| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df1o2 | Structured version Visualization version GIF version | ||
| Description: Expanded value of the ordinal number 1. Definition 2.1 of [Schloeder] p. 4. (Contributed by NM, 4-Nov-2002.) |
| Ref | Expression |
|---|---|
| df1o2 | ⊢ 1o = {∅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 8487 | . 2 ⊢ 1o = suc ∅ | |
| 2 | suc0 6438 | . 2 ⊢ suc ∅ = {∅} | |
| 3 | 1, 2 | eqtri 2757 | 1 ⊢ 1o = {∅} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∅c0 4313 {csn 4606 suc csuc 6365 1oc1o 8480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-dif 3934 df-un 3936 df-nul 4314 df-suc 6369 df-1o 8487 |
| This theorem is referenced by: df2o3 8495 df2o2 8496 1oex 8497 1n0 8507 nlim1 8508 el1o 8514 dif1o 8519 0we1 8525 oeeui 8621 map0e 8903 ensn1 9042 en1 9045 map1 9061 xp1en 9078 0sdom1dom 9255 1sdom2 9257 sdom1 9259 1sdom2dom 9264 ssttrcl 9736 ttrclss 9741 ttrclselem2 9747 infxpenlem 10034 fseqenlem1 10045 dju1dif 10194 infdju1 10211 pwdju1 10212 infmap2 10238 cflim2 10284 pwxpndom2 10686 pwdjundom 10688 gchxpidm 10690 wuncval2 10768 tsk1 10785 hashen1 14390 sylow2alem2 19603 psr1baslem 22133 fvcoe1 22156 coe1f2 22158 coe1sfi 22162 coe1add 22214 coe1mul2lem1 22217 coe1mul2lem2 22218 coe1mul2 22219 coe1tm 22223 ply1coe 22249 evls1rhmlem 22272 evl1sca 22285 evl1var 22287 pf1mpf 22303 pf1ind 22306 mat0dimbas0 22419 mavmul0g 22506 hmph0 23748 tdeglem2 26035 deg1ldg 26066 deg1leb 26069 deg1val 26070 old1 27849 fply1 33510 bnj105 34672 bnj96 34813 bnj98 34815 bnj149 34823 rankeq1o 36106 ordcmp 36382 ssoninhaus 36383 onint1 36384 poimirlem28 37589 reheibor 37780 wopprc 42980 pwslnmlem0 43041 pwfi2f1o 43046 nadd1suc 43343 lincval0 48266 lco0 48278 linds0 48316 setc1oterm 49091 |
| Copyright terms: Public domain | W3C validator |