MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnsg Structured version   Visualization version   GIF version

Theorem isnsg 18698
Description: Property of being a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
isnsg.1 𝑋 = (Base‘𝐺)
isnsg.2 + = (+g𝐺)
Assertion
Ref Expression
isnsg (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥, + ,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦

Proof of Theorem isnsg
Dummy variables 𝑔 𝑏 𝑝 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nsg 18668 . . 3 NrmSGrp = (𝑔 ∈ Grp ↦ {𝑠 ∈ (SubGrp‘𝑔) ∣ [(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑝]𝑥𝑏𝑦𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠)})
21mptrcl 6866 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp)
3 subgrcl 18675 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
43adantr 480 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)) → 𝐺 ∈ Grp)
5 fveq2 6756 . . . . . 6 (𝑔 = 𝐺 → (SubGrp‘𝑔) = (SubGrp‘𝐺))
6 fvexd 6771 . . . . . . 7 (𝑔 = 𝐺 → (Base‘𝑔) ∈ V)
7 fveq2 6756 . . . . . . . 8 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
8 isnsg.1 . . . . . . . 8 𝑋 = (Base‘𝐺)
97, 8eqtr4di 2797 . . . . . . 7 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑋)
10 fvexd 6771 . . . . . . . 8 ((𝑔 = 𝐺𝑏 = 𝑋) → (+g𝑔) ∈ V)
11 simpl 482 . . . . . . . . . 10 ((𝑔 = 𝐺𝑏 = 𝑋) → 𝑔 = 𝐺)
1211fveq2d 6760 . . . . . . . . 9 ((𝑔 = 𝐺𝑏 = 𝑋) → (+g𝑔) = (+g𝐺))
13 isnsg.2 . . . . . . . . 9 + = (+g𝐺)
1412, 13eqtr4di 2797 . . . . . . . 8 ((𝑔 = 𝐺𝑏 = 𝑋) → (+g𝑔) = + )
15 simplr 765 . . . . . . . . 9 (((𝑔 = 𝐺𝑏 = 𝑋) ∧ 𝑝 = + ) → 𝑏 = 𝑋)
16 simpr 484 . . . . . . . . . . . . 13 (((𝑔 = 𝐺𝑏 = 𝑋) ∧ 𝑝 = + ) → 𝑝 = + )
1716oveqd 7272 . . . . . . . . . . . 12 (((𝑔 = 𝐺𝑏 = 𝑋) ∧ 𝑝 = + ) → (𝑥𝑝𝑦) = (𝑥 + 𝑦))
1817eleq1d 2823 . . . . . . . . . . 11 (((𝑔 = 𝐺𝑏 = 𝑋) ∧ 𝑝 = + ) → ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑥 + 𝑦) ∈ 𝑠))
1916oveqd 7272 . . . . . . . . . . . 12 (((𝑔 = 𝐺𝑏 = 𝑋) ∧ 𝑝 = + ) → (𝑦𝑝𝑥) = (𝑦 + 𝑥))
2019eleq1d 2823 . . . . . . . . . . 11 (((𝑔 = 𝐺𝑏 = 𝑋) ∧ 𝑝 = + ) → ((𝑦𝑝𝑥) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠))
2118, 20bibi12d 345 . . . . . . . . . 10 (((𝑔 = 𝐺𝑏 = 𝑋) ∧ 𝑝 = + ) → (((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) ↔ ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)))
2215, 21raleqbidv 3327 . . . . . . . . 9 (((𝑔 = 𝐺𝑏 = 𝑋) ∧ 𝑝 = + ) → (∀𝑦𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) ↔ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)))
2315, 22raleqbidv 3327 . . . . . . . 8 (((𝑔 = 𝐺𝑏 = 𝑋) ∧ 𝑝 = + ) → (∀𝑥𝑏𝑦𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)))
2410, 14, 23sbcied2 3758 . . . . . . 7 ((𝑔 = 𝐺𝑏 = 𝑋) → ([(+g𝑔) / 𝑝]𝑥𝑏𝑦𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)))
256, 9, 24sbcied2 3758 . . . . . 6 (𝑔 = 𝐺 → ([(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑝]𝑥𝑏𝑦𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)))
265, 25rabeqbidv 3410 . . . . 5 (𝑔 = 𝐺 → {𝑠 ∈ (SubGrp‘𝑔) ∣ [(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑝]𝑥𝑏𝑦𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠)} = {𝑠 ∈ (SubGrp‘𝐺) ∣ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)})
27 fvex 6769 . . . . . 6 (SubGrp‘𝐺) ∈ V
2827rabex 5251 . . . . 5 {𝑠 ∈ (SubGrp‘𝐺) ∣ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)} ∈ V
2926, 1, 28fvmpt 6857 . . . 4 (𝐺 ∈ Grp → (NrmSGrp‘𝐺) = {𝑠 ∈ (SubGrp‘𝐺) ∣ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)})
3029eleq2d 2824 . . 3 (𝐺 ∈ Grp → (𝑆 ∈ (NrmSGrp‘𝐺) ↔ 𝑆 ∈ {𝑠 ∈ (SubGrp‘𝐺) ∣ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)}))
31 eleq2 2827 . . . . . 6 (𝑠 = 𝑆 → ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑥 + 𝑦) ∈ 𝑆))
32 eleq2 2827 . . . . . 6 (𝑠 = 𝑆 → ((𝑦 + 𝑥) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑆))
3331, 32bibi12d 345 . . . . 5 (𝑠 = 𝑆 → (((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠) ↔ ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)))
34332ralbidv 3122 . . . 4 (𝑠 = 𝑆 → (∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠) ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)))
3534elrab 3617 . . 3 (𝑆 ∈ {𝑠 ∈ (SubGrp‘𝐺) ∣ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)} ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)))
3630, 35bitrdi 286 . 2 (𝐺 ∈ Grp → (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆))))
372, 4, 36pm5.21nii 379 1 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  {crab 3067  Vcvv 3422  [wsbc 3711  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Grpcgrp 18492  SubGrpcsubg 18664  NrmSGrpcnsg 18665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-subg 18667  df-nsg 18668
This theorem is referenced by:  isnsg2  18699  nsgbi  18700  nsgsubg  18701  isnsg4  18710  nmznsg  18711  ablnsg  19363  rzgrp  20740
  Copyright terms: Public domain W3C validator