MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isobs Structured version   Visualization version   GIF version

Theorem isobs 20780
Description: The predicate "is an orthonormal basis" (over a pre-Hilbert space). (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypotheses
Ref Expression
isobs.v 𝑉 = (Base‘𝑊)
isobs.h , = (·𝑖𝑊)
isobs.f 𝐹 = (Scalar‘𝑊)
isobs.u 1 = (1r𝐹)
isobs.z 0 = (0g𝐹)
isobs.o = (ocv‘𝑊)
isobs.y 𝑌 = (0g𝑊)
Assertion
Ref Expression
isobs (𝐵 ∈ (OBasis‘𝑊) ↔ (𝑊 ∈ PreHil ∧ 𝐵𝑉 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝐵) = {𝑌})))
Distinct variable groups:   𝑥,𝑦, ,   𝑥, 0 ,𝑦   𝑥, 1 ,𝑦   𝑥,𝐵,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   (𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem isobs
Dummy variables 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-obs 20765 . . . 4 OBasis = ( ∈ PreHil ↦ {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})})
21mptrcl 6773 . . 3 (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ PreHil)
3 fveq2 6667 . . . . . . . . 9 ( = 𝑊 → (Base‘) = (Base‘𝑊))
4 isobs.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
53, 4syl6eqr 2879 . . . . . . . 8 ( = 𝑊 → (Base‘) = 𝑉)
65pweqd 4547 . . . . . . 7 ( = 𝑊 → 𝒫 (Base‘) = 𝒫 𝑉)
7 fveq2 6667 . . . . . . . . . . . 12 ( = 𝑊 → (·𝑖) = (·𝑖𝑊))
8 isobs.h . . . . . . . . . . . 12 , = (·𝑖𝑊)
97, 8syl6eqr 2879 . . . . . . . . . . 11 ( = 𝑊 → (·𝑖) = , )
109oveqd 7165 . . . . . . . . . 10 ( = 𝑊 → (𝑥(·𝑖)𝑦) = (𝑥 , 𝑦))
11 fveq2 6667 . . . . . . . . . . . . . 14 ( = 𝑊 → (Scalar‘) = (Scalar‘𝑊))
12 isobs.f . . . . . . . . . . . . . 14 𝐹 = (Scalar‘𝑊)
1311, 12syl6eqr 2879 . . . . . . . . . . . . 13 ( = 𝑊 → (Scalar‘) = 𝐹)
1413fveq2d 6671 . . . . . . . . . . . 12 ( = 𝑊 → (1r‘(Scalar‘)) = (1r𝐹))
15 isobs.u . . . . . . . . . . . 12 1 = (1r𝐹)
1614, 15syl6eqr 2879 . . . . . . . . . . 11 ( = 𝑊 → (1r‘(Scalar‘)) = 1 )
1713fveq2d 6671 . . . . . . . . . . . 12 ( = 𝑊 → (0g‘(Scalar‘)) = (0g𝐹))
18 isobs.z . . . . . . . . . . . 12 0 = (0g𝐹)
1917, 18syl6eqr 2879 . . . . . . . . . . 11 ( = 𝑊 → (0g‘(Scalar‘)) = 0 )
2016, 19ifeq12d 4490 . . . . . . . . . 10 ( = 𝑊 → if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) = if(𝑥 = 𝑦, 1 , 0 ))
2110, 20eqeq12d 2842 . . . . . . . . 9 ( = 𝑊 → ((𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ↔ (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 )))
22212ralbidv 3204 . . . . . . . 8 ( = 𝑊 → (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ↔ ∀𝑥𝑏𝑦𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 )))
23 fveq2 6667 . . . . . . . . . . 11 ( = 𝑊 → (ocv‘) = (ocv‘𝑊))
24 isobs.o . . . . . . . . . . 11 = (ocv‘𝑊)
2523, 24syl6eqr 2879 . . . . . . . . . 10 ( = 𝑊 → (ocv‘) = )
2625fveq1d 6669 . . . . . . . . 9 ( = 𝑊 → ((ocv‘)‘𝑏) = ( 𝑏))
27 fveq2 6667 . . . . . . . . . . 11 ( = 𝑊 → (0g) = (0g𝑊))
28 isobs.y . . . . . . . . . . 11 𝑌 = (0g𝑊)
2927, 28syl6eqr 2879 . . . . . . . . . 10 ( = 𝑊 → (0g) = 𝑌)
3029sneqd 4576 . . . . . . . . 9 ( = 𝑊 → {(0g)} = {𝑌})
3126, 30eqeq12d 2842 . . . . . . . 8 ( = 𝑊 → (((ocv‘)‘𝑏) = {(0g)} ↔ ( 𝑏) = {𝑌}))
3222, 31anbi12d 630 . . . . . . 7 ( = 𝑊 → ((∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)}) ↔ (∀𝑥𝑏𝑦𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝑏) = {𝑌})))
336, 32rabeqbidv 3491 . . . . . 6 ( = 𝑊 → {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})} = {𝑏 ∈ 𝒫 𝑉 ∣ (∀𝑥𝑏𝑦𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝑏) = {𝑌})})
344fvexi 6681 . . . . . . . 8 𝑉 ∈ V
3534pwex 5278 . . . . . . 7 𝒫 𝑉 ∈ V
3635rabex 5232 . . . . . 6 {𝑏 ∈ 𝒫 𝑉 ∣ (∀𝑥𝑏𝑦𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝑏) = {𝑌})} ∈ V
3733, 1, 36fvmpt 6765 . . . . 5 (𝑊 ∈ PreHil → (OBasis‘𝑊) = {𝑏 ∈ 𝒫 𝑉 ∣ (∀𝑥𝑏𝑦𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝑏) = {𝑌})})
3837eleq2d 2903 . . . 4 (𝑊 ∈ PreHil → (𝐵 ∈ (OBasis‘𝑊) ↔ 𝐵 ∈ {𝑏 ∈ 𝒫 𝑉 ∣ (∀𝑥𝑏𝑦𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝑏) = {𝑌})}))
39 raleq 3411 . . . . . . . 8 (𝑏 = 𝐵 → (∀𝑦𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ↔ ∀𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 )))
4039raleqbi1dv 3409 . . . . . . 7 (𝑏 = 𝐵 → (∀𝑥𝑏𝑦𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 )))
41 fveqeq2 6676 . . . . . . 7 (𝑏 = 𝐵 → (( 𝑏) = {𝑌} ↔ ( 𝐵) = {𝑌}))
4240, 41anbi12d 630 . . . . . 6 (𝑏 = 𝐵 → ((∀𝑥𝑏𝑦𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝑏) = {𝑌}) ↔ (∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝐵) = {𝑌})))
4342elrab 3684 . . . . 5 (𝐵 ∈ {𝑏 ∈ 𝒫 𝑉 ∣ (∀𝑥𝑏𝑦𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝑏) = {𝑌})} ↔ (𝐵 ∈ 𝒫 𝑉 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝐵) = {𝑌})))
4434elpw2 5245 . . . . . 6 (𝐵 ∈ 𝒫 𝑉𝐵𝑉)
4544anbi1i 623 . . . . 5 ((𝐵 ∈ 𝒫 𝑉 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝐵) = {𝑌})) ↔ (𝐵𝑉 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝐵) = {𝑌})))
4643, 45bitri 276 . . . 4 (𝐵 ∈ {𝑏 ∈ 𝒫 𝑉 ∣ (∀𝑥𝑏𝑦𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝑏) = {𝑌})} ↔ (𝐵𝑉 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝐵) = {𝑌})))
4738, 46syl6bb 288 . . 3 (𝑊 ∈ PreHil → (𝐵 ∈ (OBasis‘𝑊) ↔ (𝐵𝑉 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝐵) = {𝑌}))))
482, 47biadanii 819 . 2 (𝐵 ∈ (OBasis‘𝑊) ↔ (𝑊 ∈ PreHil ∧ (𝐵𝑉 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝐵) = {𝑌}))))
49 3anass 1089 . 2 ((𝑊 ∈ PreHil ∧ 𝐵𝑉 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝐵) = {𝑌})) ↔ (𝑊 ∈ PreHil ∧ (𝐵𝑉 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝐵) = {𝑌}))))
5048, 49bitr4i 279 1 (𝐵 ∈ (OBasis‘𝑊) ↔ (𝑊 ∈ PreHil ∧ 𝐵𝑉 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝐵) = {𝑌})))
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wral 3143  {crab 3147  wss 3940  ifcif 4470  𝒫 cpw 4542  {csn 4564  cfv 6352  (class class class)co 7148  Basecbs 16473  Scalarcsca 16558  ·𝑖cip 16560  0gc0g 16703  1rcur 19171  PreHilcphl 20684  ocvcocv 20720  OBasiscobs 20762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-sbc 3777  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6312  df-fun 6354  df-fv 6360  df-ov 7151  df-obs 20765
This theorem is referenced by:  obsip  20781  obsrcl  20783  obsss  20784  obsocv  20786
  Copyright terms: Public domain W3C validator