Step | Hyp | Ref
| Expression |
1 | | df-obs 20463 |
. . . 4
⊢ OBasis =
(ℎ ∈ PreHil ↦
{𝑏 ∈ 𝒫
(Base‘ℎ) ∣
(∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥(·𝑖‘ℎ)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘ℎ)),
(0g‘(Scalar‘ℎ))) ∧ ((ocv‘ℎ)‘𝑏) = {(0g‘ℎ)})}) |
2 | 1 | mptrcl 6769 |
. . 3
⊢ (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ PreHil) |
3 | | fveq2 6659 |
. . . . . . . . 9
⊢ (ℎ = 𝑊 → (Base‘ℎ) = (Base‘𝑊)) |
4 | | isobs.v |
. . . . . . . . 9
⊢ 𝑉 = (Base‘𝑊) |
5 | 3, 4 | eqtr4di 2812 |
. . . . . . . 8
⊢ (ℎ = 𝑊 → (Base‘ℎ) = 𝑉) |
6 | 5 | pweqd 4514 |
. . . . . . 7
⊢ (ℎ = 𝑊 → 𝒫 (Base‘ℎ) = 𝒫 𝑉) |
7 | | fveq2 6659 |
. . . . . . . . . . . 12
⊢ (ℎ = 𝑊 →
(·𝑖‘ℎ) =
(·𝑖‘𝑊)) |
8 | | isobs.h |
. . . . . . . . . . . 12
⊢ , =
(·𝑖‘𝑊) |
9 | 7, 8 | eqtr4di 2812 |
. . . . . . . . . . 11
⊢ (ℎ = 𝑊 →
(·𝑖‘ℎ) = , ) |
10 | 9 | oveqd 7168 |
. . . . . . . . . 10
⊢ (ℎ = 𝑊 → (𝑥(·𝑖‘ℎ)𝑦) = (𝑥 , 𝑦)) |
11 | | fveq2 6659 |
. . . . . . . . . . . . . 14
⊢ (ℎ = 𝑊 → (Scalar‘ℎ) = (Scalar‘𝑊)) |
12 | | isobs.f |
. . . . . . . . . . . . . 14
⊢ 𝐹 = (Scalar‘𝑊) |
13 | 11, 12 | eqtr4di 2812 |
. . . . . . . . . . . . 13
⊢ (ℎ = 𝑊 → (Scalar‘ℎ) = 𝐹) |
14 | 13 | fveq2d 6663 |
. . . . . . . . . . . 12
⊢ (ℎ = 𝑊 →
(1r‘(Scalar‘ℎ)) = (1r‘𝐹)) |
15 | | isobs.u |
. . . . . . . . . . . 12
⊢ 1 =
(1r‘𝐹) |
16 | 14, 15 | eqtr4di 2812 |
. . . . . . . . . . 11
⊢ (ℎ = 𝑊 →
(1r‘(Scalar‘ℎ)) = 1 ) |
17 | 13 | fveq2d 6663 |
. . . . . . . . . . . 12
⊢ (ℎ = 𝑊 →
(0g‘(Scalar‘ℎ)) = (0g‘𝐹)) |
18 | | isobs.z |
. . . . . . . . . . . 12
⊢ 0 =
(0g‘𝐹) |
19 | 17, 18 | eqtr4di 2812 |
. . . . . . . . . . 11
⊢ (ℎ = 𝑊 →
(0g‘(Scalar‘ℎ)) = 0 ) |
20 | 16, 19 | ifeq12d 4442 |
. . . . . . . . . 10
⊢ (ℎ = 𝑊 → if(𝑥 = 𝑦, (1r‘(Scalar‘ℎ)),
(0g‘(Scalar‘ℎ))) = if(𝑥 = 𝑦, 1 , 0 )) |
21 | 10, 20 | eqeq12d 2775 |
. . . . . . . . 9
⊢ (ℎ = 𝑊 → ((𝑥(·𝑖‘ℎ)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘ℎ)),
(0g‘(Scalar‘ℎ))) ↔ (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ))) |
22 | 21 | 2ralbidv 3129 |
. . . . . . . 8
⊢ (ℎ = 𝑊 → (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥(·𝑖‘ℎ)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘ℎ)),
(0g‘(Scalar‘ℎ))) ↔ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ))) |
23 | | fveq2 6659 |
. . . . . . . . . . 11
⊢ (ℎ = 𝑊 → (ocv‘ℎ) = (ocv‘𝑊)) |
24 | | isobs.o |
. . . . . . . . . . 11
⊢ ⊥ =
(ocv‘𝑊) |
25 | 23, 24 | eqtr4di 2812 |
. . . . . . . . . 10
⊢ (ℎ = 𝑊 → (ocv‘ℎ) = ⊥ ) |
26 | 25 | fveq1d 6661 |
. . . . . . . . 9
⊢ (ℎ = 𝑊 → ((ocv‘ℎ)‘𝑏) = ( ⊥ ‘𝑏)) |
27 | | fveq2 6659 |
. . . . . . . . . . 11
⊢ (ℎ = 𝑊 → (0g‘ℎ) = (0g‘𝑊)) |
28 | | isobs.y |
. . . . . . . . . . 11
⊢ 𝑌 = (0g‘𝑊) |
29 | 27, 28 | eqtr4di 2812 |
. . . . . . . . . 10
⊢ (ℎ = 𝑊 → (0g‘ℎ) = 𝑌) |
30 | 29 | sneqd 4535 |
. . . . . . . . 9
⊢ (ℎ = 𝑊 → {(0g‘ℎ)} = {𝑌}) |
31 | 26, 30 | eqeq12d 2775 |
. . . . . . . 8
⊢ (ℎ = 𝑊 → (((ocv‘ℎ)‘𝑏) = {(0g‘ℎ)} ↔ ( ⊥ ‘𝑏) = {𝑌})) |
32 | 22, 31 | anbi12d 634 |
. . . . . . 7
⊢ (ℎ = 𝑊 → ((∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥(·𝑖‘ℎ)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘ℎ)),
(0g‘(Scalar‘ℎ))) ∧ ((ocv‘ℎ)‘𝑏) = {(0g‘ℎ)}) ↔ (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( ⊥ ‘𝑏) = {𝑌}))) |
33 | 6, 32 | rabeqbidv 3399 |
. . . . . 6
⊢ (ℎ = 𝑊 → {𝑏 ∈ 𝒫 (Base‘ℎ) ∣ (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥(·𝑖‘ℎ)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘ℎ)),
(0g‘(Scalar‘ℎ))) ∧ ((ocv‘ℎ)‘𝑏) = {(0g‘ℎ)})} = {𝑏 ∈ 𝒫 𝑉 ∣ (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( ⊥ ‘𝑏) = {𝑌})}) |
34 | 4 | fvexi 6673 |
. . . . . . . 8
⊢ 𝑉 ∈ V |
35 | 34 | pwex 5250 |
. . . . . . 7
⊢ 𝒫
𝑉 ∈ V |
36 | 35 | rabex 5203 |
. . . . . 6
⊢ {𝑏 ∈ 𝒫 𝑉 ∣ (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( ⊥
‘𝑏) = {𝑌})} ∈ V |
37 | 33, 1, 36 | fvmpt 6760 |
. . . . 5
⊢ (𝑊 ∈ PreHil →
(OBasis‘𝑊) = {𝑏 ∈ 𝒫 𝑉 ∣ (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( ⊥
‘𝑏) = {𝑌})}) |
38 | 37 | eleq2d 2838 |
. . . 4
⊢ (𝑊 ∈ PreHil → (𝐵 ∈ (OBasis‘𝑊) ↔ 𝐵 ∈ {𝑏 ∈ 𝒫 𝑉 ∣ (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( ⊥
‘𝑏) = {𝑌})})) |
39 | | raleq 3324 |
. . . . . . . 8
⊢ (𝑏 = 𝐵 → (∀𝑦 ∈ 𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ↔ ∀𝑦 ∈ 𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ))) |
40 | 39 | raleqbi1dv 3322 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ))) |
41 | | fveqeq2 6668 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → (( ⊥ ‘𝑏) = {𝑌} ↔ ( ⊥ ‘𝐵) = {𝑌})) |
42 | 40, 41 | anbi12d 634 |
. . . . . 6
⊢ (𝑏 = 𝐵 → ((∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( ⊥
‘𝑏) = {𝑌}) ↔ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( ⊥
‘𝐵) = {𝑌}))) |
43 | 42 | elrab 3603 |
. . . . 5
⊢ (𝐵 ∈ {𝑏 ∈ 𝒫 𝑉 ∣ (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( ⊥
‘𝑏) = {𝑌})} ↔ (𝐵 ∈ 𝒫 𝑉 ∧ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( ⊥
‘𝐵) = {𝑌}))) |
44 | 34 | elpw2 5216 |
. . . . . 6
⊢ (𝐵 ∈ 𝒫 𝑉 ↔ 𝐵 ⊆ 𝑉) |
45 | 44 | anbi1i 627 |
. . . . 5
⊢ ((𝐵 ∈ 𝒫 𝑉 ∧ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( ⊥
‘𝐵) = {𝑌})) ↔ (𝐵 ⊆ 𝑉 ∧ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( ⊥
‘𝐵) = {𝑌}))) |
46 | 43, 45 | bitri 278 |
. . . 4
⊢ (𝐵 ∈ {𝑏 ∈ 𝒫 𝑉 ∣ (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( ⊥
‘𝑏) = {𝑌})} ↔ (𝐵 ⊆ 𝑉 ∧ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( ⊥
‘𝐵) = {𝑌}))) |
47 | 38, 46 | bitrdi 290 |
. . 3
⊢ (𝑊 ∈ PreHil → (𝐵 ∈ (OBasis‘𝑊) ↔ (𝐵 ⊆ 𝑉 ∧ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( ⊥
‘𝐵) = {𝑌})))) |
48 | 2, 47 | biadanii 822 |
. 2
⊢ (𝐵 ∈ (OBasis‘𝑊) ↔ (𝑊 ∈ PreHil ∧ (𝐵 ⊆ 𝑉 ∧ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( ⊥
‘𝐵) = {𝑌})))) |
49 | | 3anass 1093 |
. 2
⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ⊆ 𝑉 ∧ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( ⊥
‘𝐵) = {𝑌})) ↔ (𝑊 ∈ PreHil ∧ (𝐵 ⊆ 𝑉 ∧ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( ⊥
‘𝐵) = {𝑌})))) |
50 | 48, 49 | bitr4i 281 |
1
⊢ (𝐵 ∈ (OBasis‘𝑊) ↔ (𝑊 ∈ PreHil ∧ 𝐵 ⊆ 𝑉 ∧ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( ⊥
‘𝐵) = {𝑌}))) |