MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isobs Structured version   Visualization version   GIF version

Theorem isobs 21267
Description: The predicate "is an orthonormal basis" (over a pre-Hilbert space). (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypotheses
Ref Expression
isobs.v 𝑉 = (Baseβ€˜π‘Š)
isobs.h , = (Β·π‘–β€˜π‘Š)
isobs.f 𝐹 = (Scalarβ€˜π‘Š)
isobs.u 1 = (1rβ€˜πΉ)
isobs.z 0 = (0gβ€˜πΉ)
isobs.o βŠ₯ = (ocvβ€˜π‘Š)
isobs.y π‘Œ = (0gβ€˜π‘Š)
Assertion
Ref Expression
isobs (𝐡 ∈ (OBasisβ€˜π‘Š) ↔ (π‘Š ∈ PreHil ∧ 𝐡 βŠ† 𝑉 ∧ (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ , 𝑦) = if(π‘₯ = 𝑦, 1 , 0 ) ∧ ( βŠ₯ β€˜π΅) = {π‘Œ})))
Distinct variable groups:   π‘₯,𝑦, ,   π‘₯, 0 ,𝑦   π‘₯, 1 ,𝑦   π‘₯,𝐡,𝑦   π‘₯,π‘Š,𝑦
Allowed substitution hints:   𝐹(π‘₯,𝑦)   βŠ₯ (π‘₯,𝑦)   𝑉(π‘₯,𝑦)   π‘Œ(π‘₯,𝑦)

Proof of Theorem isobs
Dummy variables β„Ž 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-obs 21252 . . . 4 OBasis = (β„Ž ∈ PreHil ↦ {𝑏 ∈ 𝒫 (Baseβ€˜β„Ž) ∣ (βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯(Β·π‘–β€˜β„Ž)𝑦) = if(π‘₯ = 𝑦, (1rβ€˜(Scalarβ€˜β„Ž)), (0gβ€˜(Scalarβ€˜β„Ž))) ∧ ((ocvβ€˜β„Ž)β€˜π‘) = {(0gβ€˜β„Ž)})})
21mptrcl 7005 . . 3 (𝐡 ∈ (OBasisβ€˜π‘Š) β†’ π‘Š ∈ PreHil)
3 fveq2 6889 . . . . . . . . 9 (β„Ž = π‘Š β†’ (Baseβ€˜β„Ž) = (Baseβ€˜π‘Š))
4 isobs.v . . . . . . . . 9 𝑉 = (Baseβ€˜π‘Š)
53, 4eqtr4di 2791 . . . . . . . 8 (β„Ž = π‘Š β†’ (Baseβ€˜β„Ž) = 𝑉)
65pweqd 4619 . . . . . . 7 (β„Ž = π‘Š β†’ 𝒫 (Baseβ€˜β„Ž) = 𝒫 𝑉)
7 fveq2 6889 . . . . . . . . . . . 12 (β„Ž = π‘Š β†’ (Β·π‘–β€˜β„Ž) = (Β·π‘–β€˜π‘Š))
8 isobs.h . . . . . . . . . . . 12 , = (Β·π‘–β€˜π‘Š)
97, 8eqtr4di 2791 . . . . . . . . . . 11 (β„Ž = π‘Š β†’ (Β·π‘–β€˜β„Ž) = , )
109oveqd 7423 . . . . . . . . . 10 (β„Ž = π‘Š β†’ (π‘₯(Β·π‘–β€˜β„Ž)𝑦) = (π‘₯ , 𝑦))
11 fveq2 6889 . . . . . . . . . . . . . 14 (β„Ž = π‘Š β†’ (Scalarβ€˜β„Ž) = (Scalarβ€˜π‘Š))
12 isobs.f . . . . . . . . . . . . . 14 𝐹 = (Scalarβ€˜π‘Š)
1311, 12eqtr4di 2791 . . . . . . . . . . . . 13 (β„Ž = π‘Š β†’ (Scalarβ€˜β„Ž) = 𝐹)
1413fveq2d 6893 . . . . . . . . . . . 12 (β„Ž = π‘Š β†’ (1rβ€˜(Scalarβ€˜β„Ž)) = (1rβ€˜πΉ))
15 isobs.u . . . . . . . . . . . 12 1 = (1rβ€˜πΉ)
1614, 15eqtr4di 2791 . . . . . . . . . . 11 (β„Ž = π‘Š β†’ (1rβ€˜(Scalarβ€˜β„Ž)) = 1 )
1713fveq2d 6893 . . . . . . . . . . . 12 (β„Ž = π‘Š β†’ (0gβ€˜(Scalarβ€˜β„Ž)) = (0gβ€˜πΉ))
18 isobs.z . . . . . . . . . . . 12 0 = (0gβ€˜πΉ)
1917, 18eqtr4di 2791 . . . . . . . . . . 11 (β„Ž = π‘Š β†’ (0gβ€˜(Scalarβ€˜β„Ž)) = 0 )
2016, 19ifeq12d 4549 . . . . . . . . . 10 (β„Ž = π‘Š β†’ if(π‘₯ = 𝑦, (1rβ€˜(Scalarβ€˜β„Ž)), (0gβ€˜(Scalarβ€˜β„Ž))) = if(π‘₯ = 𝑦, 1 , 0 ))
2110, 20eqeq12d 2749 . . . . . . . . 9 (β„Ž = π‘Š β†’ ((π‘₯(Β·π‘–β€˜β„Ž)𝑦) = if(π‘₯ = 𝑦, (1rβ€˜(Scalarβ€˜β„Ž)), (0gβ€˜(Scalarβ€˜β„Ž))) ↔ (π‘₯ , 𝑦) = if(π‘₯ = 𝑦, 1 , 0 )))
22212ralbidv 3219 . . . . . . . 8 (β„Ž = π‘Š β†’ (βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯(Β·π‘–β€˜β„Ž)𝑦) = if(π‘₯ = 𝑦, (1rβ€˜(Scalarβ€˜β„Ž)), (0gβ€˜(Scalarβ€˜β„Ž))) ↔ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯ , 𝑦) = if(π‘₯ = 𝑦, 1 , 0 )))
23 fveq2 6889 . . . . . . . . . . 11 (β„Ž = π‘Š β†’ (ocvβ€˜β„Ž) = (ocvβ€˜π‘Š))
24 isobs.o . . . . . . . . . . 11 βŠ₯ = (ocvβ€˜π‘Š)
2523, 24eqtr4di 2791 . . . . . . . . . 10 (β„Ž = π‘Š β†’ (ocvβ€˜β„Ž) = βŠ₯ )
2625fveq1d 6891 . . . . . . . . 9 (β„Ž = π‘Š β†’ ((ocvβ€˜β„Ž)β€˜π‘) = ( βŠ₯ β€˜π‘))
27 fveq2 6889 . . . . . . . . . . 11 (β„Ž = π‘Š β†’ (0gβ€˜β„Ž) = (0gβ€˜π‘Š))
28 isobs.y . . . . . . . . . . 11 π‘Œ = (0gβ€˜π‘Š)
2927, 28eqtr4di 2791 . . . . . . . . . 10 (β„Ž = π‘Š β†’ (0gβ€˜β„Ž) = π‘Œ)
3029sneqd 4640 . . . . . . . . 9 (β„Ž = π‘Š β†’ {(0gβ€˜β„Ž)} = {π‘Œ})
3126, 30eqeq12d 2749 . . . . . . . 8 (β„Ž = π‘Š β†’ (((ocvβ€˜β„Ž)β€˜π‘) = {(0gβ€˜β„Ž)} ↔ ( βŠ₯ β€˜π‘) = {π‘Œ}))
3222, 31anbi12d 632 . . . . . . 7 (β„Ž = π‘Š β†’ ((βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯(Β·π‘–β€˜β„Ž)𝑦) = if(π‘₯ = 𝑦, (1rβ€˜(Scalarβ€˜β„Ž)), (0gβ€˜(Scalarβ€˜β„Ž))) ∧ ((ocvβ€˜β„Ž)β€˜π‘) = {(0gβ€˜β„Ž)}) ↔ (βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯ , 𝑦) = if(π‘₯ = 𝑦, 1 , 0 ) ∧ ( βŠ₯ β€˜π‘) = {π‘Œ})))
336, 32rabeqbidv 3450 . . . . . 6 (β„Ž = π‘Š β†’ {𝑏 ∈ 𝒫 (Baseβ€˜β„Ž) ∣ (βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯(Β·π‘–β€˜β„Ž)𝑦) = if(π‘₯ = 𝑦, (1rβ€˜(Scalarβ€˜β„Ž)), (0gβ€˜(Scalarβ€˜β„Ž))) ∧ ((ocvβ€˜β„Ž)β€˜π‘) = {(0gβ€˜β„Ž)})} = {𝑏 ∈ 𝒫 𝑉 ∣ (βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯ , 𝑦) = if(π‘₯ = 𝑦, 1 , 0 ) ∧ ( βŠ₯ β€˜π‘) = {π‘Œ})})
344fvexi 6903 . . . . . . . 8 𝑉 ∈ V
3534pwex 5378 . . . . . . 7 𝒫 𝑉 ∈ V
3635rabex 5332 . . . . . 6 {𝑏 ∈ 𝒫 𝑉 ∣ (βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯ , 𝑦) = if(π‘₯ = 𝑦, 1 , 0 ) ∧ ( βŠ₯ β€˜π‘) = {π‘Œ})} ∈ V
3733, 1, 36fvmpt 6996 . . . . 5 (π‘Š ∈ PreHil β†’ (OBasisβ€˜π‘Š) = {𝑏 ∈ 𝒫 𝑉 ∣ (βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯ , 𝑦) = if(π‘₯ = 𝑦, 1 , 0 ) ∧ ( βŠ₯ β€˜π‘) = {π‘Œ})})
3837eleq2d 2820 . . . 4 (π‘Š ∈ PreHil β†’ (𝐡 ∈ (OBasisβ€˜π‘Š) ↔ 𝐡 ∈ {𝑏 ∈ 𝒫 𝑉 ∣ (βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯ , 𝑦) = if(π‘₯ = 𝑦, 1 , 0 ) ∧ ( βŠ₯ β€˜π‘) = {π‘Œ})}))
39 raleq 3323 . . . . . . . 8 (𝑏 = 𝐡 β†’ (βˆ€π‘¦ ∈ 𝑏 (π‘₯ , 𝑦) = if(π‘₯ = 𝑦, 1 , 0 ) ↔ βˆ€π‘¦ ∈ 𝐡 (π‘₯ , 𝑦) = if(π‘₯ = 𝑦, 1 , 0 )))
4039raleqbi1dv 3334 . . . . . . 7 (𝑏 = 𝐡 β†’ (βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯ , 𝑦) = if(π‘₯ = 𝑦, 1 , 0 ) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ , 𝑦) = if(π‘₯ = 𝑦, 1 , 0 )))
41 fveqeq2 6898 . . . . . . 7 (𝑏 = 𝐡 β†’ (( βŠ₯ β€˜π‘) = {π‘Œ} ↔ ( βŠ₯ β€˜π΅) = {π‘Œ}))
4240, 41anbi12d 632 . . . . . 6 (𝑏 = 𝐡 β†’ ((βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯ , 𝑦) = if(π‘₯ = 𝑦, 1 , 0 ) ∧ ( βŠ₯ β€˜π‘) = {π‘Œ}) ↔ (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ , 𝑦) = if(π‘₯ = 𝑦, 1 , 0 ) ∧ ( βŠ₯ β€˜π΅) = {π‘Œ})))
4342elrab 3683 . . . . 5 (𝐡 ∈ {𝑏 ∈ 𝒫 𝑉 ∣ (βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯ , 𝑦) = if(π‘₯ = 𝑦, 1 , 0 ) ∧ ( βŠ₯ β€˜π‘) = {π‘Œ})} ↔ (𝐡 ∈ 𝒫 𝑉 ∧ (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ , 𝑦) = if(π‘₯ = 𝑦, 1 , 0 ) ∧ ( βŠ₯ β€˜π΅) = {π‘Œ})))
4434elpw2 5345 . . . . . 6 (𝐡 ∈ 𝒫 𝑉 ↔ 𝐡 βŠ† 𝑉)
4544anbi1i 625 . . . . 5 ((𝐡 ∈ 𝒫 𝑉 ∧ (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ , 𝑦) = if(π‘₯ = 𝑦, 1 , 0 ) ∧ ( βŠ₯ β€˜π΅) = {π‘Œ})) ↔ (𝐡 βŠ† 𝑉 ∧ (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ , 𝑦) = if(π‘₯ = 𝑦, 1 , 0 ) ∧ ( βŠ₯ β€˜π΅) = {π‘Œ})))
4643, 45bitri 275 . . . 4 (𝐡 ∈ {𝑏 ∈ 𝒫 𝑉 ∣ (βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯ , 𝑦) = if(π‘₯ = 𝑦, 1 , 0 ) ∧ ( βŠ₯ β€˜π‘) = {π‘Œ})} ↔ (𝐡 βŠ† 𝑉 ∧ (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ , 𝑦) = if(π‘₯ = 𝑦, 1 , 0 ) ∧ ( βŠ₯ β€˜π΅) = {π‘Œ})))
4738, 46bitrdi 287 . . 3 (π‘Š ∈ PreHil β†’ (𝐡 ∈ (OBasisβ€˜π‘Š) ↔ (𝐡 βŠ† 𝑉 ∧ (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ , 𝑦) = if(π‘₯ = 𝑦, 1 , 0 ) ∧ ( βŠ₯ β€˜π΅) = {π‘Œ}))))
482, 47biadanii 821 . 2 (𝐡 ∈ (OBasisβ€˜π‘Š) ↔ (π‘Š ∈ PreHil ∧ (𝐡 βŠ† 𝑉 ∧ (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ , 𝑦) = if(π‘₯ = 𝑦, 1 , 0 ) ∧ ( βŠ₯ β€˜π΅) = {π‘Œ}))))
49 3anass 1096 . 2 ((π‘Š ∈ PreHil ∧ 𝐡 βŠ† 𝑉 ∧ (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ , 𝑦) = if(π‘₯ = 𝑦, 1 , 0 ) ∧ ( βŠ₯ β€˜π΅) = {π‘Œ})) ↔ (π‘Š ∈ PreHil ∧ (𝐡 βŠ† 𝑉 ∧ (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ , 𝑦) = if(π‘₯ = 𝑦, 1 , 0 ) ∧ ( βŠ₯ β€˜π΅) = {π‘Œ}))))
5048, 49bitr4i 278 1 (𝐡 ∈ (OBasisβ€˜π‘Š) ↔ (π‘Š ∈ PreHil ∧ 𝐡 βŠ† 𝑉 ∧ (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ , 𝑦) = if(π‘₯ = 𝑦, 1 , 0 ) ∧ ( βŠ₯ β€˜π΅) = {π‘Œ})))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  {crab 3433   βŠ† wss 3948  ifcif 4528  π’« cpw 4602  {csn 4628  β€˜cfv 6541  (class class class)co 7406  Basecbs 17141  Scalarcsca 17197  Β·π‘–cip 17199  0gc0g 17382  1rcur 19999  PreHilcphl 21169  ocvcocv 21205  OBasiscobs 21249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6493  df-fun 6543  df-fv 6549  df-ov 7409  df-obs 21252
This theorem is referenced by:  obsip  21268  obsrcl  21270  obsss  21271  obsocv  21273
  Copyright terms: Public domain W3C validator