Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnoe | Structured version Visualization version GIF version |
Description: Functionality and domain of ordinal exponentiation. (Contributed by Mario Carneiro, 29-May-2015.) |
Ref | Expression |
---|---|
fnoe | ⊢ ↑o Fn (On × On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-oexp 8288 | . 2 ⊢ ↑o = (𝑥 ∈ On, 𝑦 ∈ On ↦ if(𝑥 = ∅, (1o ∖ 𝑦), (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦))) | |
2 | 1on 8289 | . . . 4 ⊢ 1o ∈ On | |
3 | difexg 5255 | . . . 4 ⊢ (1o ∈ On → (1o ∖ 𝑦) ∈ V) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (1o ∖ 𝑦) ∈ V |
5 | fvex 6782 | . . 3 ⊢ (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦) ∈ V | |
6 | 4, 5 | ifex 4515 | . 2 ⊢ if(𝑥 = ∅, (1o ∖ 𝑦), (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦)) ∈ V |
7 | 1, 6 | fnmpoi 7897 | 1 ⊢ ↑o Fn (On × On) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2110 Vcvv 3431 ∖ cdif 3889 ∅c0 4262 ifcif 4465 ↦ cmpt 5162 × cxp 5587 Oncon0 6264 Fn wfn 6426 ‘cfv 6431 (class class class)co 7269 reccrdg 8225 1oc1o 8275 ·o comu 8280 ↑o coe 8281 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7580 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6267 df-on 6268 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-fv 6439 df-oprab 7273 df-mpo 7274 df-1st 7818 df-2nd 7819 df-1o 8282 df-oexp 8288 |
This theorem is referenced by: oaabs2 8454 omabs 8456 |
Copyright terms: Public domain | W3C validator |