| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-on | Structured version Visualization version GIF version | ||
| Description: Define the class of all ordinal numbers. Definition 7.11 of [TakeutiZaring] p. 38. (Contributed by NM, 5-Jun-1994.) |
| Ref | Expression |
|---|---|
| df-on | ⊢ On = {𝑥 ∣ Ord 𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con0 6384 | . 2 class On | |
| 2 | vx | . . . . 5 setvar 𝑥 | |
| 3 | 2 | cv 1539 | . . . 4 class 𝑥 |
| 4 | 3 | word 6383 | . . 3 wff Ord 𝑥 |
| 5 | 4, 2 | cab 2714 | . 2 class {𝑥 ∣ Ord 𝑥} |
| 6 | 1, 5 | wceq 1540 | 1 wff On = {𝑥 ∣ Ord 𝑥} |
| Colors of variables: wff setvar class |
| This definition is referenced by: elong 6392 dfon2 35793 |
| Copyright terms: Public domain | W3C validator |