Detailed syntax breakdown of Definition df-oexp
Step | Hyp | Ref
| Expression |
1 | | coe 8266 |
. 2
class
↑o |
2 | | vx |
. . 3
setvar 𝑥 |
3 | | vy |
. . 3
setvar 𝑦 |
4 | | con0 6251 |
. . 3
class
On |
5 | 2 | cv 1538 |
. . . . 5
class 𝑥 |
6 | | c0 4253 |
. . . . 5
class
∅ |
7 | 5, 6 | wceq 1539 |
. . . 4
wff 𝑥 = ∅ |
8 | | c1o 8260 |
. . . . 5
class
1o |
9 | 3 | cv 1538 |
. . . . 5
class 𝑦 |
10 | 8, 9 | cdif 3880 |
. . . 4
class
(1o ∖ 𝑦) |
11 | | vz |
. . . . . . 7
setvar 𝑧 |
12 | | cvv 3422 |
. . . . . . 7
class
V |
13 | 11 | cv 1538 |
. . . . . . . 8
class 𝑧 |
14 | | comu 8265 |
. . . . . . . 8
class
·o |
15 | 13, 5, 14 | co 7255 |
. . . . . . 7
class (𝑧 ·o 𝑥) |
16 | 11, 12, 15 | cmpt 5153 |
. . . . . 6
class (𝑧 ∈ V ↦ (𝑧 ·o 𝑥)) |
17 | 16, 8 | crdg 8211 |
. . . . 5
class
rec((𝑧 ∈ V
↦ (𝑧
·o 𝑥)),
1o) |
18 | 9, 17 | cfv 6418 |
. . . 4
class
(rec((𝑧 ∈ V
↦ (𝑧
·o 𝑥)),
1o)‘𝑦) |
19 | 7, 10, 18 | cif 4456 |
. . 3
class if(𝑥 = ∅, (1o
∖ 𝑦), (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦)) |
20 | 2, 3, 4, 4, 19 | cmpo 7257 |
. 2
class (𝑥 ∈ On, 𝑦 ∈ On ↦ if(𝑥 = ∅, (1o ∖ 𝑦), (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦))) |
21 | 1, 20 | wceq 1539 |
1
wff
↑o = (𝑥
∈ On, 𝑦 ∈ On
↦ if(𝑥 = ∅,
(1o ∖ 𝑦),
(rec((𝑧 ∈ V ↦
(𝑧 ·o
𝑥)),
1o)‘𝑦))) |