MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ord Structured version   Visualization version   GIF version

Definition df-ord 6368
Description: Define the ordinal predicate, which is true for a class that is transitive and is well-ordered by the membership relation. Variant of definition of [BellMachover] p. 468.

Some sources will define a notation for ordinal order corresponding to < and but we just use and respectively.

(Contributed by NM, 17-Sep-1993.)

Assertion
Ref Expression
df-ord (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))

Detailed syntax breakdown of Definition df-ord
StepHypRef Expression
1 cA . . 3 class 𝐴
21word 6364 . 2 wff Ord 𝐴
31wtr 5266 . . 3 wff Tr 𝐴
4 cep 5580 . . . 4 class E
51, 4wwe 5631 . . 3 wff E We 𝐴
63, 5wa 397 . 2 wff (Tr 𝐴 ∧ E We 𝐴)
72, 6wb 205 1 wff (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  ordeq  6372  ordwe  6378  ordtr  6379  trssord  6382  ordelord  6387  ord0  6418  ordon  7764  dford5  7771  dfrecs3  8372  dfrecs3OLD  8373  dford2  9615  smobeth  10581  gruina  10813  dford5reg  34785  dfon2  34795  oaun3lem1  42172
  Copyright terms: Public domain W3C validator