MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnoe Structured version   Visualization version   GIF version

Theorem fnoe 8522
Description: Functionality and domain of ordinal exponentiation. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
fnoe o Fn (On × On)

Proof of Theorem fnoe
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-oexp 8486 . 2 o = (𝑥 ∈ On, 𝑦 ∈ On ↦ if(𝑥 = ∅, (1o𝑦), (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦)))
2 1on 8492 . . . 4 1o ∈ On
3 difexg 5299 . . . 4 (1o ∈ On → (1o𝑦) ∈ V)
42, 3ax-mp 5 . . 3 (1o𝑦) ∈ V
5 fvex 6889 . . 3 (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦) ∈ V
64, 5ifex 4551 . 2 if(𝑥 = ∅, (1o𝑦), (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦)) ∈ V
71, 6fnmpoi 8069 1 o Fn (On × On)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  Vcvv 3459  cdif 3923  c0 4308  ifcif 4500  cmpt 5201   × cxp 5652  Oncon0 6352   Fn wfn 6526  cfv 6531  (class class class)co 7405  reccrdg 8423  1oc1o 8473   ·o comu 8478  o coe 8479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-1o 8480  df-oexp 8486
This theorem is referenced by:  oaabs2  8661  omabs  8663
  Copyright terms: Public domain W3C validator