| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df1o2 | Structured version Visualization version GIF version | ||
| Description: Expanded value of the ordinal number 1. Definition 2.1 of [Schloeder] p. 4. (Contributed by NM, 4-Nov-2002.) |
| Ref | Expression |
|---|---|
| df1o2 | ⊢ 1o = {∅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 8385 | . 2 ⊢ 1o = suc ∅ | |
| 2 | suc0 6383 | . 2 ⊢ suc ∅ = {∅} | |
| 3 | 1, 2 | eqtri 2754 | 1 ⊢ 1o = {∅} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∅c0 4280 {csn 4573 suc csuc 6308 1oc1o 8378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-un 3902 df-nul 4281 df-suc 6312 df-1o 8385 |
| This theorem is referenced by: df2o3 8393 df2o2 8394 1oex 8395 1n0 8403 nlim1 8404 el1o 8410 dif1o 8415 0we1 8421 oeeui 8517 map0e 8806 ensn1 8943 en1 8946 map1 8962 xp1en 8976 0sdom1dom 9130 1sdom2 9132 sdom1 9134 1sdom2dom 9138 ssttrcl 9605 ttrclss 9610 ttrclselem2 9616 infxpenlem 9904 fseqenlem1 9915 dju1dif 10064 infdju1 10081 pwdju1 10082 infmap2 10108 cflim2 10154 pwxpndom2 10556 pwdjundom 10558 gchxpidm 10560 wuncval2 10638 tsk1 10655 hashen1 14277 sylow2alem2 19530 psr1baslem 22097 fvcoe1 22120 coe1f2 22122 coe1sfi 22126 coe1add 22178 coe1mul2lem1 22181 coe1mul2lem2 22182 coe1mul2 22183 coe1tm 22187 ply1coe 22213 evls1rhmlem 22236 evl1sca 22249 evl1var 22251 pf1mpf 22267 pf1ind 22270 mat0dimbas0 22381 mavmul0g 22468 hmph0 23710 tdeglem2 25993 deg1ldg 26024 deg1leb 26027 deg1val 26028 old1 27820 fply1 33521 bnj105 34736 bnj96 34877 bnj98 34879 bnj149 34887 r11 35105 r12 35106 fineqvnttrclselem1 35141 rankeq1o 36215 ordcmp 36491 ssoninhaus 36492 onint1 36493 poimirlem28 37698 reheibor 37889 wopprc 43133 pwslnmlem0 43194 pwfi2f1o 43199 nadd1suc 43495 lincval0 48526 lco0 48538 linds0 48576 f1omo 49003 setc1oterm 49602 setc1ohomfval 49604 setc1ocofval 49605 funcsetc1o 49608 isinito2lem 49609 setc1onsubc 49713 |
| Copyright terms: Public domain | W3C validator |