MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjfval Structured version   Visualization version   GIF version

Theorem pjfval 20984
Description: The value of the projection function. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pjfval.v 𝑉 = (Base‘𝑊)
pjfval.l 𝐿 = (LSubSp‘𝑊)
pjfval.o = (ocv‘𝑊)
pjfval.p 𝑃 = (proj1𝑊)
pjfval.k 𝐾 = (proj‘𝑊)
Assertion
Ref Expression
pjfval 𝐾 = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉)))
Distinct variable groups:   𝑥,   𝑥,𝐿   𝑥,𝑃   𝑥,𝑉   𝑥,𝑊
Allowed substitution hint:   𝐾(𝑥)

Proof of Theorem pjfval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 pjfval.k . 2 𝐾 = (proj‘𝑊)
2 fveq2 6809 . . . . . . 7 (𝑤 = 𝑊 → (LSubSp‘𝑤) = (LSubSp‘𝑊))
3 pjfval.l . . . . . . 7 𝐿 = (LSubSp‘𝑊)
42, 3eqtr4di 2795 . . . . . 6 (𝑤 = 𝑊 → (LSubSp‘𝑤) = 𝐿)
5 fveq2 6809 . . . . . . . 8 (𝑤 = 𝑊 → (proj1𝑤) = (proj1𝑊))
6 pjfval.p . . . . . . . 8 𝑃 = (proj1𝑊)
75, 6eqtr4di 2795 . . . . . . 7 (𝑤 = 𝑊 → (proj1𝑤) = 𝑃)
8 eqidd 2738 . . . . . . 7 (𝑤 = 𝑊𝑥 = 𝑥)
9 fveq2 6809 . . . . . . . . 9 (𝑤 = 𝑊 → (ocv‘𝑤) = (ocv‘𝑊))
10 pjfval.o . . . . . . . . 9 = (ocv‘𝑊)
119, 10eqtr4di 2795 . . . . . . . 8 (𝑤 = 𝑊 → (ocv‘𝑤) = )
1211fveq1d 6811 . . . . . . 7 (𝑤 = 𝑊 → ((ocv‘𝑤)‘𝑥) = ( 𝑥))
137, 8, 12oveq123d 7334 . . . . . 6 (𝑤 = 𝑊 → (𝑥(proj1𝑤)((ocv‘𝑤)‘𝑥)) = (𝑥𝑃( 𝑥)))
144, 13mpteq12dv 5176 . . . . 5 (𝑤 = 𝑊 → (𝑥 ∈ (LSubSp‘𝑤) ↦ (𝑥(proj1𝑤)((ocv‘𝑤)‘𝑥))) = (𝑥𝐿 ↦ (𝑥𝑃( 𝑥))))
15 fveq2 6809 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
16 pjfval.v . . . . . . . 8 𝑉 = (Base‘𝑊)
1715, 16eqtr4di 2795 . . . . . . 7 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
1817, 17oveq12d 7331 . . . . . 6 (𝑤 = 𝑊 → ((Base‘𝑤) ↑m (Base‘𝑤)) = (𝑉m 𝑉))
1918xpeq2d 5635 . . . . 5 (𝑤 = 𝑊 → (V × ((Base‘𝑤) ↑m (Base‘𝑤))) = (V × (𝑉m 𝑉)))
2014, 19ineq12d 4157 . . . 4 (𝑤 = 𝑊 → ((𝑥 ∈ (LSubSp‘𝑤) ↦ (𝑥(proj1𝑤)((ocv‘𝑤)‘𝑥))) ∩ (V × ((Base‘𝑤) ↑m (Base‘𝑤)))) = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))))
21 df-pj 20981 . . . 4 proj = (𝑤 ∈ V ↦ ((𝑥 ∈ (LSubSp‘𝑤) ↦ (𝑥(proj1𝑤)((ocv‘𝑤)‘𝑥))) ∩ (V × ((Base‘𝑤) ↑m (Base‘𝑤)))))
223fvexi 6823 . . . . . . 7 𝐿 ∈ V
2322inex1 5254 . . . . . 6 (𝐿 ∩ V) ∈ V
24 ovex 7346 . . . . . . 7 (𝑉m 𝑉) ∈ V
2524inex2 5255 . . . . . 6 (V ∩ (𝑉m 𝑉)) ∈ V
2623, 25xpex 7641 . . . . 5 ((𝐿 ∩ V) × (V ∩ (𝑉m 𝑉))) ∈ V
27 eqid 2737 . . . . . . . 8 (𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) = (𝑥𝐿 ↦ (𝑥𝑃( 𝑥)))
28 ovexd 7348 . . . . . . . 8 (𝑥𝐿 → (𝑥𝑃( 𝑥)) ∈ V)
2927, 28fmpti 7023 . . . . . . 7 (𝑥𝐿 ↦ (𝑥𝑃( 𝑥))):𝐿⟶V
30 fssxp 6663 . . . . . . 7 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))):𝐿⟶V → (𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ⊆ (𝐿 × V))
31 ssrin 4177 . . . . . . 7 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ⊆ (𝐿 × V) → ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))) ⊆ ((𝐿 × V) ∩ (V × (𝑉m 𝑉))))
3229, 30, 31mp2b 10 . . . . . 6 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))) ⊆ ((𝐿 × V) ∩ (V × (𝑉m 𝑉)))
33 inxp 5759 . . . . . 6 ((𝐿 × V) ∩ (V × (𝑉m 𝑉))) = ((𝐿 ∩ V) × (V ∩ (𝑉m 𝑉)))
3432, 33sseqtri 3966 . . . . 5 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))) ⊆ ((𝐿 ∩ V) × (V ∩ (𝑉m 𝑉)))
3526, 34ssexi 5259 . . . 4 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))) ∈ V
3620, 21, 35fvmpt 6912 . . 3 (𝑊 ∈ V → (proj‘𝑊) = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))))
37 fvprc 6801 . . . 4 𝑊 ∈ V → (proj‘𝑊) = ∅)
38 inss1 4172 . . . . 5 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))) ⊆ (𝑥𝐿 ↦ (𝑥𝑃( 𝑥)))
39 fvprc 6801 . . . . . . . 8 𝑊 ∈ V → (LSubSp‘𝑊) = ∅)
403, 39eqtrid 2789 . . . . . . 7 𝑊 ∈ V → 𝐿 = ∅)
4140mpteq1d 5180 . . . . . 6 𝑊 ∈ V → (𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) = (𝑥 ∈ ∅ ↦ (𝑥𝑃( 𝑥))))
42 mpt0 6610 . . . . . 6 (𝑥 ∈ ∅ ↦ (𝑥𝑃( 𝑥))) = ∅
4341, 42eqtrdi 2793 . . . . 5 𝑊 ∈ V → (𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) = ∅)
44 sseq0 4343 . . . . 5 ((((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))) ⊆ (𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∧ (𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) = ∅) → ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))) = ∅)
4538, 43, 44sylancr 587 . . . 4 𝑊 ∈ V → ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))) = ∅)
4637, 45eqtr4d 2780 . . 3 𝑊 ∈ V → (proj‘𝑊) = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))))
4736, 46pm2.61i 182 . 2 (proj‘𝑊) = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉)))
481, 47eqtri 2765 1 𝐾 = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2105  Vcvv 3441  cin 3895  wss 3896  c0 4266  cmpt 5168   × cxp 5603  wf 6459  cfv 6463  (class class class)co 7313  m cmap 8661  Basecbs 16979  proj1cpj1 19307  LSubSpclss 20264  ocvcocv 20936  projcpj 20978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-br 5086  df-opab 5148  df-mpt 5169  df-id 5505  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-fv 6471  df-ov 7316  df-pj 20981
This theorem is referenced by:  pjdm  20985  pjpm  20986  pjfval2  20987
  Copyright terms: Public domain W3C validator