| Step | Hyp | Ref
| Expression |
| 1 | | pjfval.k |
. 2
⊢ 𝐾 = (proj‘𝑊) |
| 2 | | fveq2 6881 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (LSubSp‘𝑤) = (LSubSp‘𝑊)) |
| 3 | | pjfval.l |
. . . . . . 7
⊢ 𝐿 = (LSubSp‘𝑊) |
| 4 | 2, 3 | eqtr4di 2789 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (LSubSp‘𝑤) = 𝐿) |
| 5 | | fveq2 6881 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (proj1‘𝑤) =
(proj1‘𝑊)) |
| 6 | | pjfval.p |
. . . . . . . 8
⊢ 𝑃 = (proj1‘𝑊) |
| 7 | 5, 6 | eqtr4di 2789 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (proj1‘𝑤) = 𝑃) |
| 8 | | eqidd 2737 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → 𝑥 = 𝑥) |
| 9 | | fveq2 6881 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → (ocv‘𝑤) = (ocv‘𝑊)) |
| 10 | | pjfval.o |
. . . . . . . . 9
⊢ ⊥ =
(ocv‘𝑊) |
| 11 | 9, 10 | eqtr4di 2789 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (ocv‘𝑤) = ⊥ ) |
| 12 | 11 | fveq1d 6883 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → ((ocv‘𝑤)‘𝑥) = ( ⊥ ‘𝑥)) |
| 13 | 7, 8, 12 | oveq123d 7431 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (𝑥(proj1‘𝑤)((ocv‘𝑤)‘𝑥)) = (𝑥𝑃( ⊥ ‘𝑥))) |
| 14 | 4, 13 | mpteq12dv 5212 |
. . . . 5
⊢ (𝑤 = 𝑊 → (𝑥 ∈ (LSubSp‘𝑤) ↦ (𝑥(proj1‘𝑤)((ocv‘𝑤)‘𝑥))) = (𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥)))) |
| 15 | | fveq2 6881 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) |
| 16 | | pjfval.v |
. . . . . . . 8
⊢ 𝑉 = (Base‘𝑊) |
| 17 | 15, 16 | eqtr4di 2789 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉) |
| 18 | 17, 17 | oveq12d 7428 |
. . . . . 6
⊢ (𝑤 = 𝑊 → ((Base‘𝑤) ↑m (Base‘𝑤)) = (𝑉 ↑m 𝑉)) |
| 19 | 18 | xpeq2d 5689 |
. . . . 5
⊢ (𝑤 = 𝑊 → (V × ((Base‘𝑤) ↑m
(Base‘𝑤))) = (V
× (𝑉
↑m 𝑉))) |
| 20 | 14, 19 | ineq12d 4201 |
. . . 4
⊢ (𝑤 = 𝑊 → ((𝑥 ∈ (LSubSp‘𝑤) ↦ (𝑥(proj1‘𝑤)((ocv‘𝑤)‘𝑥))) ∩ (V × ((Base‘𝑤) ↑m
(Base‘𝑤)))) = ((𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) ∩ (V × (𝑉 ↑m 𝑉)))) |
| 21 | | df-pj 21668 |
. . . 4
⊢ proj =
(𝑤 ∈ V ↦ ((𝑥 ∈ (LSubSp‘𝑤) ↦ (𝑥(proj1‘𝑤)((ocv‘𝑤)‘𝑥))) ∩ (V × ((Base‘𝑤) ↑m
(Base‘𝑤))))) |
| 22 | 3 | fvexi 6895 |
. . . . . . 7
⊢ 𝐿 ∈ V |
| 23 | 22 | inex1 5292 |
. . . . . 6
⊢ (𝐿 ∩ V) ∈
V |
| 24 | | ovex 7443 |
. . . . . . 7
⊢ (𝑉 ↑m 𝑉) ∈ V |
| 25 | 24 | inex2 5293 |
. . . . . 6
⊢ (V ∩
(𝑉 ↑m 𝑉)) ∈ V |
| 26 | 23, 25 | xpex 7752 |
. . . . 5
⊢ ((𝐿 ∩ V) × (V ∩
(𝑉 ↑m 𝑉))) ∈ V |
| 27 | | eqid 2736 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) = (𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) |
| 28 | | ovexd 7445 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐿 → (𝑥𝑃( ⊥ ‘𝑥)) ∈ V) |
| 29 | 27, 28 | fmpti 7107 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))):𝐿⟶V |
| 30 | | fssxp 6738 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))):𝐿⟶V → (𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) ⊆ (𝐿 × V)) |
| 31 | | ssrin 4222 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) ⊆ (𝐿 × V) → ((𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) ∩ (V × (𝑉 ↑m 𝑉))) ⊆ ((𝐿 × V) ∩ (V × (𝑉 ↑m 𝑉)))) |
| 32 | 29, 30, 31 | mp2b 10 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) ∩ (V × (𝑉 ↑m 𝑉))) ⊆ ((𝐿 × V) ∩ (V × (𝑉 ↑m 𝑉))) |
| 33 | | inxp 5816 |
. . . . . 6
⊢ ((𝐿 × V) ∩ (V ×
(𝑉 ↑m 𝑉))) = ((𝐿 ∩ V) × (V ∩ (𝑉 ↑m 𝑉))) |
| 34 | 32, 33 | sseqtri 4012 |
. . . . 5
⊢ ((𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) ∩ (V × (𝑉 ↑m 𝑉))) ⊆ ((𝐿 ∩ V) × (V ∩ (𝑉 ↑m 𝑉))) |
| 35 | 26, 34 | ssexi 5297 |
. . . 4
⊢ ((𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) ∩ (V × (𝑉 ↑m 𝑉))) ∈ V |
| 36 | 20, 21, 35 | fvmpt 6991 |
. . 3
⊢ (𝑊 ∈ V →
(proj‘𝑊) = ((𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) ∩ (V × (𝑉 ↑m 𝑉)))) |
| 37 | | fvprc 6873 |
. . . 4
⊢ (¬
𝑊 ∈ V →
(proj‘𝑊) =
∅) |
| 38 | | inss1 4217 |
. . . . 5
⊢ ((𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) ∩ (V × (𝑉 ↑m 𝑉))) ⊆ (𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) |
| 39 | | fvprc 6873 |
. . . . . . . 8
⊢ (¬
𝑊 ∈ V →
(LSubSp‘𝑊) =
∅) |
| 40 | 3, 39 | eqtrid 2783 |
. . . . . . 7
⊢ (¬
𝑊 ∈ V → 𝐿 = ∅) |
| 41 | 40 | mpteq1d 5215 |
. . . . . 6
⊢ (¬
𝑊 ∈ V → (𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) = (𝑥 ∈ ∅ ↦ (𝑥𝑃( ⊥ ‘𝑥)))) |
| 42 | | mpt0 6685 |
. . . . . 6
⊢ (𝑥 ∈ ∅ ↦ (𝑥𝑃( ⊥ ‘𝑥))) = ∅ |
| 43 | 41, 42 | eqtrdi 2787 |
. . . . 5
⊢ (¬
𝑊 ∈ V → (𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) = ∅) |
| 44 | | sseq0 4383 |
. . . . 5
⊢ ((((𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) ∩ (V × (𝑉 ↑m 𝑉))) ⊆ (𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) ∧ (𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) = ∅) → ((𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) ∩ (V × (𝑉 ↑m 𝑉))) = ∅) |
| 45 | 38, 43, 44 | sylancr 587 |
. . . 4
⊢ (¬
𝑊 ∈ V → ((𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) ∩ (V × (𝑉 ↑m 𝑉))) = ∅) |
| 46 | 37, 45 | eqtr4d 2774 |
. . 3
⊢ (¬
𝑊 ∈ V →
(proj‘𝑊) = ((𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) ∩ (V × (𝑉 ↑m 𝑉)))) |
| 47 | 36, 46 | pm2.61i 182 |
. 2
⊢
(proj‘𝑊) =
((𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) ∩ (V × (𝑉 ↑m 𝑉))) |
| 48 | 1, 47 | eqtri 2759 |
1
⊢ 𝐾 = ((𝑥 ∈ 𝐿 ↦ (𝑥𝑃( ⊥ ‘𝑥))) ∩ (V × (𝑉 ↑m 𝑉))) |