MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-subg Structured version   Visualization version   GIF version

Definition df-subg 19062
Description: Define a subgroup of a group as a set of elements that is a group in its own right. Equivalently (issubg2 19080), a subgroup is a subset of the group that is closed for the group internal operation (see subgcl 19075), contains the neutral element of the group (see subg0 19071) and contains the inverses for all of its elements (see subginvcl 19074). (Contributed by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
df-subg SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
Distinct variable group:   𝑤,𝑠

Detailed syntax breakdown of Definition df-subg
StepHypRef Expression
1 csubg 19059 . 2 class SubGrp
2 vw . . 3 setvar 𝑤
3 cgrp 18872 . . 3 class Grp
42cv 1539 . . . . . 6 class 𝑤
5 vs . . . . . . 7 setvar 𝑠
65cv 1539 . . . . . 6 class 𝑠
7 cress 17207 . . . . . 6 class s
84, 6, 7co 7390 . . . . 5 class (𝑤s 𝑠)
98, 3wcel 2109 . . . 4 wff (𝑤s 𝑠) ∈ Grp
10 cbs 17186 . . . . . 6 class Base
114, 10cfv 6514 . . . . 5 class (Base‘𝑤)
1211cpw 4566 . . . 4 class 𝒫 (Base‘𝑤)
139, 5, 12crab 3408 . . 3 class {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp}
142, 3, 13cmpt 5191 . 2 class (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
151, 14wceq 1540 1 wff SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
Colors of variables: wff setvar class
This definition is referenced by:  issubg  19065
  Copyright terms: Public domain W3C validator