Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnom Structured version   Visualization version   GIF version

Theorem fnom 8137
 Description: Functionality and domain of ordinal multiplication. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fnom ·o Fn (On × On)

Proof of Theorem fnom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-omul 8110 . 2 ·o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 +o 𝑥)), ∅)‘𝑦))
2 fvex 6686 . 2 (rec((𝑧 ∈ V ↦ (𝑧 +o 𝑥)), ∅)‘𝑦) ∈ V
31, 2fnmpoi 7771 1 ·o Fn (On × On)
 Colors of variables: wff setvar class Syntax hints:  Vcvv 3497  ∅c0 4294   ↦ cmpt 5149   × cxp 5556  Oncon0 6194   Fn wfn 6353  ‘cfv 6358  (class class class)co 7159  reccrdg 8048   +o coa 8102   ·o comu 8103 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-fv 6366  df-oprab 7163  df-mpo 7164  df-1st 7692  df-2nd 7693  df-omul 8110 This theorem is referenced by:  om0x  8147  dmmulpi  10316
 Copyright terms: Public domain W3C validator