MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-subg Structured version   Visualization version   GIF version

Definition df-subg 19085
Description: Define a subgroup of a group as a set of elements that is a group in its own right. Equivalently (issubg2 19103), a subgroup is a subset of the group that is closed for the group internal operation (see subgcl 19098), contains the neutral element of the group (see subg0 19094) and contains the inverses for all of its elements (see subginvcl 19097). (Contributed by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
df-subg SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
Distinct variable group:   𝑤,𝑠

Detailed syntax breakdown of Definition df-subg
StepHypRef Expression
1 csubg 19082 . 2 class SubGrp
2 vw . . 3 setvar 𝑤
3 cgrp 18897 . . 3 class Grp
42cv 1532 . . . . . 6 class 𝑤
5 vs . . . . . . 7 setvar 𝑠
65cv 1532 . . . . . 6 class 𝑠
7 cress 17216 . . . . . 6 class s
84, 6, 7co 7426 . . . . 5 class (𝑤s 𝑠)
98, 3wcel 2098 . . . 4 wff (𝑤s 𝑠) ∈ Grp
10 cbs 17187 . . . . . 6 class Base
114, 10cfv 6553 . . . . 5 class (Base‘𝑤)
1211cpw 4606 . . . 4 class 𝒫 (Base‘𝑤)
139, 5, 12crab 3430 . . 3 class {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp}
142, 3, 13cmpt 5235 . 2 class (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
151, 14wceq 1533 1 wff SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
Colors of variables: wff setvar class
This definition is referenced by:  issubg  19088
  Copyright terms: Public domain W3C validator