MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-subg Structured version   Visualization version   GIF version

Definition df-subg 18667
Description: Define a subgroup of a group as a set of elements that is a group in its own right. Equivalently (issubg2 18685), a subgroup is a subset of the group that is closed for the group internal operation (see subgcl 18680), contains the neutral element of the group (see subg0 18676) and contains the inverses for all of its elements (see subginvcl 18679). (Contributed by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
df-subg SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
Distinct variable group:   𝑤,𝑠

Detailed syntax breakdown of Definition df-subg
StepHypRef Expression
1 csubg 18664 . 2 class SubGrp
2 vw . . 3 setvar 𝑤
3 cgrp 18492 . . 3 class Grp
42cv 1538 . . . . . 6 class 𝑤
5 vs . . . . . . 7 setvar 𝑠
65cv 1538 . . . . . 6 class 𝑠
7 cress 16867 . . . . . 6 class s
84, 6, 7co 7255 . . . . 5 class (𝑤s 𝑠)
98, 3wcel 2108 . . . 4 wff (𝑤s 𝑠) ∈ Grp
10 cbs 16840 . . . . . 6 class Base
114, 10cfv 6418 . . . . 5 class (Base‘𝑤)
1211cpw 4530 . . . 4 class 𝒫 (Base‘𝑤)
139, 5, 12crab 3067 . . 3 class {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp}
142, 3, 13cmpt 5153 . 2 class (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
151, 14wceq 1539 1 wff SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
Colors of variables: wff setvar class
This definition is referenced by:  issubg  18670
  Copyright terms: Public domain W3C validator