MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ord Structured version   Visualization version   GIF version

Definition df-ord 6393
Description: Define the ordinal predicate, which is true for a class that is transitive and is well-ordered by the membership relation. Variant of definition of [BellMachover] p. 468.

Some sources will define a notation for ordinal order corresponding to < and but we just use and respectively.

(Contributed by NM, 17-Sep-1993.)

Assertion
Ref Expression
df-ord (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))

Detailed syntax breakdown of Definition df-ord
StepHypRef Expression
1 cA . . 3 class 𝐴
21word 6389 . 2 wff Ord 𝐴
31wtr 5283 . . 3 wff Tr 𝐴
4 cep 5598 . . . 4 class E
51, 4wwe 5649 . . 3 wff E We 𝐴
63, 5wa 395 . 2 wff (Tr 𝐴 ∧ E We 𝐴)
72, 6wb 206 1 wff (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  ordeq  6397  ordwe  6403  ordtr  6404  trssord  6407  ordelord  6412  ord0  6443  ordon  7806  dford5  7813  dfrecs3  8422  dfrecs3OLD  8423  dford2  9683  smobeth  10649  gruina  10881  dford5reg  35738  dfon2  35748  oaun3lem1  43331
  Copyright terms: Public domain W3C validator