Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oev | Structured version Visualization version GIF version |
Description: Value of ordinal exponentiation. (Contributed by NM, 30-Dec-2004.) (Revised by Mario Carneiro, 23-Aug-2014.) |
Ref | Expression |
---|---|
oev | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) = if(𝐴 = ∅, (1o ∖ 𝐵), (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2742 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑦 = ∅ ↔ 𝐴 = ∅)) | |
2 | oveq2 7283 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 ·o 𝑦) = (𝑥 ·o 𝐴)) | |
3 | 2 | mpteq2dv 5176 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ V ↦ (𝑥 ·o 𝑦)) = (𝑥 ∈ V ↦ (𝑥 ·o 𝐴))) |
4 | rdgeq1 8242 | . . . . 5 ⊢ ((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)) = (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) → rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o) = rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝑦 = 𝐴 → rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o) = rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)) |
6 | 5 | fveq1d 6776 | . . 3 ⊢ (𝑦 = 𝐴 → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o)‘𝑧) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝑧)) |
7 | 1, 6 | ifbieq2d 4485 | . 2 ⊢ (𝑦 = 𝐴 → if(𝑦 = ∅, (1o ∖ 𝑧), (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o)‘𝑧)) = if(𝐴 = ∅, (1o ∖ 𝑧), (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝑧))) |
8 | difeq2 4051 | . . 3 ⊢ (𝑧 = 𝐵 → (1o ∖ 𝑧) = (1o ∖ 𝐵)) | |
9 | fveq2 6774 | . . 3 ⊢ (𝑧 = 𝐵 → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝑧) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)) | |
10 | 8, 9 | ifeq12d 4480 | . 2 ⊢ (𝑧 = 𝐵 → if(𝐴 = ∅, (1o ∖ 𝑧), (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝑧)) = if(𝐴 = ∅, (1o ∖ 𝐵), (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))) |
11 | df-oexp 8303 | . 2 ⊢ ↑o = (𝑦 ∈ On, 𝑧 ∈ On ↦ if(𝑦 = ∅, (1o ∖ 𝑧), (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o)‘𝑧))) | |
12 | 1oex 8307 | . . . 4 ⊢ 1o ∈ V | |
13 | 12 | difexi 5252 | . . 3 ⊢ (1o ∖ 𝐵) ∈ V |
14 | fvex 6787 | . . 3 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∈ V | |
15 | 13, 14 | ifex 4509 | . 2 ⊢ if(𝐴 = ∅, (1o ∖ 𝐵), (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)) ∈ V |
16 | 7, 10, 11, 15 | ovmpo 7433 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) = if(𝐴 = ∅, (1o ∖ 𝐵), (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∖ cdif 3884 ∅c0 4256 ifcif 4459 ↦ cmpt 5157 Oncon0 6266 ‘cfv 6433 (class class class)co 7275 reccrdg 8240 1oc1o 8290 ·o comu 8295 ↑o coe 8296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-suc 6272 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oexp 8303 |
This theorem is referenced by: oevn0 8345 oe0m 8348 |
Copyright terms: Public domain | W3C validator |