| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oev | Structured version Visualization version GIF version | ||
| Description: Value of ordinal exponentiation. (Contributed by NM, 30-Dec-2004.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| Ref | Expression |
|---|---|
| oev | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) = if(𝐴 = ∅, (1o ∖ 𝐵), (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2739 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑦 = ∅ ↔ 𝐴 = ∅)) | |
| 2 | oveq2 7413 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 ·o 𝑦) = (𝑥 ·o 𝐴)) | |
| 3 | 2 | mpteq2dv 5215 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ V ↦ (𝑥 ·o 𝑦)) = (𝑥 ∈ V ↦ (𝑥 ·o 𝐴))) |
| 4 | rdgeq1 8425 | . . . . 5 ⊢ ((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)) = (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) → rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o) = rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝑦 = 𝐴 → rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o) = rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)) |
| 6 | 5 | fveq1d 6878 | . . 3 ⊢ (𝑦 = 𝐴 → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o)‘𝑧) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝑧)) |
| 7 | 1, 6 | ifbieq2d 4527 | . 2 ⊢ (𝑦 = 𝐴 → if(𝑦 = ∅, (1o ∖ 𝑧), (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o)‘𝑧)) = if(𝐴 = ∅, (1o ∖ 𝑧), (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝑧))) |
| 8 | difeq2 4095 | . . 3 ⊢ (𝑧 = 𝐵 → (1o ∖ 𝑧) = (1o ∖ 𝐵)) | |
| 9 | fveq2 6876 | . . 3 ⊢ (𝑧 = 𝐵 → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝑧) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)) | |
| 10 | 8, 9 | ifeq12d 4522 | . 2 ⊢ (𝑧 = 𝐵 → if(𝐴 = ∅, (1o ∖ 𝑧), (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝑧)) = if(𝐴 = ∅, (1o ∖ 𝐵), (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))) |
| 11 | df-oexp 8486 | . 2 ⊢ ↑o = (𝑦 ∈ On, 𝑧 ∈ On ↦ if(𝑦 = ∅, (1o ∖ 𝑧), (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o)‘𝑧))) | |
| 12 | 1oex 8490 | . . . 4 ⊢ 1o ∈ V | |
| 13 | 12 | difexi 5300 | . . 3 ⊢ (1o ∖ 𝐵) ∈ V |
| 14 | fvex 6889 | . . 3 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∈ V | |
| 15 | 13, 14 | ifex 4551 | . 2 ⊢ if(𝐴 = ∅, (1o ∖ 𝐵), (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)) ∈ V |
| 16 | 7, 10, 11, 15 | ovmpo 7567 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) = if(𝐴 = ∅, (1o ∖ 𝐵), (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∖ cdif 3923 ∅c0 4308 ifcif 4500 ↦ cmpt 5201 Oncon0 6352 ‘cfv 6531 (class class class)co 7405 reccrdg 8423 1oc1o 8473 ·o comu 8478 ↑o coe 8479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-suc 6358 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oexp 8486 |
| This theorem is referenced by: oevn0 8527 oe0m 8530 |
| Copyright terms: Public domain | W3C validator |