Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df1o2 | Structured version Visualization version GIF version |
Description: Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002.) |
Ref | Expression |
---|---|
df1o2 | ⊢ 1o = {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 8267 | . 2 ⊢ 1o = suc ∅ | |
2 | suc0 6325 | . 2 ⊢ suc ∅ = {∅} | |
3 | 1, 2 | eqtri 2766 | 1 ⊢ 1o = {∅} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∅c0 4253 {csn 4558 suc csuc 6253 1oc1o 8260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-suc 6257 df-1o 8267 |
This theorem is referenced by: 1oex 8280 df2o3 8282 df2o2 8283 1n0 8286 el1o 8291 dif1o 8292 0we1 8298 oeeui 8395 map0e 8628 ensn1 8761 ensn1OLD 8762 en1 8765 en1OLD 8766 map1 8784 xp1en 8798 pwfiOLD 9044 infxpenlem 9700 fseqenlem1 9711 dju1dif 9859 infdju1 9876 pwdju1 9877 infmap2 9905 cflim2 9950 pwxpndom2 10352 pwdjundom 10354 gchxpidm 10356 wuncval2 10434 tsk1 10451 hashen1 14013 sylow2alem2 19138 psr1baslem 21266 fvcoe1 21288 coe1f2 21290 coe1sfi 21294 coe1add 21345 coe1mul2lem1 21348 coe1mul2lem2 21349 coe1mul2 21350 coe1tm 21354 ply1coe 21377 evls1rhmlem 21397 evl1sca 21410 evl1var 21412 pf1mpf 21428 pf1ind 21431 mat0dimbas0 21523 mavmul0g 21610 hmph0 22854 tdeglem2 25131 deg1ldg 25162 deg1leb 25165 deg1val 25166 fply1 31569 bnj105 32603 bnj96 32745 bnj98 32747 bnj149 32755 ssttrcl 33701 ttrclss 33706 ttrclselem2 33712 rankeq1o 34400 ordcmp 34563 ssoninhaus 34564 onint1 34565 poimirlem28 35732 reheibor 35924 wopprc 40768 pwslnmlem0 40832 pwfi2f1o 40837 lincval0 45644 lco0 45656 linds0 45694 |
Copyright terms: Public domain | W3C validator |