| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omv | Structured version Visualization version GIF version | ||
| Description: Value of ordinal multiplication. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| Ref | Expression |
|---|---|
| omv | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7349 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑥 +o 𝑦) = (𝑥 +o 𝐴)) | |
| 2 | 1 | mpteq2dv 5180 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ V ↦ (𝑥 +o 𝑦)) = (𝑥 ∈ V ↦ (𝑥 +o 𝐴))) |
| 3 | rdgeq1 8325 | . . . 4 ⊢ ((𝑥 ∈ V ↦ (𝑥 +o 𝑦)) = (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) → rec((𝑥 ∈ V ↦ (𝑥 +o 𝑦)), ∅) = rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝑦 = 𝐴 → rec((𝑥 ∈ V ↦ (𝑥 +o 𝑦)), ∅) = rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)) |
| 5 | 4 | fveq1d 6819 | . 2 ⊢ (𝑦 = 𝐴 → (rec((𝑥 ∈ V ↦ (𝑥 +o 𝑦)), ∅)‘𝑧) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝑧)) |
| 6 | fveq2 6817 | . 2 ⊢ (𝑧 = 𝐵 → (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝑧) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵)) | |
| 7 | df-omul 8385 | . 2 ⊢ ·o = (𝑦 ∈ On, 𝑧 ∈ On ↦ (rec((𝑥 ∈ V ↦ (𝑥 +o 𝑦)), ∅)‘𝑧)) | |
| 8 | fvex 6830 | . 2 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵) ∈ V | |
| 9 | 5, 6, 7, 8 | ovmpo 7501 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4278 ↦ cmpt 5167 Oncon0 6301 ‘cfv 6476 (class class class)co 7341 reccrdg 8323 +o coa 8377 ·o comu 8378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-iota 6432 df-fun 6478 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-omul 8385 |
| This theorem is referenced by: om0 8427 omsuc 8436 onmsuc 8439 omlim 8443 |
| Copyright terms: Public domain | W3C validator |