MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjfval Structured version   Visualization version   GIF version

Theorem pjfval 21615
Description: The value of the projection function. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pjfval.v 𝑉 = (Base‘𝑊)
pjfval.l 𝐿 = (LSubSp‘𝑊)
pjfval.o = (ocv‘𝑊)
pjfval.p 𝑃 = (proj1𝑊)
pjfval.k 𝐾 = (proj‘𝑊)
Assertion
Ref Expression
pjfval 𝐾 = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉)))
Distinct variable groups:   𝑥,   𝑥,𝐿   𝑥,𝑃   𝑥,𝑉   𝑥,𝑊
Allowed substitution hint:   𝐾(𝑥)

Proof of Theorem pjfval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 pjfval.k . 2 𝐾 = (proj‘𝑊)
2 fveq2 6858 . . . . . . 7 (𝑤 = 𝑊 → (LSubSp‘𝑤) = (LSubSp‘𝑊))
3 pjfval.l . . . . . . 7 𝐿 = (LSubSp‘𝑊)
42, 3eqtr4di 2782 . . . . . 6 (𝑤 = 𝑊 → (LSubSp‘𝑤) = 𝐿)
5 fveq2 6858 . . . . . . . 8 (𝑤 = 𝑊 → (proj1𝑤) = (proj1𝑊))
6 pjfval.p . . . . . . . 8 𝑃 = (proj1𝑊)
75, 6eqtr4di 2782 . . . . . . 7 (𝑤 = 𝑊 → (proj1𝑤) = 𝑃)
8 eqidd 2730 . . . . . . 7 (𝑤 = 𝑊𝑥 = 𝑥)
9 fveq2 6858 . . . . . . . . 9 (𝑤 = 𝑊 → (ocv‘𝑤) = (ocv‘𝑊))
10 pjfval.o . . . . . . . . 9 = (ocv‘𝑊)
119, 10eqtr4di 2782 . . . . . . . 8 (𝑤 = 𝑊 → (ocv‘𝑤) = )
1211fveq1d 6860 . . . . . . 7 (𝑤 = 𝑊 → ((ocv‘𝑤)‘𝑥) = ( 𝑥))
137, 8, 12oveq123d 7408 . . . . . 6 (𝑤 = 𝑊 → (𝑥(proj1𝑤)((ocv‘𝑤)‘𝑥)) = (𝑥𝑃( 𝑥)))
144, 13mpteq12dv 5194 . . . . 5 (𝑤 = 𝑊 → (𝑥 ∈ (LSubSp‘𝑤) ↦ (𝑥(proj1𝑤)((ocv‘𝑤)‘𝑥))) = (𝑥𝐿 ↦ (𝑥𝑃( 𝑥))))
15 fveq2 6858 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
16 pjfval.v . . . . . . . 8 𝑉 = (Base‘𝑊)
1715, 16eqtr4di 2782 . . . . . . 7 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
1817, 17oveq12d 7405 . . . . . 6 (𝑤 = 𝑊 → ((Base‘𝑤) ↑m (Base‘𝑤)) = (𝑉m 𝑉))
1918xpeq2d 5668 . . . . 5 (𝑤 = 𝑊 → (V × ((Base‘𝑤) ↑m (Base‘𝑤))) = (V × (𝑉m 𝑉)))
2014, 19ineq12d 4184 . . . 4 (𝑤 = 𝑊 → ((𝑥 ∈ (LSubSp‘𝑤) ↦ (𝑥(proj1𝑤)((ocv‘𝑤)‘𝑥))) ∩ (V × ((Base‘𝑤) ↑m (Base‘𝑤)))) = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))))
21 df-pj 21612 . . . 4 proj = (𝑤 ∈ V ↦ ((𝑥 ∈ (LSubSp‘𝑤) ↦ (𝑥(proj1𝑤)((ocv‘𝑤)‘𝑥))) ∩ (V × ((Base‘𝑤) ↑m (Base‘𝑤)))))
223fvexi 6872 . . . . . . 7 𝐿 ∈ V
2322inex1 5272 . . . . . 6 (𝐿 ∩ V) ∈ V
24 ovex 7420 . . . . . . 7 (𝑉m 𝑉) ∈ V
2524inex2 5273 . . . . . 6 (V ∩ (𝑉m 𝑉)) ∈ V
2623, 25xpex 7729 . . . . 5 ((𝐿 ∩ V) × (V ∩ (𝑉m 𝑉))) ∈ V
27 eqid 2729 . . . . . . . 8 (𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) = (𝑥𝐿 ↦ (𝑥𝑃( 𝑥)))
28 ovexd 7422 . . . . . . . 8 (𝑥𝐿 → (𝑥𝑃( 𝑥)) ∈ V)
2927, 28fmpti 7084 . . . . . . 7 (𝑥𝐿 ↦ (𝑥𝑃( 𝑥))):𝐿⟶V
30 fssxp 6715 . . . . . . 7 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))):𝐿⟶V → (𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ⊆ (𝐿 × V))
31 ssrin 4205 . . . . . . 7 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ⊆ (𝐿 × V) → ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))) ⊆ ((𝐿 × V) ∩ (V × (𝑉m 𝑉))))
3229, 30, 31mp2b 10 . . . . . 6 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))) ⊆ ((𝐿 × V) ∩ (V × (𝑉m 𝑉)))
33 inxp 5795 . . . . . 6 ((𝐿 × V) ∩ (V × (𝑉m 𝑉))) = ((𝐿 ∩ V) × (V ∩ (𝑉m 𝑉)))
3432, 33sseqtri 3995 . . . . 5 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))) ⊆ ((𝐿 ∩ V) × (V ∩ (𝑉m 𝑉)))
3526, 34ssexi 5277 . . . 4 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))) ∈ V
3620, 21, 35fvmpt 6968 . . 3 (𝑊 ∈ V → (proj‘𝑊) = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))))
37 fvprc 6850 . . . 4 𝑊 ∈ V → (proj‘𝑊) = ∅)
38 inss1 4200 . . . . 5 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))) ⊆ (𝑥𝐿 ↦ (𝑥𝑃( 𝑥)))
39 fvprc 6850 . . . . . . . 8 𝑊 ∈ V → (LSubSp‘𝑊) = ∅)
403, 39eqtrid 2776 . . . . . . 7 𝑊 ∈ V → 𝐿 = ∅)
4140mpteq1d 5197 . . . . . 6 𝑊 ∈ V → (𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) = (𝑥 ∈ ∅ ↦ (𝑥𝑃( 𝑥))))
42 mpt0 6660 . . . . . 6 (𝑥 ∈ ∅ ↦ (𝑥𝑃( 𝑥))) = ∅
4341, 42eqtrdi 2780 . . . . 5 𝑊 ∈ V → (𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) = ∅)
44 sseq0 4366 . . . . 5 ((((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))) ⊆ (𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∧ (𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) = ∅) → ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))) = ∅)
4538, 43, 44sylancr 587 . . . 4 𝑊 ∈ V → ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))) = ∅)
4637, 45eqtr4d 2767 . . 3 𝑊 ∈ V → (proj‘𝑊) = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))))
4736, 46pm2.61i 182 . 2 (proj‘𝑊) = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉)))
481, 47eqtri 2752 1 𝐾 = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3447  cin 3913  wss 3914  c0 4296  cmpt 5188   × cxp 5636  wf 6507  cfv 6511  (class class class)co 7387  m cmap 8799  Basecbs 17179  proj1cpj1 19565  LSubSpclss 20837  ocvcocv 21569  projcpj 21609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-pj 21612
This theorem is referenced by:  pjdm  21616  pjpm  21617  pjfval2  21618
  Copyright terms: Public domain W3C validator