![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df1o2 | Structured version Visualization version GIF version |
Description: Expanded value of the ordinal number 1. Definition 2.1 of [Schloeder] p. 4. (Contributed by NM, 4-Nov-2002.) |
Ref | Expression |
---|---|
df1o2 | ⊢ 1o = {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 8514 | . 2 ⊢ 1o = suc ∅ | |
2 | suc0 6467 | . 2 ⊢ suc ∅ = {∅} | |
3 | 1, 2 | eqtri 2765 | 1 ⊢ 1o = {∅} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∅c0 4342 {csn 4634 suc csuc 6394 1oc1o 8507 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3483 df-dif 3969 df-un 3971 df-nul 4343 df-suc 6398 df-1o 8514 |
This theorem is referenced by: df2o3 8522 df2o2 8523 1oex 8524 1n0 8534 nlim1 8535 el1o 8541 dif1o 8546 0we1 8552 oeeui 8648 map0e 8930 ensn1 9069 en1 9072 map1 9088 xp1en 9105 0sdom1dom 9281 1sdom2 9283 sdom1 9285 1sdom2dom 9290 ssttrcl 9762 ttrclss 9767 ttrclselem2 9773 infxpenlem 10060 fseqenlem1 10071 dju1dif 10220 infdju1 10237 pwdju1 10238 infmap2 10264 cflim2 10310 pwxpndom2 10712 pwdjundom 10714 gchxpidm 10716 wuncval2 10794 tsk1 10811 hashen1 14415 sylow2alem2 19660 psr1baslem 22211 fvcoe1 22234 coe1f2 22236 coe1sfi 22240 coe1add 22292 coe1mul2lem1 22295 coe1mul2lem2 22296 coe1mul2 22297 coe1tm 22301 ply1coe 22327 evls1rhmlem 22350 evl1sca 22363 evl1var 22365 pf1mpf 22381 pf1ind 22384 mat0dimbas0 22497 mavmul0g 22584 hmph0 23828 tdeglem2 26126 deg1ldg 26157 deg1leb 26160 deg1val 26161 old1 27940 fply1 33596 bnj105 34731 bnj96 34872 bnj98 34874 bnj149 34882 rankeq1o 36166 ordcmp 36442 ssoninhaus 36443 onint1 36444 poimirlem28 37649 reheibor 37840 wopprc 43035 pwslnmlem0 43096 pwfi2f1o 43101 nadd1suc 43398 lincval0 48299 lco0 48311 linds0 48349 |
Copyright terms: Public domain | W3C validator |