MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-subg Structured version   Visualization version   GIF version

Definition df-subg 19046
Description: Define a subgroup of a group as a set of elements that is a group in its own right. Equivalently (issubg2 19064), a subgroup is a subset of the group that is closed for the group internal operation (see subgcl 19059), contains the neutral element of the group (see subg0 19055) and contains the inverses for all of its elements (see subginvcl 19058). (Contributed by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
df-subg SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
Distinct variable group:   𝑤,𝑠

Detailed syntax breakdown of Definition df-subg
StepHypRef Expression
1 csubg 19043 . 2 class SubGrp
2 vw . . 3 setvar 𝑤
3 cgrp 18856 . . 3 class Grp
42cv 1540 . . . . . 6 class 𝑤
5 vs . . . . . . 7 setvar 𝑠
65cv 1540 . . . . . 6 class 𝑠
7 cress 17151 . . . . . 6 class s
84, 6, 7co 7355 . . . . 5 class (𝑤s 𝑠)
98, 3wcel 2113 . . . 4 wff (𝑤s 𝑠) ∈ Grp
10 cbs 17130 . . . . . 6 class Base
114, 10cfv 6489 . . . . 5 class (Base‘𝑤)
1211cpw 4551 . . . 4 class 𝒫 (Base‘𝑤)
139, 5, 12crab 3397 . . 3 class {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp}
142, 3, 13cmpt 5176 . 2 class (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
151, 14wceq 1541 1 wff SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
Colors of variables: wff setvar class
This definition is referenced by:  issubg  19049
  Copyright terms: Public domain W3C validator