MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-subg Structured version   Visualization version   GIF version

Definition df-subg 18761
Description: Define a subgroup of a group as a set of elements that is a group in its own right. Equivalently (issubg2 18779), a subgroup is a subset of the group that is closed for the group internal operation (see subgcl 18774), contains the neutral element of the group (see subg0 18770) and contains the inverses for all of its elements (see subginvcl 18773). (Contributed by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
df-subg SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
Distinct variable group:   𝑤,𝑠

Detailed syntax breakdown of Definition df-subg
StepHypRef Expression
1 csubg 18758 . 2 class SubGrp
2 vw . . 3 setvar 𝑤
3 cgrp 18586 . . 3 class Grp
42cv 1538 . . . . . 6 class 𝑤
5 vs . . . . . . 7 setvar 𝑠
65cv 1538 . . . . . 6 class 𝑠
7 cress 16950 . . . . . 6 class s
84, 6, 7co 7284 . . . . 5 class (𝑤s 𝑠)
98, 3wcel 2107 . . . 4 wff (𝑤s 𝑠) ∈ Grp
10 cbs 16921 . . . . . 6 class Base
114, 10cfv 6437 . . . . 5 class (Base‘𝑤)
1211cpw 4534 . . . 4 class 𝒫 (Base‘𝑤)
139, 5, 12crab 3069 . . 3 class {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp}
142, 3, 13cmpt 5158 . 2 class (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
151, 14wceq 1539 1 wff SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
Colors of variables: wff setvar class
This definition is referenced by:  issubg  18764
  Copyright terms: Public domain W3C validator