MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-subg Structured version   Visualization version   GIF version

Definition df-subg 19055
Description: Define a subgroup of a group as a set of elements that is a group in its own right. Equivalently (issubg2 19073), a subgroup is a subset of the group that is closed for the group internal operation (see subgcl 19068), contains the neutral element of the group (see subg0 19064) and contains the inverses for all of its elements (see subginvcl 19067). (Contributed by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
df-subg SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
Distinct variable group:   𝑤,𝑠

Detailed syntax breakdown of Definition df-subg
StepHypRef Expression
1 csubg 19052 . 2 class SubGrp
2 vw . . 3 setvar 𝑤
3 cgrp 18865 . . 3 class Grp
42cv 1539 . . . . . 6 class 𝑤
5 vs . . . . . . 7 setvar 𝑠
65cv 1539 . . . . . 6 class 𝑠
7 cress 17200 . . . . . 6 class s
84, 6, 7co 7387 . . . . 5 class (𝑤s 𝑠)
98, 3wcel 2109 . . . 4 wff (𝑤s 𝑠) ∈ Grp
10 cbs 17179 . . . . . 6 class Base
114, 10cfv 6511 . . . . 5 class (Base‘𝑤)
1211cpw 4563 . . . 4 class 𝒫 (Base‘𝑤)
139, 5, 12crab 3405 . . 3 class {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp}
142, 3, 13cmpt 5188 . 2 class (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
151, 14wceq 1540 1 wff SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
Colors of variables: wff setvar class
This definition is referenced by:  issubg  19058
  Copyright terms: Public domain W3C validator