Home | Metamath
Proof Explorer Theorem List (p. 191 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | pmtrdifellem3 19001* | Lemma 3 for pmtrdifel 19003. (Contributed by AV, 15-Jan-2019.) |
⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) & ⊢ 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ⇒ ⊢ (𝑄 ∈ 𝑇 → ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑥) = (𝑆‘𝑥)) | ||
Theorem | pmtrdifellem4 19002 | Lemma 4 for pmtrdifel 19003. (Contributed by AV, 28-Jan-2019.) |
⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) & ⊢ 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ⇒ ⊢ ((𝑄 ∈ 𝑇 ∧ 𝐾 ∈ 𝑁) → (𝑆‘𝐾) = 𝐾) | ||
Theorem | pmtrdifel 19003* | A transposition of elements of a set without a special element corresponds to a transposition of elements of the set. (Contributed by AV, 15-Jan-2019.) |
⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) ⇒ ⊢ ∀𝑡 ∈ 𝑇 ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡‘𝑥) = (𝑟‘𝑥) | ||
Theorem | pmtrdifwrdellem1 19004* | Lemma 1 for pmtrdifwrdel 19008. (Contributed by AV, 15-Jan-2019.) |
⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) & ⊢ 𝑈 = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I ))) ⇒ ⊢ (𝑊 ∈ Word 𝑇 → 𝑈 ∈ Word 𝑅) | ||
Theorem | pmtrdifwrdellem2 19005* | Lemma 2 for pmtrdifwrdel 19008. (Contributed by AV, 15-Jan-2019.) |
⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) & ⊢ 𝑈 = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I ))) ⇒ ⊢ (𝑊 ∈ Word 𝑇 → (♯‘𝑊) = (♯‘𝑈)) | ||
Theorem | pmtrdifwrdellem3 19006* | Lemma 3 for pmtrdifwrdel 19008. (Contributed by AV, 15-Jan-2019.) |
⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) & ⊢ 𝑈 = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I ))) ⇒ ⊢ (𝑊 ∈ Word 𝑇 → ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)) | ||
Theorem | pmtrdifwrdel2lem1 19007* | Lemma 1 for pmtrdifwrdel2 19009. (Contributed by AV, 31-Jan-2019.) |
⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) & ⊢ 𝑈 = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I ))) ⇒ ⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈‘𝑖)‘𝐾) = 𝐾) | ||
Theorem | pmtrdifwrdel 19008* | A sequence of transpositions of elements of a set without a special element corresponds to a sequence of transpositions of elements of the set. (Contributed by AV, 15-Jan-2019.) |
⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) ⇒ ⊢ ∀𝑤 ∈ Word 𝑇∃𝑢 ∈ Word 𝑅((♯‘𝑤) = (♯‘𝑢) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤‘𝑖)‘𝑥) = ((𝑢‘𝑖)‘𝑥)) | ||
Theorem | pmtrdifwrdel2 19009* | A sequence of transpositions of elements of a set without a special element corresponds to a sequence of transpositions of elements of the set not moving the special element. (Contributed by AV, 31-Jan-2019.) |
⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) ⇒ ⊢ (𝐾 ∈ 𝑁 → ∀𝑤 ∈ Word 𝑇∃𝑢 ∈ Word 𝑅((♯‘𝑤) = (♯‘𝑢) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))(((𝑢‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤‘𝑖)‘𝑥) = ((𝑢‘𝑖)‘𝑥)))) | ||
Theorem | pmtrprfval 19010* | The transpositions on a pair. (Contributed by AV, 9-Dec-2018.) |
⊢ (pmTrsp‘{1, 2}) = (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))) | ||
Theorem | pmtrprfvalrn 19011 | The range of the transpositions on a pair is actually a singleton: the transposition of the two elements of the pair. (Contributed by AV, 9-Dec-2018.) |
⊢ ran (pmTrsp‘{1, 2}) = {{〈1, 2〉, 〈2, 1〉}} | ||
Syntax | cpsgn 19012 | Syntax for the sign of a permutation. |
class pmSgn | ||
Syntax | cevpm 19013 | Syntax for even permutations. |
class pmEven | ||
Definition | df-psgn 19014* | Define a function which takes the value 1 for even permutations and -1 for odd. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
⊢ pmSgn = (𝑑 ∈ V ↦ (𝑥 ∈ {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} ↦ (℩𝑠∃𝑤 ∈ Word ran (pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))) | ||
Definition | df-evpm 19015 | Define the set of even permutations on a given set. (Contributed by Stefan O'Rear, 9-Jul-2018.) |
⊢ pmEven = (𝑑 ∈ V ↦ (◡(pmSgn‘𝑑) “ {1})) | ||
Theorem | psgnunilem1 19016* | Lemma for psgnuni 19022. Given two consequtive transpositions in a representation of a permutation, either they are equal and therefore equivalent to the identity, or they are not and it is possible to commute them such that a chosen point in the left transposition is preserved in the right. By repeating this process, a point can be removed from a representation of the identity. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝑃 ∈ 𝑇) & ⊢ (𝜑 → 𝑄 ∈ 𝑇) & ⊢ (𝜑 → 𝐴 ∈ dom (𝑃 ∖ I )) ⇒ ⊢ (𝜑 → ((𝑃 ∘ 𝑄) = ( I ↾ 𝐷) ∨ ∃𝑟 ∈ 𝑇 ∃𝑠 ∈ 𝑇 ((𝑃 ∘ 𝑄) = (𝑟 ∘ 𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) | ||
Theorem | psgnunilem5 19017* | Lemma for psgnuni 19022. It is impossible to shift a transposition off the end because if the active transposition is at the right end, it is the only transposition moving 𝐴 in contradiction to this being a representation of the identity. (Contributed by Stefan O'Rear, 25-Aug-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Proof shortened by AV, 12-Oct-2022.) |
⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑇) & ⊢ (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷)) & ⊢ (𝜑 → (♯‘𝑊) = 𝐿) & ⊢ (𝜑 → 𝐼 ∈ (0..^𝐿)) & ⊢ (𝜑 → 𝐴 ∈ dom ((𝑊‘𝐼) ∖ I )) & ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊‘𝑘) ∖ I )) ⇒ ⊢ (𝜑 → (𝐼 + 1) ∈ (0..^𝐿)) | ||
Theorem | psgnunilem2 19018* | Lemma for psgnuni 19022. Induction step for moving a transposition as far to the right as possible. (Contributed by Stefan O'Rear, 24-Aug-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) |
⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑇) & ⊢ (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷)) & ⊢ (𝜑 → (♯‘𝑊) = 𝐿) & ⊢ (𝜑 → 𝐼 ∈ (0..^𝐿)) & ⊢ (𝜑 → 𝐴 ∈ dom ((𝑊‘𝐼) ∖ I )) & ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊‘𝑘) ∖ I )) & ⊢ (𝜑 → ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = (𝐿 − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) ⇒ ⊢ (𝜑 → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom ((𝑤‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom ((𝑤‘𝑗) ∖ I )))) | ||
Theorem | psgnunilem3 19019* | Lemma for psgnuni 19022. Any nonempty representation of the identity can be incrementally transformed into a representation two shorter. (Contributed by Stefan O'Rear, 25-Aug-2015.) |
⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑇) & ⊢ (𝜑 → (♯‘𝑊) = 𝐿) & ⊢ (𝜑 → (♯‘𝑊) ∈ ℕ) & ⊢ (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷)) & ⊢ (𝜑 → ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = (𝐿 − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) ⇒ ⊢ ¬ 𝜑 | ||
Theorem | psgnunilem4 19020 | Lemma for psgnuni 19022. An odd-length representation of the identity is impossible, as it could be repeatedly shortened to a length of 1, but a length 1 permutation must be a transposition. (Contributed by Stefan O'Rear, 25-Aug-2015.) |
⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑇) & ⊢ (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷)) ⇒ ⊢ (𝜑 → (-1↑(♯‘𝑊)) = 1) | ||
Theorem | m1expaddsub 19021 | Addition and subtraction of parities are the same. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋 − 𝑌)) = (-1↑(𝑋 + 𝑌))) | ||
Theorem | psgnuni 19022 | If the same permutation can be written in more than one way as a product of transpositions, the parity of those products must agree; otherwise the product of one with the inverse of the other would be an odd representation of the identity. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑇) & ⊢ (𝜑 → 𝑋 ∈ Word 𝑇) & ⊢ (𝜑 → (𝐺 Σg 𝑊) = (𝐺 Σg 𝑋)) ⇒ ⊢ (𝜑 → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑋))) | ||
Theorem | psgnfval 19023* | Function definition of the permutation sign function. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐹 = {𝑝 ∈ 𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin} & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ 𝑁 = (𝑥 ∈ 𝐹 ↦ (℩𝑠∃𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) | ||
Theorem | psgnfn 19024* | Functionality and domain of the permutation sign function. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐹 = {𝑝 ∈ 𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin} & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ 𝑁 Fn 𝐹 | ||
Theorem | psgndmsubg 19025 | The finitary permutations are a subgroup. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ (𝐷 ∈ 𝑉 → dom 𝑁 ∈ (SubGrp‘𝐺)) | ||
Theorem | psgneldm 19026 | Property of being a finitary permutation. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝑃 ∈ dom 𝑁 ↔ (𝑃 ∈ 𝐵 ∧ dom (𝑃 ∖ I ) ∈ Fin)) | ||
Theorem | psgneldm2 19027* | The finitary permutations are the span of the transpositions. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ (𝐷 ∈ 𝑉 → (𝑃 ∈ dom 𝑁 ↔ ∃𝑤 ∈ Word 𝑇𝑃 = (𝐺 Σg 𝑤))) | ||
Theorem | psgneldm2i 19028 | A sequence of transpositions describes a finitary permutation. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (𝐺 Σg 𝑊) ∈ dom 𝑁) | ||
Theorem | psgneu 19029* | A finitary permutation has exactly one parity. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ (𝑃 ∈ dom 𝑁 → ∃!𝑠∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) | ||
Theorem | psgnval 19030* | Value of the permutation sign function. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ (𝑃 ∈ dom 𝑁 → (𝑁‘𝑃) = (℩𝑠∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) | ||
Theorem | psgnvali 19031* | A finitary permutation has at least one representation for its parity. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ (𝑃 ∈ dom 𝑁 → ∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ (𝑁‘𝑃) = (-1↑(♯‘𝑤)))) | ||
Theorem | psgnvalii 19032 | Any representation of a permutation is length matching the permutation sign. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (𝑁‘(𝐺 Σg 𝑊)) = (-1↑(♯‘𝑊))) | ||
Theorem | psgnpmtr 19033 | All transpositions are odd. (Contributed by Stefan O'Rear, 29-Aug-2015.) |
⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ (𝑃 ∈ 𝑇 → (𝑁‘𝑃) = -1) | ||
Theorem | psgn0fv0 19034 | The permutation sign function for an empty set at an empty set is 1. (Contributed by AV, 27-Feb-2019.) |
⊢ ((pmSgn‘∅)‘∅) = 1 | ||
Theorem | sygbasnfpfi 19035 | The class of non-fixed points of a permutation of a finite set is finite. (Contributed by AV, 13-Jan-2019.) |
⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝑃 ∈ 𝐵) → dom (𝑃 ∖ I ) ∈ Fin) | ||
Theorem | psgnfvalfi 19036* | Function definition of the permutation sign function for permutations of finite sets. (Contributed by AV, 13-Jan-2019.) |
⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ (𝐷 ∈ Fin → 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑠∃𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))) | ||
Theorem | psgnvalfi 19037* | Value of the permutation sign function for permutations of finite sets. (Contributed by AV, 13-Jan-2019.) |
⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝑃 ∈ 𝐵) → (𝑁‘𝑃) = (℩𝑠∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) | ||
Theorem | psgnran 19038 | The range of the permutation sign function for finite permutations. (Contributed by AV, 1-Jan-2019.) |
⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑆‘𝑄) ∈ {1, -1}) | ||
Theorem | gsmtrcl 19039 | The group sum of transpositions of a finite set is a permutation, see also psgneldm2i 19028. (Contributed by AV, 19-Jan-2019.) |
⊢ 𝑆 = (SymGrp‘𝑁) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑇 = ran (pmTrsp‘𝑁) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑊 ∈ Word 𝑇) → (𝑆 Σg 𝑊) ∈ 𝐵) | ||
Theorem | psgnfitr 19040* | A permutation of a finite set is generated by transpositions. (Contributed by AV, 13-Jan-2019.) |
⊢ 𝐺 = (SymGrp‘𝑁) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑇 = ran (pmTrsp‘𝑁) ⇒ ⊢ (𝑁 ∈ Fin → (𝑄 ∈ 𝐵 ↔ ∃𝑤 ∈ Word 𝑇𝑄 = (𝐺 Σg 𝑤))) | ||
Theorem | psgnfieu 19041* | A permutation of a finite set has exactly one parity. (Contributed by AV, 13-Jan-2019.) |
⊢ 𝐺 = (SymGrp‘𝑁) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑇 = ran (pmTrsp‘𝑁) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝐵) → ∃!𝑠∃𝑤 ∈ Word 𝑇(𝑄 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) | ||
Theorem | pmtrsn 19042 | The value of the transposition generator function for a singleton is empty, i.e. there is no transposition for a singleton. This also holds for 𝐴 ∉ V, i.e. for the empty set {𝐴} = ∅ resulting in (pmTrsp‘∅) = ∅. (Contributed by AV, 6-Aug-2019.) |
⊢ (pmTrsp‘{𝐴}) = ∅ | ||
Theorem | psgnsn 19043 | The permutation sign function for a singleton. (Contributed by AV, 6-Aug-2019.) |
⊢ 𝐷 = {𝐴} & ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = 1) | ||
Theorem | psgnprfval 19044* | The permutation sign function for a pair. (Contributed by AV, 10-Dec-2018.) |
⊢ 𝐷 = {1, 2} & ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = (℩𝑠∃𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) | ||
Theorem | psgnprfval1 19045 | The permutation sign of the identity for a pair. (Contributed by AV, 11-Dec-2018.) |
⊢ 𝐷 = {1, 2} & ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ (𝑁‘{〈1, 1〉, 〈2, 2〉}) = 1 | ||
Theorem | psgnprfval2 19046 | The permutation sign of the transposition for a pair. (Contributed by AV, 10-Dec-2018.) |
⊢ 𝐷 = {1, 2} & ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ (𝑁‘{〈1, 2〉, 〈2, 1〉}) = -1 | ||
Syntax | cod 19047 | Extend class notation to include the order function on the elements of a group. |
class od | ||
Syntax | cgex 19048 | Extend class notation to include the order function on the elements of a group. |
class gEx | ||
Syntax | cpgp 19049 | Extend class notation to include the class of all p-groups. |
class pGrp | ||
Syntax | cslw 19050 | Extend class notation to include the class of all Sylow p-subgroups of a group. |
class pSyl | ||
Definition | df-od 19051* | Define the order of an element in a group. (Contributed by Mario Carneiro, 13-Jul-2014.) (Revised by Stefan O'Rear, 4-Sep-2015.) (Revised by AV, 5-Oct-2020.) |
⊢ od = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ ⦋{𝑛 ∈ ℕ ∣ (𝑛(.g‘𝑔)𝑥) = (0g‘𝑔)} / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))) | ||
Definition | df-gex 19052* | Define the exponent of a group. (Contributed by Mario Carneiro, 13-Jul-2014.) (Revised by Stefan O'Rear, 4-Sep-2015.) (Revised by AV, 26-Sep-2020.) |
⊢ gEx = (𝑔 ∈ V ↦ ⦋{𝑛 ∈ ℕ ∣ ∀𝑥 ∈ (Base‘𝑔)(𝑛(.g‘𝑔)𝑥) = (0g‘𝑔)} / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) | ||
Definition | df-pgp 19053* | Define the set of p-groups, which are groups such that every element has a power of 𝑝 as its order. (Contributed by Mario Carneiro, 15-Jan-2015.) (Revised by AV, 5-Oct-2020.) |
⊢ pGrp = {〈𝑝, 𝑔〉 ∣ ((𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp) ∧ ∀𝑥 ∈ (Base‘𝑔)∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝↑𝑛))} | ||
Definition | df-slw 19054* | Define the set of Sylow p-subgroups of a group 𝑔. A Sylow p-subgroup is a p-group that is not a subgroup of any other p-groups in 𝑔. (Contributed by Mario Carneiro, 16-Jan-2015.) |
⊢ pSyl = (𝑝 ∈ ℙ, 𝑔 ∈ Grp ↦ {ℎ ∈ (SubGrp‘𝑔) ∣ ∀𝑘 ∈ (SubGrp‘𝑔)((ℎ ⊆ 𝑘 ∧ 𝑝 pGrp (𝑔 ↾s 𝑘)) ↔ ℎ = 𝑘)}) | ||
Theorem | odfval 19055* | Value of the order function. For a shorter proof using ax-rep 5205, see odfvalALT 19056. (Contributed by Mario Carneiro, 13-Jul-2014.) (Revised by AV, 5-Oct-2020.) Remove dependency on ax-rep 5205. (Revised by Rohan Ridenour, 17-Aug-2023.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ 𝑂 = (𝑥 ∈ 𝑋 ↦ ⦋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) | ||
Theorem | odfvalALT 19056* | Shorter proof of odfval 19055 using ax-rep 5205. (Contributed by Mario Carneiro, 13-Jul-2014.) (Revised by AV, 5-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ 𝑂 = (𝑥 ∈ 𝑋 ↦ ⦋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) | ||
Theorem | odval 19057* | Second substitution for the group order definition. (Contributed by Mario Carneiro, 13-Jul-2014.) (Revised by Stefan O'Rear, 5-Sep-2015.) (Revised by AV, 5-Oct-2020.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐼 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ⇒ ⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))) | ||
Theorem | odlem1 19058* | The group element order is either zero or a nonzero multiplier that annihilates the element. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.) (Revised by AV, 5-Oct-2020.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐼 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ⇒ ⊢ (𝐴 ∈ 𝑋 → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)) | ||
Theorem | odcl 19059 | The order of a group element is always a nonnegative integer. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) ∈ ℕ0) | ||
Theorem | odf 19060 | Functionality of the group element order. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Proof shortened by AV, 5-Oct-2020.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ 𝑂:𝑋⟶ℕ0 | ||
Theorem | odid 19061 | Any element to the power of its order is the identity. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑋 → ((𝑂‘𝐴) · 𝐴) = 0 ) | ||
Theorem | odlem2 19062 | Any positive annihilator of a group element is an upper bound on the (positive) order of the element. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.) (Proof shortened by AV, 5-Oct-2020.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ ∧ (𝑁 · 𝐴) = 0 ) → (𝑂‘𝐴) ∈ (1...𝑁)) | ||
Theorem | odmodnn0 19063 | Reduce the argument of a group multiple by modding out the order of the element. (Contributed by Mario Carneiro, 23-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑁 mod (𝑂‘𝐴)) · 𝐴) = (𝑁 · 𝐴)) | ||
Theorem | mndodconglem 19064 | Lemma for mndodcong 19065. (Contributed by Mario Carneiro, 23-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 < (𝑂‘𝐴)) & ⊢ (𝜑 → 𝑁 < (𝑂‘𝐴)) & ⊢ (𝜑 → (𝑀 · 𝐴) = (𝑁 · 𝐴)) ⇒ ⊢ ((𝜑 ∧ 𝑀 ≤ 𝑁) → 𝑀 = 𝑁) | ||
Theorem | mndodcong 19065 | If two multipliers are congruent relative to the base point's order, the corresponding multiples are the same. (Contributed by Mario Carneiro, 23-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑂‘𝐴) ∥ (𝑀 − 𝑁) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴))) | ||
Theorem | mndodcongi 19066 | If two multipliers are congruent relative to the base point's order, the corresponding multiples are the same. For monoids, the reverse implication is false for elements with infinite order. For example, the powers of 2 mod 10 are 1,2,4,8,6,2,4,8,6,... so that the identity 1 never repeats, which is infinite order by our definition, yet other numbers like 6 appear many times in the sequence. (Contributed by Mario Carneiro, 23-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → ((𝑂‘𝐴) ∥ (𝑀 − 𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴))) | ||
Theorem | oddvdsnn0 19067 | The only multiples of 𝐴 that are equal to the identity are the multiples of the order of 𝐴. (Contributed by Mario Carneiro, 23-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → ((𝑂‘𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 )) | ||
Theorem | odnncl 19068 | If a nonzero multiple of an element is zero, the element has positive order. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Revised by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (𝑂‘𝐴) ∈ ℕ) | ||
Theorem | odmod 19069 | Reduce the argument of a group multiple by modding out the order of the element. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 6-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑁 mod (𝑂‘𝐴)) · 𝐴) = (𝑁 · 𝐴)) | ||
Theorem | oddvds 19070 | The only multiples of 𝐴 that are equal to the identity are the multiples of the order of 𝐴. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 23-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → ((𝑂‘𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 )) | ||
Theorem | oddvdsi 19071 | Any group element is annihilated by any multiple of its order. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Revised by Mario Carneiro, 23-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∥ 𝑁) → (𝑁 · 𝐴) = 0 ) | ||
Theorem | odcong 19072 | If two multipliers are congruent relative to the base point's order, the corresponding multiples are the same. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑂‘𝐴) ∥ (𝑀 − 𝑁) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴))) | ||
Theorem | odeq 19073* | The oddvds 19070 property uniquely defines the group order. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → (𝑁 = (𝑂‘𝐴) ↔ ∀𝑦 ∈ ℕ0 (𝑁 ∥ 𝑦 ↔ (𝑦 · 𝐴) = 0 ))) | ||
Theorem | odval2 19074* | A non-conditional definition of the group order. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) = (℩𝑥 ∈ ℕ0 ∀𝑦 ∈ ℕ0 (𝑥 ∥ 𝑦 ↔ (𝑦 · 𝐴) = 0 ))) | ||
Theorem | odcld 19075 | The order of a group element is always a nonnegative integer, deduction form of odcl 19059. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℕ0) | ||
Theorem | odmulgid 19076 | A relationship between the order of a multiple and the order of the basepoint. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((𝑂‘(𝑁 · 𝐴)) ∥ 𝐾 ↔ (𝑂‘𝐴) ∥ (𝐾 · 𝑁))) | ||
Theorem | odmulg2 19077 | The order of a multiple divides the order of the base point. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → (𝑂‘(𝑁 · 𝐴)) ∥ (𝑂‘𝐴)) | ||
Theorem | odmulg 19078 | Relationship between the order of an element and that of a multiple. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → (𝑂‘𝐴) = ((𝑁 gcd (𝑂‘𝐴)) · (𝑂‘(𝑁 · 𝐴)))) | ||
Theorem | odmulgeq 19079 | A multiple of a point of finite order only has the same order if the multiplier is relatively prime. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑂‘(𝑁 · 𝐴)) = (𝑂‘𝐴) ↔ (𝑁 gcd (𝑂‘𝐴)) = 1)) | ||
Theorem | odbezout 19080* | If 𝑁 is coprime to the order of 𝐴, there is a modular inverse 𝑥 to cancel multiplication by 𝑁. (Contributed by Mario Carneiro, 27-Apr-2016.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂‘𝐴)) = 1) → ∃𝑥 ∈ ℤ (𝑥 · (𝑁 · 𝐴)) = 𝐴) | ||
Theorem | od1 19081 | The order of the group identity is one. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 23-Sep-2015.) |
⊢ 𝑂 = (od‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → (𝑂‘ 0 ) = 1) | ||
Theorem | odeq1 19082 | The group identity is the unique element of a group with order one. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 23-Sep-2015.) |
⊢ 𝑂 = (od‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) = 1 ↔ 𝐴 = 0 )) | ||
Theorem | odinv 19083 | The order of the inverse of a group element. (Contributed by Mario Carneiro, 20-Oct-2015.) |
⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) & ⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘(𝐼‘𝐴)) = (𝑂‘𝐴)) | ||
Theorem | odf1 19084* | The multiples of an element with infinite order form an infinite cyclic subgroup of 𝐺. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 23-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) = 0 ↔ 𝐹:ℤ–1-1→𝑋)) | ||
Theorem | odinf 19085* | The multiples of an element with infinite order form an infinite cyclic subgroup of 𝐺. (Contributed by Mario Carneiro, 14-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ¬ ran 𝐹 ∈ Fin) | ||
Theorem | dfod2 19086* | An alternative definition of the order of a group element is as the cardinality of the cyclic subgroup generated by the element. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) = if(ran 𝐹 ∈ Fin, (♯‘ran 𝐹), 0)) | ||
Theorem | odcl2 19087 | The order of an element of a finite group is finite. (Contributed by Mario Carneiro, 14-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∈ ℕ) | ||
Theorem | oddvds2 19088 | The order of an element of a finite group divides the order (cardinality) of the group. Corollary of Lagrange's theorem for the order of a subgroup. (Contributed by Mario Carneiro, 14-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∥ (♯‘𝑋)) | ||
Theorem | submod 19089 | The order of an element is the same in a subgroup. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by AV, 5-Oct-2020.) |
⊢ 𝐻 = (𝐺 ↾s 𝑌) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝑃 = (od‘𝐻) ⇒ ⊢ ((𝑌 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ 𝑌) → (𝑂‘𝐴) = (𝑃‘𝐴)) | ||
Theorem | subgod 19090 | The order of an element is the same in a subgroup. (Contributed by Mario Carneiro, 14-Jan-2015.) (Proof shortened by Stefan O'Rear, 12-Sep-2015.) |
⊢ 𝐻 = (𝐺 ↾s 𝑌) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝑃 = (od‘𝐻) ⇒ ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑌) → (𝑂‘𝐴) = (𝑃‘𝐴)) | ||
Theorem | odsubdvds 19091 | The order of an element of a subgroup divides the order of the subgroup. (Contributed by Mario Carneiro, 16-Jan-2015.) |
⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴 ∈ 𝑆) → (𝑂‘𝐴) ∥ (♯‘𝑆)) | ||
Theorem | odf1o1 19092* | An element with zero order has infinitely many multiples. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–1-1-onto→(𝐾‘{𝐴})) | ||
Theorem | odf1o2 19093* | An element with nonzero order has as many multiples as its order. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑥 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂‘𝐴))–1-1-onto→(𝐾‘{𝐴})) | ||
Theorem | odhash 19094 | An element of zero order generates an infinite subgroup. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → (♯‘(𝐾‘{𝐴})) = +∞) | ||
Theorem | odhash2 19095 | If an element has nonzero order, it generates a subgroup with size equal to the order. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) → (♯‘(𝐾‘{𝐴})) = (𝑂‘𝐴)) | ||
Theorem | odhash3 19096 | An element which generates a finite subgroup has order the size of that subgroup. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (𝑂‘𝐴) = (♯‘(𝐾‘{𝐴}))) | ||
Theorem | odngen 19097* | A cyclic subgroup of size (𝑂‘𝐴) has (ϕ‘(𝑂‘𝐴)) generators. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) → (♯‘{𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂‘𝑥) = (𝑂‘𝐴)}) = (ϕ‘(𝑂‘𝐴))) | ||
Theorem | gexval 19098* | Value of the exponent of a group. (Contributed by Mario Carneiro, 23-Apr-2016.) (Revised by AV, 26-Sep-2020.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) & ⊢ 𝐼 = {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } ⇒ ⊢ (𝐺 ∈ 𝑉 → 𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))) | ||
Theorem | gexlem1 19099* | The group element order is either zero or a nonzero multiplier that annihilates the element. (Contributed by Mario Carneiro, 23-Apr-2016.) (Proof shortened by AV, 26-Sep-2020.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) & ⊢ 𝐼 = {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } ⇒ ⊢ (𝐺 ∈ 𝑉 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼)) | ||
Theorem | gexcl 19100 | The exponent of a group is a nonnegative integer. (Contributed by Mario Carneiro, 23-Apr-2016.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑉 → 𝐸 ∈ ℕ0) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |