6
wff
∀𝑥 ∈
𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) |
21 | 2 | cv 1538 |
. . . . . . 7
class 𝑤 |
22 | | cplusg 16888 |
. . . . . . 7
class
+g |
23 | 21, 22 | cfv 6418 |
. . . . . 6
class
(+g‘𝑤) |
24 | 20, 8, 23 | wsbc 3711 |
. . . . 5
wff
[(+g‘𝑤) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) |
25 | | cbs 16840 |
. . . . . 6
class
Base |
26 | 21, 25 | cfv 6418 |
. . . . 5
class
(Base‘𝑤) |
27 | 24, 17, 26 | wsbc 3711 |
. . . 4
wff
[(Base‘𝑤) / 𝑏][(+g‘𝑤) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) |
28 | | csubg 18664 |
. . . . 5
class
SubGrp |
29 | 21, 28 | cfv 6418 |
. . . 4
class
(SubGrp‘𝑤) |
30 | 27, 11, 29 | crab 3067 |
. . 3
class {𝑠 ∈ (SubGrp‘𝑤) ∣
[(Base‘𝑤) /
𝑏][(+g‘𝑤) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠)} |
31 | 2, 3, 30 | cmpt 5153 |
. 2
class (𝑤 ∈ Grp ↦ {𝑠 ∈ (SubGrp‘𝑤) ∣
[(Base‘𝑤) /
𝑏][(+g‘𝑤) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠)}) |
32 | 1, 31 | wceq 1539 |
1
wff NrmSGrp =
(𝑤 ∈ Grp ↦
{𝑠 ∈
(SubGrp‘𝑤) ∣
[(Base‘𝑤) /
𝑏][(+g‘𝑤) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠)}) |