| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df1o2 | Structured version Visualization version GIF version | ||
| Description: Expanded value of the ordinal number 1. Definition 2.1 of [Schloeder] p. 4. (Contributed by NM, 4-Nov-2002.) |
| Ref | Expression |
|---|---|
| df1o2 | ⊢ 1o = {∅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 8436 | . 2 ⊢ 1o = suc ∅ | |
| 2 | suc0 6411 | . 2 ⊢ suc ∅ = {∅} | |
| 3 | 1, 2 | eqtri 2753 | 1 ⊢ 1o = {∅} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4298 {csn 4591 suc csuc 6336 1oc1o 8429 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3919 df-un 3921 df-nul 4299 df-suc 6340 df-1o 8436 |
| This theorem is referenced by: df2o3 8444 df2o2 8445 1oex 8446 1n0 8454 nlim1 8455 el1o 8461 dif1o 8466 0we1 8472 oeeui 8568 map0e 8857 ensn1 8994 en1 8997 map1 9013 xp1en 9030 0sdom1dom 9191 1sdom2 9193 sdom1 9195 1sdom2dom 9200 ssttrcl 9674 ttrclss 9679 ttrclselem2 9685 infxpenlem 9972 fseqenlem1 9983 dju1dif 10132 infdju1 10149 pwdju1 10150 infmap2 10176 cflim2 10222 pwxpndom2 10624 pwdjundom 10626 gchxpidm 10628 wuncval2 10706 tsk1 10723 hashen1 14341 sylow2alem2 19554 psr1baslem 22075 fvcoe1 22098 coe1f2 22100 coe1sfi 22104 coe1add 22156 coe1mul2lem1 22159 coe1mul2lem2 22160 coe1mul2 22161 coe1tm 22165 ply1coe 22191 evls1rhmlem 22214 evl1sca 22227 evl1var 22229 pf1mpf 22245 pf1ind 22248 mat0dimbas0 22359 mavmul0g 22446 hmph0 23688 tdeglem2 25972 deg1ldg 26003 deg1leb 26006 deg1val 26007 old1 27793 fply1 33533 bnj105 34720 bnj96 34861 bnj98 34863 bnj149 34871 rankeq1o 36154 ordcmp 36430 ssoninhaus 36431 onint1 36432 poimirlem28 37637 reheibor 37828 wopprc 43012 pwslnmlem0 43073 pwfi2f1o 43078 nadd1suc 43374 lincval0 48394 lco0 48406 linds0 48444 f1omo 48871 setc1oterm 49470 setc1ohomfval 49472 setc1ocofval 49473 funcsetc1o 49476 isinito2lem 49477 setc1onsubc 49581 |
| Copyright terms: Public domain | W3C validator |