MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-subg Structured version   Visualization version   GIF version

Definition df-subg 19028
Description: Define a subgroup of a group as a set of elements that is a group in its own right. Equivalently (issubg2 19046), a subgroup is a subset of the group that is closed for the group internal operation (see subgcl 19041), contains the neutral element of the group (see subg0 19037) and contains the inverses for all of its elements (see subginvcl 19040). (Contributed by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
df-subg SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
Distinct variable group:   𝑤,𝑠

Detailed syntax breakdown of Definition df-subg
StepHypRef Expression
1 csubg 19025 . 2 class SubGrp
2 vw . . 3 setvar 𝑤
3 cgrp 18838 . . 3 class Grp
42cv 1540 . . . . . 6 class 𝑤
5 vs . . . . . . 7 setvar 𝑠
65cv 1540 . . . . . 6 class 𝑠
7 cress 17133 . . . . . 6 class s
84, 6, 7co 7341 . . . . 5 class (𝑤s 𝑠)
98, 3wcel 2110 . . . 4 wff (𝑤s 𝑠) ∈ Grp
10 cbs 17112 . . . . . 6 class Base
114, 10cfv 6477 . . . . 5 class (Base‘𝑤)
1211cpw 4548 . . . 4 class 𝒫 (Base‘𝑤)
139, 5, 12crab 3393 . . 3 class {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp}
142, 3, 13cmpt 5170 . 2 class (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
151, 14wceq 1541 1 wff SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
Colors of variables: wff setvar class
This definition is referenced by:  issubg  19031
  Copyright terms: Public domain W3C validator