Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df1o2 | Structured version Visualization version GIF version |
Description: Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002.) |
Ref | Expression |
---|---|
df1o2 | ⊢ 1o = {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 8297 | . 2 ⊢ 1o = suc ∅ | |
2 | suc0 6340 | . 2 ⊢ suc ∅ = {∅} | |
3 | 1, 2 | eqtri 2766 | 1 ⊢ 1o = {∅} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∅c0 4256 {csn 4561 suc csuc 6268 1oc1o 8290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-suc 6272 df-1o 8297 |
This theorem is referenced by: df2o3 8305 df2o2 8306 1oex 8307 1n0 8318 nlim1 8319 el1o 8325 dif1o 8330 0we1 8336 oeeui 8433 map0e 8670 ensn1 8807 ensn1OLD 8808 en1 8811 en1OLD 8812 map1 8830 xp1en 8844 pwfiOLD 9114 ssttrcl 9473 ttrclss 9478 ttrclselem2 9484 infxpenlem 9769 fseqenlem1 9780 dju1dif 9928 infdju1 9945 pwdju1 9946 infmap2 9974 cflim2 10019 pwxpndom2 10421 pwdjundom 10423 gchxpidm 10425 wuncval2 10503 tsk1 10520 hashen1 14085 sylow2alem2 19223 psr1baslem 21356 fvcoe1 21378 coe1f2 21380 coe1sfi 21384 coe1add 21435 coe1mul2lem1 21438 coe1mul2lem2 21439 coe1mul2 21440 coe1tm 21444 ply1coe 21467 evls1rhmlem 21487 evl1sca 21500 evl1var 21502 pf1mpf 21518 pf1ind 21521 mat0dimbas0 21615 mavmul0g 21702 hmph0 22946 tdeglem2 25226 deg1ldg 25257 deg1leb 25260 deg1val 25261 fply1 31667 bnj105 32703 bnj96 32845 bnj98 32847 bnj149 32855 rankeq1o 34473 ordcmp 34636 ssoninhaus 34637 onint1 34638 poimirlem28 35805 reheibor 35997 wopprc 40852 pwslnmlem0 40916 pwfi2f1o 40921 lincval0 45756 lco0 45768 linds0 45806 |
Copyright terms: Public domain | W3C validator |