MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-subg Structured version   Visualization version   GIF version

Definition df-subg 19020
Description: Define a subgroup of a group as a set of elements that is a group in its own right. Equivalently (issubg2 19038), a subgroup is a subset of the group that is closed for the group internal operation (see subgcl 19033), contains the neutral element of the group (see subg0 19029) and contains the inverses for all of its elements (see subginvcl 19032). (Contributed by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
df-subg SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
Distinct variable group:   𝑤,𝑠

Detailed syntax breakdown of Definition df-subg
StepHypRef Expression
1 csubg 19017 . 2 class SubGrp
2 vw . . 3 setvar 𝑤
3 cgrp 18830 . . 3 class Grp
42cv 1539 . . . . . 6 class 𝑤
5 vs . . . . . . 7 setvar 𝑠
65cv 1539 . . . . . 6 class 𝑠
7 cress 17159 . . . . . 6 class s
84, 6, 7co 7353 . . . . 5 class (𝑤s 𝑠)
98, 3wcel 2109 . . . 4 wff (𝑤s 𝑠) ∈ Grp
10 cbs 17138 . . . . . 6 class Base
114, 10cfv 6486 . . . . 5 class (Base‘𝑤)
1211cpw 4553 . . . 4 class 𝒫 (Base‘𝑤)
139, 5, 12crab 3396 . . 3 class {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp}
142, 3, 13cmpt 5176 . 2 class (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
151, 14wceq 1540 1 wff SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
Colors of variables: wff setvar class
This definition is referenced by:  issubg  19023
  Copyright terms: Public domain W3C validator