MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-subg Structured version   Visualization version   GIF version

Definition df-subg 19047
Description: Define a subgroup of a group as a set of elements that is a group in its own right. Equivalently (issubg2 19065), a subgroup is a subset of the group that is closed for the group internal operation (see subgcl 19060), contains the neutral element of the group (see subg0 19056) and contains the inverses for all of its elements (see subginvcl 19059). (Contributed by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
df-subg SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
Distinct variable group:   𝑤,𝑠

Detailed syntax breakdown of Definition df-subg
StepHypRef Expression
1 csubg 19044 . 2 class SubGrp
2 vw . . 3 setvar 𝑤
3 cgrp 18860 . . 3 class Grp
42cv 1532 . . . . . 6 class 𝑤
5 vs . . . . . . 7 setvar 𝑠
65cv 1532 . . . . . 6 class 𝑠
7 cress 17179 . . . . . 6 class s
84, 6, 7co 7404 . . . . 5 class (𝑤s 𝑠)
98, 3wcel 2098 . . . 4 wff (𝑤s 𝑠) ∈ Grp
10 cbs 17150 . . . . . 6 class Base
114, 10cfv 6536 . . . . 5 class (Base‘𝑤)
1211cpw 4597 . . . 4 class 𝒫 (Base‘𝑤)
139, 5, 12crab 3426 . . 3 class {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp}
142, 3, 13cmpt 5224 . 2 class (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
151, 14wceq 1533 1 wff SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
Colors of variables: wff setvar class
This definition is referenced by:  issubg  19050
  Copyright terms: Public domain W3C validator