| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ord | Structured version Visualization version GIF version | ||
| Description: Define the ordinal
predicate, which is true for a class that is transitive
and is well-ordered by the membership relation. Variant of definition of
[BellMachover] p. 468.
Some sources will define a notation for ordinal order corresponding to < and ≤ but we just use ∈ and ⊆ respectively. (Contributed by NM, 17-Sep-1993.) |
| Ref | Expression |
|---|---|
| df-ord | ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | word 6319 | . 2 wff Ord 𝐴 |
| 3 | 1 | wtr 5209 | . . 3 wff Tr 𝐴 |
| 4 | cep 5530 | . . . 4 class E | |
| 5 | 1, 4 | wwe 5583 | . . 3 wff E We 𝐴 |
| 6 | 3, 5 | wa 395 | . 2 wff (Tr 𝐴 ∧ E We 𝐴) |
| 7 | 2, 6 | wb 206 | 1 wff (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: ordeq 6327 ordwe 6333 ordtr 6334 trssord 6337 ordelord 6342 ord0 6374 ordon 7733 dford5 7740 dfrecs3 8318 dford2 9549 smobeth 10515 gruina 10747 dford5reg 35763 dfon2 35773 oaun3lem1 43356 |
| Copyright terms: Public domain | W3C validator |