MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isobs Structured version   Visualization version   GIF version

Theorem isobs 21629
Description: The predicate "is an orthonormal basis" (over a pre-Hilbert space). (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypotheses
Ref Expression
isobs.v 𝑉 = (Base‘𝑊)
isobs.h , = (·𝑖𝑊)
isobs.f 𝐹 = (Scalar‘𝑊)
isobs.u 1 = (1r𝐹)
isobs.z 0 = (0g𝐹)
isobs.o = (ocv‘𝑊)
isobs.y 𝑌 = (0g𝑊)
Assertion
Ref Expression
isobs (𝐵 ∈ (OBasis‘𝑊) ↔ (𝑊 ∈ PreHil ∧ 𝐵𝑉 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝐵) = {𝑌})))
Distinct variable groups:   𝑥,𝑦, ,   𝑥, 0 ,𝑦   𝑥, 1 ,𝑦   𝑥,𝐵,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   (𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem isobs
Dummy variables 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-obs 21614 . . . 4 OBasis = ( ∈ PreHil ↦ {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})})
21mptrcl 6977 . . 3 (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ PreHil)
3 fveq2 6858 . . . . . . . . 9 ( = 𝑊 → (Base‘) = (Base‘𝑊))
4 isobs.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
53, 4eqtr4di 2782 . . . . . . . 8 ( = 𝑊 → (Base‘) = 𝑉)
65pweqd 4580 . . . . . . 7 ( = 𝑊 → 𝒫 (Base‘) = 𝒫 𝑉)
7 fveq2 6858 . . . . . . . . . . . 12 ( = 𝑊 → (·𝑖) = (·𝑖𝑊))
8 isobs.h . . . . . . . . . . . 12 , = (·𝑖𝑊)
97, 8eqtr4di 2782 . . . . . . . . . . 11 ( = 𝑊 → (·𝑖) = , )
109oveqd 7404 . . . . . . . . . 10 ( = 𝑊 → (𝑥(·𝑖)𝑦) = (𝑥 , 𝑦))
11 fveq2 6858 . . . . . . . . . . . . . 14 ( = 𝑊 → (Scalar‘) = (Scalar‘𝑊))
12 isobs.f . . . . . . . . . . . . . 14 𝐹 = (Scalar‘𝑊)
1311, 12eqtr4di 2782 . . . . . . . . . . . . 13 ( = 𝑊 → (Scalar‘) = 𝐹)
1413fveq2d 6862 . . . . . . . . . . . 12 ( = 𝑊 → (1r‘(Scalar‘)) = (1r𝐹))
15 isobs.u . . . . . . . . . . . 12 1 = (1r𝐹)
1614, 15eqtr4di 2782 . . . . . . . . . . 11 ( = 𝑊 → (1r‘(Scalar‘)) = 1 )
1713fveq2d 6862 . . . . . . . . . . . 12 ( = 𝑊 → (0g‘(Scalar‘)) = (0g𝐹))
18 isobs.z . . . . . . . . . . . 12 0 = (0g𝐹)
1917, 18eqtr4di 2782 . . . . . . . . . . 11 ( = 𝑊 → (0g‘(Scalar‘)) = 0 )
2016, 19ifeq12d 4510 . . . . . . . . . 10 ( = 𝑊 → if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) = if(𝑥 = 𝑦, 1 , 0 ))
2110, 20eqeq12d 2745 . . . . . . . . 9 ( = 𝑊 → ((𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ↔ (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 )))
22212ralbidv 3201 . . . . . . . 8 ( = 𝑊 → (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ↔ ∀𝑥𝑏𝑦𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 )))
23 fveq2 6858 . . . . . . . . . . 11 ( = 𝑊 → (ocv‘) = (ocv‘𝑊))
24 isobs.o . . . . . . . . . . 11 = (ocv‘𝑊)
2523, 24eqtr4di 2782 . . . . . . . . . 10 ( = 𝑊 → (ocv‘) = )
2625fveq1d 6860 . . . . . . . . 9 ( = 𝑊 → ((ocv‘)‘𝑏) = ( 𝑏))
27 fveq2 6858 . . . . . . . . . . 11 ( = 𝑊 → (0g) = (0g𝑊))
28 isobs.y . . . . . . . . . . 11 𝑌 = (0g𝑊)
2927, 28eqtr4di 2782 . . . . . . . . . 10 ( = 𝑊 → (0g) = 𝑌)
3029sneqd 4601 . . . . . . . . 9 ( = 𝑊 → {(0g)} = {𝑌})
3126, 30eqeq12d 2745 . . . . . . . 8 ( = 𝑊 → (((ocv‘)‘𝑏) = {(0g)} ↔ ( 𝑏) = {𝑌}))
3222, 31anbi12d 632 . . . . . . 7 ( = 𝑊 → ((∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)}) ↔ (∀𝑥𝑏𝑦𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝑏) = {𝑌})))
336, 32rabeqbidv 3424 . . . . . 6 ( = 𝑊 → {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})} = {𝑏 ∈ 𝒫 𝑉 ∣ (∀𝑥𝑏𝑦𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝑏) = {𝑌})})
344fvexi 6872 . . . . . . . 8 𝑉 ∈ V
3534pwex 5335 . . . . . . 7 𝒫 𝑉 ∈ V
3635rabex 5294 . . . . . 6 {𝑏 ∈ 𝒫 𝑉 ∣ (∀𝑥𝑏𝑦𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝑏) = {𝑌})} ∈ V
3733, 1, 36fvmpt 6968 . . . . 5 (𝑊 ∈ PreHil → (OBasis‘𝑊) = {𝑏 ∈ 𝒫 𝑉 ∣ (∀𝑥𝑏𝑦𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝑏) = {𝑌})})
3837eleq2d 2814 . . . 4 (𝑊 ∈ PreHil → (𝐵 ∈ (OBasis‘𝑊) ↔ 𝐵 ∈ {𝑏 ∈ 𝒫 𝑉 ∣ (∀𝑥𝑏𝑦𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝑏) = {𝑌})}))
39 raleq 3296 . . . . . . . 8 (𝑏 = 𝐵 → (∀𝑦𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ↔ ∀𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 )))
4039raleqbi1dv 3311 . . . . . . 7 (𝑏 = 𝐵 → (∀𝑥𝑏𝑦𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 )))
41 fveqeq2 6867 . . . . . . 7 (𝑏 = 𝐵 → (( 𝑏) = {𝑌} ↔ ( 𝐵) = {𝑌}))
4240, 41anbi12d 632 . . . . . 6 (𝑏 = 𝐵 → ((∀𝑥𝑏𝑦𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝑏) = {𝑌}) ↔ (∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝐵) = {𝑌})))
4342elrab 3659 . . . . 5 (𝐵 ∈ {𝑏 ∈ 𝒫 𝑉 ∣ (∀𝑥𝑏𝑦𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝑏) = {𝑌})} ↔ (𝐵 ∈ 𝒫 𝑉 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝐵) = {𝑌})))
4434elpw2 5289 . . . . . 6 (𝐵 ∈ 𝒫 𝑉𝐵𝑉)
4544anbi1i 624 . . . . 5 ((𝐵 ∈ 𝒫 𝑉 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝐵) = {𝑌})) ↔ (𝐵𝑉 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝐵) = {𝑌})))
4643, 45bitri 275 . . . 4 (𝐵 ∈ {𝑏 ∈ 𝒫 𝑉 ∣ (∀𝑥𝑏𝑦𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝑏) = {𝑌})} ↔ (𝐵𝑉 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝐵) = {𝑌})))
4738, 46bitrdi 287 . . 3 (𝑊 ∈ PreHil → (𝐵 ∈ (OBasis‘𝑊) ↔ (𝐵𝑉 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝐵) = {𝑌}))))
482, 47biadanii 821 . 2 (𝐵 ∈ (OBasis‘𝑊) ↔ (𝑊 ∈ PreHil ∧ (𝐵𝑉 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝐵) = {𝑌}))))
49 3anass 1094 . 2 ((𝑊 ∈ PreHil ∧ 𝐵𝑉 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝐵) = {𝑌})) ↔ (𝑊 ∈ PreHil ∧ (𝐵𝑉 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝐵) = {𝑌}))))
5048, 49bitr4i 278 1 (𝐵 ∈ (OBasis‘𝑊) ↔ (𝑊 ∈ PreHil ∧ 𝐵𝑉 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝐵) = {𝑌})))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3405  wss 3914  ifcif 4488  𝒫 cpw 4563  {csn 4589  cfv 6511  (class class class)co 7387  Basecbs 17179  Scalarcsca 17223  ·𝑖cip 17225  0gc0g 17402  1rcur 20090  PreHilcphl 21533  ocvcocv 21569  OBasiscobs 21611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-obs 21614
This theorem is referenced by:  obsip  21630  obsrcl  21632  obsss  21633  obsocv  21635
  Copyright terms: Public domain W3C validator