MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omv Structured version   Visualization version   GIF version

Theorem omv 8422
Description: Value of ordinal multiplication. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
omv ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem omv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7349 . . . . 5 (𝑦 = 𝐴 → (𝑥 +o 𝑦) = (𝑥 +o 𝐴))
21mpteq2dv 5180 . . . 4 (𝑦 = 𝐴 → (𝑥 ∈ V ↦ (𝑥 +o 𝑦)) = (𝑥 ∈ V ↦ (𝑥 +o 𝐴)))
3 rdgeq1 8325 . . . 4 ((𝑥 ∈ V ↦ (𝑥 +o 𝑦)) = (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) → rec((𝑥 ∈ V ↦ (𝑥 +o 𝑦)), ∅) = rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅))
42, 3syl 17 . . 3 (𝑦 = 𝐴 → rec((𝑥 ∈ V ↦ (𝑥 +o 𝑦)), ∅) = rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅))
54fveq1d 6819 . 2 (𝑦 = 𝐴 → (rec((𝑥 ∈ V ↦ (𝑥 +o 𝑦)), ∅)‘𝑧) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝑧))
6 fveq2 6817 . 2 (𝑧 = 𝐵 → (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝑧) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵))
7 df-omul 8385 . 2 ·o = (𝑦 ∈ On, 𝑧 ∈ On ↦ (rec((𝑥 ∈ V ↦ (𝑥 +o 𝑦)), ∅)‘𝑧))
8 fvex 6830 . 2 (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵) ∈ V
95, 6, 7, 8ovmpo 7501 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  c0 4278  cmpt 5167  Oncon0 6301  cfv 6476  (class class class)co 7341  reccrdg 8323   +o coa 8377   ·o comu 8378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-iota 6432  df-fun 6478  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-omul 8385
This theorem is referenced by:  om0  8427  omsuc  8436  onmsuc  8439  omlim  8443
  Copyright terms: Public domain W3C validator