MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-subg Structured version   Visualization version   GIF version

Definition df-subg 18750
Description: Define a subgroup of a group as a set of elements that is a group in its own right. Equivalently (issubg2 18768), a subgroup is a subset of the group that is closed for the group internal operation (see subgcl 18763), contains the neutral element of the group (see subg0 18759) and contains the inverses for all of its elements (see subginvcl 18762). (Contributed by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
df-subg SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
Distinct variable group:   𝑤,𝑠

Detailed syntax breakdown of Definition df-subg
StepHypRef Expression
1 csubg 18747 . 2 class SubGrp
2 vw . . 3 setvar 𝑤
3 cgrp 18575 . . 3 class Grp
42cv 1541 . . . . . 6 class 𝑤
5 vs . . . . . . 7 setvar 𝑠
65cv 1541 . . . . . 6 class 𝑠
7 cress 16939 . . . . . 6 class s
84, 6, 7co 7271 . . . . 5 class (𝑤s 𝑠)
98, 3wcel 2110 . . . 4 wff (𝑤s 𝑠) ∈ Grp
10 cbs 16910 . . . . . 6 class Base
114, 10cfv 6432 . . . . 5 class (Base‘𝑤)
1211cpw 4539 . . . 4 class 𝒫 (Base‘𝑤)
139, 5, 12crab 3070 . . 3 class {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp}
142, 3, 13cmpt 5162 . 2 class (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
151, 14wceq 1542 1 wff SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
Colors of variables: wff setvar class
This definition is referenced by:  issubg  18753
  Copyright terms: Public domain W3C validator