Step | Hyp | Ref
| Expression |
1 | | df-nsg 18668 |
. . 3
⊢ NrmSGrp =
(𝑔 ∈ Grp ↦
{𝑠 ∈
(SubGrp‘𝑔) ∣
[(Base‘𝑔) /
𝑏][(+g‘𝑔) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠)}) |
2 | 1 | mptrcl 6866 |
. 2
⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp) |
3 | | subgrcl 18675 |
. . 3
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
4 | 3 | adantr 480 |
. 2
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)) → 𝐺 ∈ Grp) |
5 | | fveq2 6756 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (SubGrp‘𝑔) = (SubGrp‘𝐺)) |
6 | | fvexd 6771 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (Base‘𝑔) ∈ V) |
7 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) |
8 | | isnsg.1 |
. . . . . . . 8
⊢ 𝑋 = (Base‘𝐺) |
9 | 7, 8 | eqtr4di 2797 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝑋) |
10 | | fvexd 6771 |
. . . . . . . 8
⊢ ((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) → (+g‘𝑔) ∈ V) |
11 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) → 𝑔 = 𝐺) |
12 | 11 | fveq2d 6760 |
. . . . . . . . 9
⊢ ((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) → (+g‘𝑔) = (+g‘𝐺)) |
13 | | isnsg.2 |
. . . . . . . . 9
⊢ + =
(+g‘𝐺) |
14 | 12, 13 | eqtr4di 2797 |
. . . . . . . 8
⊢ ((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) → (+g‘𝑔) = + ) |
15 | | simplr 765 |
. . . . . . . . 9
⊢ (((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) ∧ 𝑝 = + ) → 𝑏 = 𝑋) |
16 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) ∧ 𝑝 = + ) → 𝑝 = + ) |
17 | 16 | oveqd 7272 |
. . . . . . . . . . . 12
⊢ (((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) ∧ 𝑝 = + ) → (𝑥𝑝𝑦) = (𝑥 + 𝑦)) |
18 | 17 | eleq1d 2823 |
. . . . . . . . . . 11
⊢ (((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) ∧ 𝑝 = + ) → ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑥 + 𝑦) ∈ 𝑠)) |
19 | 16 | oveqd 7272 |
. . . . . . . . . . . 12
⊢ (((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) ∧ 𝑝 = + ) → (𝑦𝑝𝑥) = (𝑦 + 𝑥)) |
20 | 19 | eleq1d 2823 |
. . . . . . . . . . 11
⊢ (((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) ∧ 𝑝 = + ) → ((𝑦𝑝𝑥) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)) |
21 | 18, 20 | bibi12d 345 |
. . . . . . . . . 10
⊢ (((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) ∧ 𝑝 = + ) → (((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) ↔ ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠))) |
22 | 15, 21 | raleqbidv 3327 |
. . . . . . . . 9
⊢ (((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) ∧ 𝑝 = + ) → (∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) ↔ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠))) |
23 | 15, 22 | raleqbidv 3327 |
. . . . . . . 8
⊢ (((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) ∧ 𝑝 = + ) → (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠))) |
24 | 10, 14, 23 | sbcied2 3758 |
. . . . . . 7
⊢ ((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) → ([(+g‘𝑔) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠))) |
25 | 6, 9, 24 | sbcied2 3758 |
. . . . . 6
⊢ (𝑔 = 𝐺 → ([(Base‘𝑔) / 𝑏][(+g‘𝑔) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠))) |
26 | 5, 25 | rabeqbidv 3410 |
. . . . 5
⊢ (𝑔 = 𝐺 → {𝑠 ∈ (SubGrp‘𝑔) ∣ [(Base‘𝑔) / 𝑏][(+g‘𝑔) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠)} = {𝑠 ∈ (SubGrp‘𝐺) ∣ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)}) |
27 | | fvex 6769 |
. . . . . 6
⊢
(SubGrp‘𝐺)
∈ V |
28 | 27 | rabex 5251 |
. . . . 5
⊢ {𝑠 ∈ (SubGrp‘𝐺) ∣ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)} ∈ V |
29 | 26, 1, 28 | fvmpt 6857 |
. . . 4
⊢ (𝐺 ∈ Grp →
(NrmSGrp‘𝐺) = {𝑠 ∈ (SubGrp‘𝐺) ∣ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)}) |
30 | 29 | eleq2d 2824 |
. . 3
⊢ (𝐺 ∈ Grp → (𝑆 ∈ (NrmSGrp‘𝐺) ↔ 𝑆 ∈ {𝑠 ∈ (SubGrp‘𝐺) ∣ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)})) |
31 | | eleq2 2827 |
. . . . . 6
⊢ (𝑠 = 𝑆 → ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑥 + 𝑦) ∈ 𝑆)) |
32 | | eleq2 2827 |
. . . . . 6
⊢ (𝑠 = 𝑆 → ((𝑦 + 𝑥) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑆)) |
33 | 31, 32 | bibi12d 345 |
. . . . 5
⊢ (𝑠 = 𝑆 → (((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠) ↔ ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆))) |
34 | 33 | 2ralbidv 3122 |
. . . 4
⊢ (𝑠 = 𝑆 → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆))) |
35 | 34 | elrab 3617 |
. . 3
⊢ (𝑆 ∈ {𝑠 ∈ (SubGrp‘𝐺) ∣ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)} ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆))) |
36 | 30, 35 | bitrdi 286 |
. 2
⊢ (𝐺 ∈ Grp → (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)))) |
37 | 2, 4, 36 | pm5.21nii 379 |
1
⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆))) |