![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnoe | Structured version Visualization version GIF version |
Description: Functionality and domain of ordinal exponentiation. (Contributed by Mario Carneiro, 29-May-2015.) |
Ref | Expression |
---|---|
fnoe | ⊢ ↑𝑜 Fn (On × On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-oexp 7805 | . 2 ⊢ ↑𝑜 = (𝑥 ∈ On, 𝑦 ∈ On ↦ if(𝑥 = ∅, (1𝑜 ∖ 𝑦), (rec((𝑧 ∈ V ↦ (𝑧 ·𝑜 𝑥)), 1𝑜)‘𝑦))) | |
2 | 1on 7806 | . . . 4 ⊢ 1𝑜 ∈ On | |
3 | difexg 5003 | . . . 4 ⊢ (1𝑜 ∈ On → (1𝑜 ∖ 𝑦) ∈ V) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (1𝑜 ∖ 𝑦) ∈ V |
5 | fvex 6424 | . . 3 ⊢ (rec((𝑧 ∈ V ↦ (𝑧 ·𝑜 𝑥)), 1𝑜)‘𝑦) ∈ V | |
6 | 4, 5 | ifex 4325 | . 2 ⊢ if(𝑥 = ∅, (1𝑜 ∖ 𝑦), (rec((𝑧 ∈ V ↦ (𝑧 ·𝑜 𝑥)), 1𝑜)‘𝑦)) ∈ V |
7 | 1, 6 | fnmpt2i 7475 | 1 ⊢ ↑𝑜 Fn (On × On) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ∈ wcel 2157 Vcvv 3385 ∖ cdif 3766 ∅c0 4115 ifcif 4277 ↦ cmpt 4922 × cxp 5310 Oncon0 5941 Fn wfn 6096 ‘cfv 6101 (class class class)co 6878 reccrdg 7744 1𝑜c1o 7792 ·𝑜 comu 7797 ↑𝑜 coe 7798 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-ord 5944 df-on 5945 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-fv 6109 df-oprab 6882 df-mpt2 6883 df-1st 7401 df-2nd 7402 df-1o 7799 df-oexp 7805 |
This theorem is referenced by: oaabs2 7965 omabs 7967 |
Copyright terms: Public domain | W3C validator |