![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-ord | Structured version Visualization version GIF version |
Description: Define the ordinal
predicate, which is true for a class that is transitive
and is well-ordered by the membership relation. Variant of definition of
[BellMachover] p. 468.
Some sources will define a notation for ordinal order corresponding to < and ≤ but we just use ∈ and ⊆ respectively. (Contributed by NM, 17-Sep-1993.) |
Ref | Expression |
---|---|
df-ord | ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | word 6364 | . 2 wff Ord 𝐴 |
3 | 1 | wtr 5266 | . . 3 wff Tr 𝐴 |
4 | cep 5580 | . . . 4 class E | |
5 | 1, 4 | wwe 5631 | . . 3 wff E We 𝐴 |
6 | 3, 5 | wa 397 | . 2 wff (Tr 𝐴 ∧ E We 𝐴) |
7 | 2, 6 | wb 205 | 1 wff (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) |
Colors of variables: wff setvar class |
This definition is referenced by: ordeq 6372 ordwe 6378 ordtr 6379 trssord 6382 ordelord 6387 ord0 6418 ordon 7764 dford5 7771 dfrecs3 8372 dfrecs3OLD 8373 dford2 9615 smobeth 10581 gruina 10813 dford5reg 34785 dfon2 34795 oaun3lem1 42172 |
Copyright terms: Public domain | W3C validator |