Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df1o2 | Structured version Visualization version GIF version |
Description: Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002.) |
Ref | Expression |
---|---|
df1o2 | ⊢ 1o = {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 8345 | . 2 ⊢ 1o = suc ∅ | |
2 | suc0 6362 | . 2 ⊢ suc ∅ = {∅} | |
3 | 1, 2 | eqtri 2764 | 1 ⊢ 1o = {∅} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∅c0 4266 {csn 4570 suc csuc 6290 1oc1o 8338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3442 df-dif 3899 df-un 3901 df-nul 4267 df-suc 6294 df-1o 8345 |
This theorem is referenced by: df2o3 8353 df2o2 8354 1oex 8355 1n0 8367 nlim1 8368 el1o 8374 dif1o 8379 0we1 8385 oeeui 8482 map0e 8719 ensn1 8860 ensn1OLD 8861 en1 8864 en1OLD 8865 map1 8883 xp1en 8900 0sdom1dom 9081 1sdom2 9083 sdom1 9085 1sdom2dom 9090 pwfiOLD 9190 ssttrcl 9550 ttrclss 9555 ttrclselem2 9561 infxpenlem 9848 fseqenlem1 9859 dju1dif 10007 infdju1 10024 pwdju1 10025 infmap2 10053 cflim2 10098 pwxpndom2 10500 pwdjundom 10502 gchxpidm 10504 wuncval2 10582 tsk1 10599 hashen1 14163 sylow2alem2 19296 psr1baslem 21436 fvcoe1 21458 coe1f2 21460 coe1sfi 21464 coe1add 21515 coe1mul2lem1 21518 coe1mul2lem2 21519 coe1mul2 21520 coe1tm 21524 ply1coe 21547 evls1rhmlem 21567 evl1sca 21580 evl1var 21582 pf1mpf 21598 pf1ind 21601 mat0dimbas0 21695 mavmul0g 21782 hmph0 23026 tdeglem2 25306 deg1ldg 25337 deg1leb 25340 deg1val 25341 fply1 31802 bnj105 32839 bnj96 32980 bnj98 32982 bnj149 32990 rankeq1o 34543 ordcmp 34706 ssoninhaus 34707 onint1 34708 poimirlem28 35882 reheibor 36074 wopprc 41074 pwslnmlem0 41138 pwfi2f1o 41143 lincval0 46026 lco0 46038 linds0 46076 |
Copyright terms: Public domain | W3C validator |