MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-subg Structured version   Visualization version   GIF version

Definition df-subg 19153
Description: Define a subgroup of a group as a set of elements that is a group in its own right. Equivalently (issubg2 19171), a subgroup is a subset of the group that is closed for the group internal operation (see subgcl 19166), contains the neutral element of the group (see subg0 19162) and contains the inverses for all of its elements (see subginvcl 19165). (Contributed by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
df-subg SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
Distinct variable group:   𝑤,𝑠

Detailed syntax breakdown of Definition df-subg
StepHypRef Expression
1 csubg 19150 . 2 class SubGrp
2 vw . . 3 setvar 𝑤
3 cgrp 18963 . . 3 class Grp
42cv 1535 . . . . . 6 class 𝑤
5 vs . . . . . . 7 setvar 𝑠
65cv 1535 . . . . . 6 class 𝑠
7 cress 17273 . . . . . 6 class s
84, 6, 7co 7430 . . . . 5 class (𝑤s 𝑠)
98, 3wcel 2105 . . . 4 wff (𝑤s 𝑠) ∈ Grp
10 cbs 17244 . . . . . 6 class Base
114, 10cfv 6562 . . . . 5 class (Base‘𝑤)
1211cpw 4604 . . . 4 class 𝒫 (Base‘𝑤)
139, 5, 12crab 3432 . . 3 class {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp}
142, 3, 13cmpt 5230 . 2 class (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
151, 14wceq 1536 1 wff SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
Colors of variables: wff setvar class
This definition is referenced by:  issubg  19156
  Copyright terms: Public domain W3C validator