MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omv Structured version   Visualization version   GIF version

Theorem omv 8304
Description: Value of ordinal multiplication. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
omv ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem omv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7263 . . . . 5 (𝑦 = 𝐴 → (𝑥 +o 𝑦) = (𝑥 +o 𝐴))
21mpteq2dv 5172 . . . 4 (𝑦 = 𝐴 → (𝑥 ∈ V ↦ (𝑥 +o 𝑦)) = (𝑥 ∈ V ↦ (𝑥 +o 𝐴)))
3 rdgeq1 8213 . . . 4 ((𝑥 ∈ V ↦ (𝑥 +o 𝑦)) = (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) → rec((𝑥 ∈ V ↦ (𝑥 +o 𝑦)), ∅) = rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅))
42, 3syl 17 . . 3 (𝑦 = 𝐴 → rec((𝑥 ∈ V ↦ (𝑥 +o 𝑦)), ∅) = rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅))
54fveq1d 6758 . 2 (𝑦 = 𝐴 → (rec((𝑥 ∈ V ↦ (𝑥 +o 𝑦)), ∅)‘𝑧) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝑧))
6 fveq2 6756 . 2 (𝑧 = 𝐵 → (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝑧) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵))
7 df-omul 8272 . 2 ·o = (𝑦 ∈ On, 𝑧 ∈ On ↦ (rec((𝑥 ∈ V ↦ (𝑥 +o 𝑦)), ∅)‘𝑧))
8 fvex 6769 . 2 (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵) ∈ V
95, 6, 7, 8ovmpo 7411 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253  cmpt 5153  Oncon0 6251  cfv 6418  (class class class)co 7255  reccrdg 8211   +o coa 8264   ·o comu 8265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-omul 8272
This theorem is referenced by:  om0  8309  omsuc  8318  onmsuc  8321  omlim  8325
  Copyright terms: Public domain W3C validator