MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oev Structured version   Visualization version   GIF version

Theorem oev 8526
Description: Value of ordinal exponentiation. (Contributed by NM, 30-Dec-2004.) (Revised by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
oev ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) = if(𝐴 = ∅, (1o𝐵), (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem oev
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2739 . . 3 (𝑦 = 𝐴 → (𝑦 = ∅ ↔ 𝐴 = ∅))
2 oveq2 7413 . . . . . 6 (𝑦 = 𝐴 → (𝑥 ·o 𝑦) = (𝑥 ·o 𝐴))
32mpteq2dv 5215 . . . . 5 (𝑦 = 𝐴 → (𝑥 ∈ V ↦ (𝑥 ·o 𝑦)) = (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)))
4 rdgeq1 8425 . . . . 5 ((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)) = (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) → rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o) = rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o))
53, 4syl 17 . . . 4 (𝑦 = 𝐴 → rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o) = rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o))
65fveq1d 6878 . . 3 (𝑦 = 𝐴 → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o)‘𝑧) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝑧))
71, 6ifbieq2d 4527 . 2 (𝑦 = 𝐴 → if(𝑦 = ∅, (1o𝑧), (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o)‘𝑧)) = if(𝐴 = ∅, (1o𝑧), (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝑧)))
8 difeq2 4095 . . 3 (𝑧 = 𝐵 → (1o𝑧) = (1o𝐵))
9 fveq2 6876 . . 3 (𝑧 = 𝐵 → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝑧) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))
108, 9ifeq12d 4522 . 2 (𝑧 = 𝐵 → if(𝐴 = ∅, (1o𝑧), (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝑧)) = if(𝐴 = ∅, (1o𝐵), (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)))
11 df-oexp 8486 . 2 o = (𝑦 ∈ On, 𝑧 ∈ On ↦ if(𝑦 = ∅, (1o𝑧), (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o)‘𝑧)))
12 1oex 8490 . . . 4 1o ∈ V
1312difexi 5300 . . 3 (1o𝐵) ∈ V
14 fvex 6889 . . 3 (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∈ V
1513, 14ifex 4551 . 2 if(𝐴 = ∅, (1o𝐵), (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)) ∈ V
167, 10, 11, 15ovmpo 7567 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) = if(𝐴 = ∅, (1o𝐵), (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  cdif 3923  c0 4308  ifcif 4500  cmpt 5201  Oncon0 6352  cfv 6531  (class class class)co 7405  reccrdg 8423  1oc1o 8473   ·o comu 8478  o coe 8479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-suc 6358  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oexp 8486
This theorem is referenced by:  oevn0  8527  oe0m  8530
  Copyright terms: Public domain W3C validator