![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnoe | Structured version Visualization version GIF version |
Description: Functionality and domain of ordinal exponentiation. (Contributed by Mario Carneiro, 29-May-2015.) |
Ref | Expression |
---|---|
fnoe | โข โo Fn (On ร On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-oexp 8487 | . 2 โข โo = (๐ฅ โ On, ๐ฆ โ On โฆ if(๐ฅ = โ , (1o โ ๐ฆ), (rec((๐ง โ V โฆ (๐ง ยทo ๐ฅ)), 1o)โ๐ฆ))) | |
2 | 1on 8493 | . . . 4 โข 1o โ On | |
3 | difexg 5324 | . . . 4 โข (1o โ On โ (1o โ ๐ฆ) โ V) | |
4 | 2, 3 | ax-mp 5 | . . 3 โข (1o โ ๐ฆ) โ V |
5 | fvex 6905 | . . 3 โข (rec((๐ง โ V โฆ (๐ง ยทo ๐ฅ)), 1o)โ๐ฆ) โ V | |
6 | 4, 5 | ifex 4575 | . 2 โข if(๐ฅ = โ , (1o โ ๐ฆ), (rec((๐ง โ V โฆ (๐ง ยทo ๐ฅ)), 1o)โ๐ฆ)) โ V |
7 | 1, 6 | fnmpoi 8069 | 1 โข โo Fn (On ร On) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 โ wcel 2099 Vcvv 3470 โ cdif 3942 โ c0 4319 ifcif 4525 โฆ cmpt 5226 ร cxp 5671 Oncon0 6364 Fn wfn 6538 โcfv 6543 (class class class)co 7415 reccrdg 8424 1oc1o 8474 ยทo comu 8479 โo coe 8480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-ord 6367 df-on 6368 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-oprab 7419 df-mpo 7420 df-1st 7988 df-2nd 7989 df-1o 8481 df-oexp 8487 |
This theorem is referenced by: oaabs2 8664 omabs 8666 |
Copyright terms: Public domain | W3C validator |