| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df1o2 | Structured version Visualization version GIF version | ||
| Description: Expanded value of the ordinal number 1. Definition 2.1 of [Schloeder] p. 4. (Contributed by NM, 4-Nov-2002.) |
| Ref | Expression |
|---|---|
| df1o2 | ⊢ 1o = {∅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 8411 | . 2 ⊢ 1o = suc ∅ | |
| 2 | suc0 6397 | . 2 ⊢ suc ∅ = {∅} | |
| 3 | 1, 2 | eqtri 2752 | 1 ⊢ 1o = {∅} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4292 {csn 4585 suc csuc 6322 1oc1o 8404 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-dif 3914 df-un 3916 df-nul 4293 df-suc 6326 df-1o 8411 |
| This theorem is referenced by: df2o3 8419 df2o2 8420 1oex 8421 1n0 8429 nlim1 8430 el1o 8436 dif1o 8441 0we1 8447 oeeui 8543 map0e 8832 ensn1 8969 en1 8972 map1 8988 xp1en 9004 0sdom1dom 9162 1sdom2 9164 sdom1 9166 1sdom2dom 9170 ssttrcl 9644 ttrclss 9649 ttrclselem2 9655 infxpenlem 9942 fseqenlem1 9953 dju1dif 10102 infdju1 10119 pwdju1 10120 infmap2 10146 cflim2 10192 pwxpndom2 10594 pwdjundom 10596 gchxpidm 10598 wuncval2 10676 tsk1 10693 hashen1 14311 sylow2alem2 19532 psr1baslem 22102 fvcoe1 22125 coe1f2 22127 coe1sfi 22131 coe1add 22183 coe1mul2lem1 22186 coe1mul2lem2 22187 coe1mul2 22188 coe1tm 22192 ply1coe 22218 evls1rhmlem 22241 evl1sca 22254 evl1var 22256 pf1mpf 22272 pf1ind 22275 mat0dimbas0 22386 mavmul0g 22473 hmph0 23715 tdeglem2 25999 deg1ldg 26030 deg1leb 26033 deg1val 26034 old1 27824 fply1 33520 bnj105 34707 bnj96 34848 bnj98 34850 bnj149 34858 rankeq1o 36152 ordcmp 36428 ssoninhaus 36429 onint1 36430 poimirlem28 37635 reheibor 37826 wopprc 43012 pwslnmlem0 43073 pwfi2f1o 43078 nadd1suc 43374 lincval0 48397 lco0 48409 linds0 48447 f1omo 48874 setc1oterm 49473 setc1ohomfval 49475 setc1ocofval 49476 funcsetc1o 49479 isinito2lem 49480 setc1onsubc 49584 |
| Copyright terms: Public domain | W3C validator |