MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnoe Structured version   Visualization version   GIF version

Theorem fnoe 8451
Description: Functionality and domain of ordinal exponentiation. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
fnoe o Fn (On × On)

Proof of Theorem fnoe
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-oexp 8417 . 2 o = (𝑥 ∈ On, 𝑦 ∈ On ↦ if(𝑥 = ∅, (1o𝑦), (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦)))
2 1on 8423 . . . 4 1o ∈ On
3 difexg 5279 . . . 4 (1o ∈ On → (1o𝑦) ∈ V)
42, 3ax-mp 5 . . 3 (1o𝑦) ∈ V
5 fvex 6853 . . 3 (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦) ∈ V
64, 5ifex 4535 . 2 if(𝑥 = ∅, (1o𝑦), (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦)) ∈ V
71, 6fnmpoi 8028 1 o Fn (On × On)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3444  cdif 3908  c0 4292  ifcif 4484  cmpt 5183   × cxp 5629  Oncon0 6320   Fn wfn 6494  cfv 6499  (class class class)co 7369  reccrdg 8354  1oc1o 8404   ·o comu 8409  o coe 8410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-1o 8411  df-oexp 8417
This theorem is referenced by:  oaabs2  8590  omabs  8592
  Copyright terms: Public domain W3C validator