![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df1o2 | Structured version Visualization version GIF version |
Description: Expanded value of the ordinal number 1. Definition 2.1 of [Schloeder] p. 4. (Contributed by NM, 4-Nov-2002.) |
Ref | Expression |
---|---|
df1o2 | ⊢ 1o = {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 8518 | . 2 ⊢ 1o = suc ∅ | |
2 | suc0 6469 | . 2 ⊢ suc ∅ = {∅} | |
3 | 1, 2 | eqtri 2762 | 1 ⊢ 1o = {∅} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∅c0 4347 {csn 4648 suc csuc 6396 1oc1o 8511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3484 df-dif 3973 df-un 3975 df-nul 4348 df-suc 6400 df-1o 8518 |
This theorem is referenced by: df2o3 8526 df2o2 8527 1oex 8528 1n0 8540 nlim1 8541 el1o 8547 dif1o 8552 0we1 8558 oeeui 8654 map0e 8936 ensn1 9078 ensn1OLD 9079 en1 9082 en1OLD 9083 map1 9101 xp1en 9119 0sdom1dom 9297 1sdom2 9299 sdom1 9301 1sdom2dom 9306 pwfiOLD 9413 ssttrcl 9780 ttrclss 9785 ttrclselem2 9791 infxpenlem 10078 fseqenlem1 10089 dju1dif 10238 infdju1 10255 pwdju1 10256 infmap2 10282 cflim2 10328 pwxpndom2 10730 pwdjundom 10732 gchxpidm 10734 wuncval2 10812 tsk1 10829 hashen1 14415 sylow2alem2 19655 psr1baslem 22200 fvcoe1 22223 coe1f2 22225 coe1sfi 22229 coe1add 22281 coe1mul2lem1 22284 coe1mul2lem2 22285 coe1mul2 22286 coe1tm 22290 ply1coe 22316 evls1rhmlem 22339 evl1sca 22352 evl1var 22354 pf1mpf 22370 pf1ind 22373 mat0dimbas0 22486 mavmul0g 22573 hmph0 23817 tdeglem2 26112 deg1ldg 26143 deg1leb 26146 deg1val 26147 old1 27923 fply1 33541 bnj105 34692 bnj96 34833 bnj98 34835 bnj149 34843 rankeq1o 36127 ordcmp 36360 ssoninhaus 36361 onint1 36362 poimirlem28 37556 reheibor 37747 wopprc 42924 pwslnmlem0 42988 pwfi2f1o 42993 nadd1suc 43294 lincval0 48062 lco0 48074 linds0 48112 |
Copyright terms: Public domain | W3C validator |