MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-on Structured version   Visualization version   GIF version

Definition df-on 6252
Description: Define the class of all ordinal numbers. Definition 7.11 of [TakeutiZaring] p. 38. (Contributed by NM, 5-Jun-1994.)
Assertion
Ref Expression
df-on On = {𝑥 ∣ Ord 𝑥}

Detailed syntax breakdown of Definition df-on
StepHypRef Expression
1 con0 6248 . 2 class On
2 vx . . . . 5 setvar 𝑥
32cv 1542 . . . 4 class 𝑥
43word 6247 . . 3 wff Ord 𝑥
54, 2cab 2716 . 2 class {𝑥 ∣ Ord 𝑥}
61, 5wceq 1543 1 wff On = {𝑥 ∣ Ord 𝑥}
Colors of variables: wff setvar class
This definition is referenced by:  elong  6256  dfon2  33649
  Copyright terms: Public domain W3C validator