| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oev | Structured version Visualization version GIF version | ||
| Description: Value of ordinal exponentiation. (Contributed by NM, 30-Dec-2004.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| Ref | Expression |
|---|---|
| oev | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) = if(𝐴 = ∅, (1o ∖ 𝐵), (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2737 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑦 = ∅ ↔ 𝐴 = ∅)) | |
| 2 | oveq2 7360 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 ·o 𝑦) = (𝑥 ·o 𝐴)) | |
| 3 | 2 | mpteq2dv 5187 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ V ↦ (𝑥 ·o 𝑦)) = (𝑥 ∈ V ↦ (𝑥 ·o 𝐴))) |
| 4 | rdgeq1 8336 | . . . . 5 ⊢ ((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)) = (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) → rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o) = rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝑦 = 𝐴 → rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o) = rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)) |
| 6 | 5 | fveq1d 6830 | . . 3 ⊢ (𝑦 = 𝐴 → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o)‘𝑧) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝑧)) |
| 7 | 1, 6 | ifbieq2d 4501 | . 2 ⊢ (𝑦 = 𝐴 → if(𝑦 = ∅, (1o ∖ 𝑧), (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o)‘𝑧)) = if(𝐴 = ∅, (1o ∖ 𝑧), (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝑧))) |
| 8 | difeq2 4069 | . . 3 ⊢ (𝑧 = 𝐵 → (1o ∖ 𝑧) = (1o ∖ 𝐵)) | |
| 9 | fveq2 6828 | . . 3 ⊢ (𝑧 = 𝐵 → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝑧) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)) | |
| 10 | 8, 9 | ifeq12d 4496 | . 2 ⊢ (𝑧 = 𝐵 → if(𝐴 = ∅, (1o ∖ 𝑧), (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝑧)) = if(𝐴 = ∅, (1o ∖ 𝐵), (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))) |
| 11 | df-oexp 8397 | . 2 ⊢ ↑o = (𝑦 ∈ On, 𝑧 ∈ On ↦ if(𝑦 = ∅, (1o ∖ 𝑧), (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o)‘𝑧))) | |
| 12 | 1oex 8401 | . . . 4 ⊢ 1o ∈ V | |
| 13 | 12 | difexi 5270 | . . 3 ⊢ (1o ∖ 𝐵) ∈ V |
| 14 | fvex 6841 | . . 3 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∈ V | |
| 15 | 13, 14 | ifex 4525 | . 2 ⊢ if(𝐴 = ∅, (1o ∖ 𝐵), (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)) ∈ V |
| 16 | 7, 10, 11, 15 | ovmpo 7512 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) = if(𝐴 = ∅, (1o ∖ 𝐵), (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∖ cdif 3895 ∅c0 4282 ifcif 4474 ↦ cmpt 5174 Oncon0 6311 ‘cfv 6486 (class class class)co 7352 reccrdg 8334 1oc1o 8384 ·o comu 8389 ↑o coe 8390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-suc 6317 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-oexp 8397 |
| This theorem is referenced by: oevn0 8436 oe0m 8439 |
| Copyright terms: Public domain | W3C validator |