MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-subg Structured version   Visualization version   GIF version

Definition df-subg 19163
Description: Define a subgroup of a group as a set of elements that is a group in its own right. Equivalently (issubg2 19181), a subgroup is a subset of the group that is closed for the group internal operation (see subgcl 19176), contains the neutral element of the group (see subg0 19172) and contains the inverses for all of its elements (see subginvcl 19175). (Contributed by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
df-subg SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
Distinct variable group:   𝑤,𝑠

Detailed syntax breakdown of Definition df-subg
StepHypRef Expression
1 csubg 19160 . 2 class SubGrp
2 vw . . 3 setvar 𝑤
3 cgrp 18973 . . 3 class Grp
42cv 1536 . . . . . 6 class 𝑤
5 vs . . . . . . 7 setvar 𝑠
65cv 1536 . . . . . 6 class 𝑠
7 cress 17287 . . . . . 6 class s
84, 6, 7co 7448 . . . . 5 class (𝑤s 𝑠)
98, 3wcel 2108 . . . 4 wff (𝑤s 𝑠) ∈ Grp
10 cbs 17258 . . . . . 6 class Base
114, 10cfv 6573 . . . . 5 class (Base‘𝑤)
1211cpw 4622 . . . 4 class 𝒫 (Base‘𝑤)
139, 5, 12crab 3443 . . 3 class {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp}
142, 3, 13cmpt 5249 . 2 class (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
151, 14wceq 1537 1 wff SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
Colors of variables: wff setvar class
This definition is referenced by:  issubg  19166
  Copyright terms: Public domain W3C validator