| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df1o2 | Structured version Visualization version GIF version | ||
| Description: Expanded value of the ordinal number 1. Definition 2.1 of [Schloeder] p. 4. (Contributed by NM, 4-Nov-2002.) |
| Ref | Expression |
|---|---|
| df1o2 | ⊢ 1o = {∅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 8443 | . 2 ⊢ 1o = suc ∅ | |
| 2 | suc0 6417 | . 2 ⊢ suc ∅ = {∅} | |
| 3 | 1, 2 | eqtri 2753 | 1 ⊢ 1o = {∅} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4304 {csn 4597 suc csuc 6342 1oc1o 8436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3457 df-dif 3925 df-un 3927 df-nul 4305 df-suc 6346 df-1o 8443 |
| This theorem is referenced by: df2o3 8451 df2o2 8452 1oex 8453 1n0 8463 nlim1 8464 el1o 8470 dif1o 8475 0we1 8481 oeeui 8577 map0e 8859 ensn1 8998 en1 9001 map1 9017 xp1en 9034 0sdom1dom 9203 1sdom2 9205 sdom1 9207 1sdom2dom 9212 ssttrcl 9686 ttrclss 9691 ttrclselem2 9697 infxpenlem 9984 fseqenlem1 9995 dju1dif 10144 infdju1 10161 pwdju1 10162 infmap2 10188 cflim2 10234 pwxpndom2 10636 pwdjundom 10638 gchxpidm 10640 wuncval2 10718 tsk1 10735 hashen1 14345 sylow2alem2 19554 psr1baslem 22075 fvcoe1 22098 coe1f2 22100 coe1sfi 22104 coe1add 22156 coe1mul2lem1 22159 coe1mul2lem2 22160 coe1mul2 22161 coe1tm 22165 ply1coe 22191 evls1rhmlem 22214 evl1sca 22227 evl1var 22229 pf1mpf 22245 pf1ind 22248 mat0dimbas0 22359 mavmul0g 22446 hmph0 23688 tdeglem2 25973 deg1ldg 26004 deg1leb 26007 deg1val 26008 old1 27794 fply1 33535 bnj105 34722 bnj96 34863 bnj98 34865 bnj149 34873 rankeq1o 36156 ordcmp 36432 ssoninhaus 36433 onint1 36434 poimirlem28 37639 reheibor 37830 wopprc 42991 pwslnmlem0 43052 pwfi2f1o 43057 nadd1suc 43353 lincval0 48333 lco0 48345 linds0 48383 setc1oterm 49369 setc1ohomfval 49371 setc1ocofval 49372 funcsetc1o 49375 isinito2lem 49376 setc1onsubc 49480 |
| Copyright terms: Public domain | W3C validator |