Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnoe | Structured version Visualization version GIF version |
Description: Functionality and domain of ordinal exponentiation. (Contributed by Mario Carneiro, 29-May-2015.) |
Ref | Expression |
---|---|
fnoe | ⊢ ↑o Fn (On × On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-oexp 8303 | . 2 ⊢ ↑o = (𝑥 ∈ On, 𝑦 ∈ On ↦ if(𝑥 = ∅, (1o ∖ 𝑦), (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦))) | |
2 | 1on 8309 | . . . 4 ⊢ 1o ∈ On | |
3 | difexg 5251 | . . . 4 ⊢ (1o ∈ On → (1o ∖ 𝑦) ∈ V) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (1o ∖ 𝑦) ∈ V |
5 | fvex 6787 | . . 3 ⊢ (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦) ∈ V | |
6 | 4, 5 | ifex 4509 | . 2 ⊢ if(𝑥 = ∅, (1o ∖ 𝑦), (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦)) ∈ V |
7 | 1, 6 | fnmpoi 7910 | 1 ⊢ ↑o Fn (On × On) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∖ cdif 3884 ∅c0 4256 ifcif 4459 ↦ cmpt 5157 × cxp 5587 Oncon0 6266 Fn wfn 6428 ‘cfv 6433 (class class class)co 7275 reccrdg 8240 1oc1o 8290 ·o comu 8295 ↑o coe 8296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-1o 8297 df-oexp 8303 |
This theorem is referenced by: oaabs2 8479 omabs 8481 |
Copyright terms: Public domain | W3C validator |