| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnoe | Structured version Visualization version GIF version | ||
| Description: Functionality and domain of ordinal exponentiation. (Contributed by Mario Carneiro, 29-May-2015.) |
| Ref | Expression |
|---|---|
| fnoe | ⊢ ↑o Fn (On × On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-oexp 8440 | . 2 ⊢ ↑o = (𝑥 ∈ On, 𝑦 ∈ On ↦ if(𝑥 = ∅, (1o ∖ 𝑦), (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦))) | |
| 2 | 1on 8446 | . . . 4 ⊢ 1o ∈ On | |
| 3 | difexg 5284 | . . . 4 ⊢ (1o ∈ On → (1o ∖ 𝑦) ∈ V) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (1o ∖ 𝑦) ∈ V |
| 5 | fvex 6871 | . . 3 ⊢ (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦) ∈ V | |
| 6 | 4, 5 | ifex 4539 | . 2 ⊢ if(𝑥 = ∅, (1o ∖ 𝑦), (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦)) ∈ V |
| 7 | 1, 6 | fnmpoi 8049 | 1 ⊢ ↑o Fn (On × On) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∖ cdif 3911 ∅c0 4296 ifcif 4488 ↦ cmpt 5188 × cxp 5636 Oncon0 6332 Fn wfn 6506 ‘cfv 6511 (class class class)co 7387 reccrdg 8377 1oc1o 8427 ·o comu 8432 ↑o coe 8433 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-1o 8434 df-oexp 8440 |
| This theorem is referenced by: oaabs2 8613 omabs 8615 |
| Copyright terms: Public domain | W3C validator |