MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ord Structured version   Visualization version   GIF version

Definition df-ord 6309
Description: Define the ordinal predicate, which is true for a class that is transitive and is well-ordered by the membership relation. Variant of definition of [BellMachover] p. 468.

Some sources will define a notation for ordinal order corresponding to < and but we just use and respectively.

(Contributed by NM, 17-Sep-1993.)

Assertion
Ref Expression
df-ord (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))

Detailed syntax breakdown of Definition df-ord
StepHypRef Expression
1 cA . . 3 class 𝐴
21word 6305 . 2 wff Ord 𝐴
31wtr 5196 . . 3 wff Tr 𝐴
4 cep 5513 . . . 4 class E
51, 4wwe 5566 . . 3 wff E We 𝐴
63, 5wa 395 . 2 wff (Tr 𝐴 ∧ E We 𝐴)
72, 6wb 206 1 wff (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  ordeq  6313  ordwe  6319  ordtr  6320  trssord  6323  ordelord  6328  ord0  6360  ordon  7710  dford5  7717  dfrecs3  8292  dford2  9510  smobeth  10477  gruina  10709  dford5reg  35824  dfon2  35834  oaun3lem1  43477
  Copyright terms: Public domain W3C validator