| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df1o2 | Structured version Visualization version GIF version | ||
| Description: Expanded value of the ordinal number 1. Definition 2.1 of [Schloeder] p. 4. (Contributed by NM, 4-Nov-2002.) |
| Ref | Expression |
|---|---|
| df1o2 | ⊢ 1o = {∅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 8388 | . 2 ⊢ 1o = suc ∅ | |
| 2 | suc0 6384 | . 2 ⊢ suc ∅ = {∅} | |
| 3 | 1, 2 | eqtri 2752 | 1 ⊢ 1o = {∅} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4284 {csn 4577 suc csuc 6309 1oc1o 8381 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-dif 3906 df-un 3908 df-nul 4285 df-suc 6313 df-1o 8388 |
| This theorem is referenced by: df2o3 8396 df2o2 8397 1oex 8398 1n0 8406 nlim1 8407 el1o 8413 dif1o 8418 0we1 8424 oeeui 8520 map0e 8809 ensn1 8946 en1 8949 map1 8965 xp1en 8980 0sdom1dom 9135 1sdom2 9137 sdom1 9139 1sdom2dom 9143 ssttrcl 9611 ttrclss 9616 ttrclselem2 9622 infxpenlem 9907 fseqenlem1 9918 dju1dif 10067 infdju1 10084 pwdju1 10085 infmap2 10111 cflim2 10157 pwxpndom2 10559 pwdjundom 10561 gchxpidm 10563 wuncval2 10641 tsk1 10658 hashen1 14277 sylow2alem2 19497 psr1baslem 22067 fvcoe1 22090 coe1f2 22092 coe1sfi 22096 coe1add 22148 coe1mul2lem1 22151 coe1mul2lem2 22152 coe1mul2 22153 coe1tm 22157 ply1coe 22183 evls1rhmlem 22206 evl1sca 22219 evl1var 22221 pf1mpf 22237 pf1ind 22240 mat0dimbas0 22351 mavmul0g 22438 hmph0 23680 tdeglem2 25964 deg1ldg 25995 deg1leb 25998 deg1val 25999 old1 27789 fply1 33494 bnj105 34697 bnj96 34838 bnj98 34840 bnj149 34848 fineqvnttrclselem1 35080 rankeq1o 36155 ordcmp 36431 ssoninhaus 36432 onint1 36433 poimirlem28 37638 reheibor 37829 wopprc 43013 pwslnmlem0 43074 pwfi2f1o 43079 nadd1suc 43375 lincval0 48410 lco0 48422 linds0 48460 f1omo 48887 setc1oterm 49486 setc1ohomfval 49488 setc1ocofval 49489 funcsetc1o 49492 isinito2lem 49493 setc1onsubc 49597 |
| Copyright terms: Public domain | W3C validator |