MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjfval Structured version   Visualization version   GIF version

Theorem pjfval 21671
Description: The value of the projection function. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pjfval.v 𝑉 = (Base‘𝑊)
pjfval.l 𝐿 = (LSubSp‘𝑊)
pjfval.o = (ocv‘𝑊)
pjfval.p 𝑃 = (proj1𝑊)
pjfval.k 𝐾 = (proj‘𝑊)
Assertion
Ref Expression
pjfval 𝐾 = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉)))
Distinct variable groups:   𝑥,   𝑥,𝐿   𝑥,𝑃   𝑥,𝑉   𝑥,𝑊
Allowed substitution hint:   𝐾(𝑥)

Proof of Theorem pjfval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 pjfval.k . 2 𝐾 = (proj‘𝑊)
2 fveq2 6881 . . . . . . 7 (𝑤 = 𝑊 → (LSubSp‘𝑤) = (LSubSp‘𝑊))
3 pjfval.l . . . . . . 7 𝐿 = (LSubSp‘𝑊)
42, 3eqtr4di 2789 . . . . . 6 (𝑤 = 𝑊 → (LSubSp‘𝑤) = 𝐿)
5 fveq2 6881 . . . . . . . 8 (𝑤 = 𝑊 → (proj1𝑤) = (proj1𝑊))
6 pjfval.p . . . . . . . 8 𝑃 = (proj1𝑊)
75, 6eqtr4di 2789 . . . . . . 7 (𝑤 = 𝑊 → (proj1𝑤) = 𝑃)
8 eqidd 2737 . . . . . . 7 (𝑤 = 𝑊𝑥 = 𝑥)
9 fveq2 6881 . . . . . . . . 9 (𝑤 = 𝑊 → (ocv‘𝑤) = (ocv‘𝑊))
10 pjfval.o . . . . . . . . 9 = (ocv‘𝑊)
119, 10eqtr4di 2789 . . . . . . . 8 (𝑤 = 𝑊 → (ocv‘𝑤) = )
1211fveq1d 6883 . . . . . . 7 (𝑤 = 𝑊 → ((ocv‘𝑤)‘𝑥) = ( 𝑥))
137, 8, 12oveq123d 7431 . . . . . 6 (𝑤 = 𝑊 → (𝑥(proj1𝑤)((ocv‘𝑤)‘𝑥)) = (𝑥𝑃( 𝑥)))
144, 13mpteq12dv 5212 . . . . 5 (𝑤 = 𝑊 → (𝑥 ∈ (LSubSp‘𝑤) ↦ (𝑥(proj1𝑤)((ocv‘𝑤)‘𝑥))) = (𝑥𝐿 ↦ (𝑥𝑃( 𝑥))))
15 fveq2 6881 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
16 pjfval.v . . . . . . . 8 𝑉 = (Base‘𝑊)
1715, 16eqtr4di 2789 . . . . . . 7 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
1817, 17oveq12d 7428 . . . . . 6 (𝑤 = 𝑊 → ((Base‘𝑤) ↑m (Base‘𝑤)) = (𝑉m 𝑉))
1918xpeq2d 5689 . . . . 5 (𝑤 = 𝑊 → (V × ((Base‘𝑤) ↑m (Base‘𝑤))) = (V × (𝑉m 𝑉)))
2014, 19ineq12d 4201 . . . 4 (𝑤 = 𝑊 → ((𝑥 ∈ (LSubSp‘𝑤) ↦ (𝑥(proj1𝑤)((ocv‘𝑤)‘𝑥))) ∩ (V × ((Base‘𝑤) ↑m (Base‘𝑤)))) = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))))
21 df-pj 21668 . . . 4 proj = (𝑤 ∈ V ↦ ((𝑥 ∈ (LSubSp‘𝑤) ↦ (𝑥(proj1𝑤)((ocv‘𝑤)‘𝑥))) ∩ (V × ((Base‘𝑤) ↑m (Base‘𝑤)))))
223fvexi 6895 . . . . . . 7 𝐿 ∈ V
2322inex1 5292 . . . . . 6 (𝐿 ∩ V) ∈ V
24 ovex 7443 . . . . . . 7 (𝑉m 𝑉) ∈ V
2524inex2 5293 . . . . . 6 (V ∩ (𝑉m 𝑉)) ∈ V
2623, 25xpex 7752 . . . . 5 ((𝐿 ∩ V) × (V ∩ (𝑉m 𝑉))) ∈ V
27 eqid 2736 . . . . . . . 8 (𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) = (𝑥𝐿 ↦ (𝑥𝑃( 𝑥)))
28 ovexd 7445 . . . . . . . 8 (𝑥𝐿 → (𝑥𝑃( 𝑥)) ∈ V)
2927, 28fmpti 7107 . . . . . . 7 (𝑥𝐿 ↦ (𝑥𝑃( 𝑥))):𝐿⟶V
30 fssxp 6738 . . . . . . 7 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))):𝐿⟶V → (𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ⊆ (𝐿 × V))
31 ssrin 4222 . . . . . . 7 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ⊆ (𝐿 × V) → ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))) ⊆ ((𝐿 × V) ∩ (V × (𝑉m 𝑉))))
3229, 30, 31mp2b 10 . . . . . 6 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))) ⊆ ((𝐿 × V) ∩ (V × (𝑉m 𝑉)))
33 inxp 5816 . . . . . 6 ((𝐿 × V) ∩ (V × (𝑉m 𝑉))) = ((𝐿 ∩ V) × (V ∩ (𝑉m 𝑉)))
3432, 33sseqtri 4012 . . . . 5 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))) ⊆ ((𝐿 ∩ V) × (V ∩ (𝑉m 𝑉)))
3526, 34ssexi 5297 . . . 4 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))) ∈ V
3620, 21, 35fvmpt 6991 . . 3 (𝑊 ∈ V → (proj‘𝑊) = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))))
37 fvprc 6873 . . . 4 𝑊 ∈ V → (proj‘𝑊) = ∅)
38 inss1 4217 . . . . 5 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))) ⊆ (𝑥𝐿 ↦ (𝑥𝑃( 𝑥)))
39 fvprc 6873 . . . . . . . 8 𝑊 ∈ V → (LSubSp‘𝑊) = ∅)
403, 39eqtrid 2783 . . . . . . 7 𝑊 ∈ V → 𝐿 = ∅)
4140mpteq1d 5215 . . . . . 6 𝑊 ∈ V → (𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) = (𝑥 ∈ ∅ ↦ (𝑥𝑃( 𝑥))))
42 mpt0 6685 . . . . . 6 (𝑥 ∈ ∅ ↦ (𝑥𝑃( 𝑥))) = ∅
4341, 42eqtrdi 2787 . . . . 5 𝑊 ∈ V → (𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) = ∅)
44 sseq0 4383 . . . . 5 ((((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))) ⊆ (𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∧ (𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) = ∅) → ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))) = ∅)
4538, 43, 44sylancr 587 . . . 4 𝑊 ∈ V → ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))) = ∅)
4637, 45eqtr4d 2774 . . 3 𝑊 ∈ V → (proj‘𝑊) = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))))
4736, 46pm2.61i 182 . 2 (proj‘𝑊) = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉)))
481, 47eqtri 2759 1 𝐾 = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3464  cin 3930  wss 3931  c0 4313  cmpt 5206   × cxp 5657  wf 6532  cfv 6536  (class class class)co 7410  m cmap 8845  Basecbs 17233  proj1cpj1 19621  LSubSpclss 20893  ocvcocv 21625  projcpj 21665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7413  df-pj 21668
This theorem is referenced by:  pjdm  21672  pjpm  21673  pjfval2  21674
  Copyright terms: Public domain W3C validator