MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ord Structured version   Visualization version   GIF version

Definition df-ord 6310
Description: Define the ordinal predicate, which is true for a class that is transitive and is well-ordered by the membership relation. Variant of definition of [BellMachover] p. 468.

Some sources will define a notation for ordinal order corresponding to < and but we just use and respectively.

(Contributed by NM, 17-Sep-1993.)

Assertion
Ref Expression
df-ord (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))

Detailed syntax breakdown of Definition df-ord
StepHypRef Expression
1 cA . . 3 class 𝐴
21word 6306 . 2 wff Ord 𝐴
31wtr 5199 . . 3 wff Tr 𝐴
4 cep 5518 . . . 4 class E
51, 4wwe 5571 . . 3 wff E We 𝐴
63, 5wa 395 . 2 wff (Tr 𝐴 ∧ E We 𝐴)
72, 6wb 206 1 wff (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  ordeq  6314  ordwe  6320  ordtr  6321  trssord  6324  ordelord  6329  ord0  6361  ordon  7713  dford5  7720  dfrecs3  8295  dford2  9516  smobeth  10480  gruina  10712  dford5reg  35766  dfon2  35776  oaun3lem1  43357
  Copyright terms: Public domain W3C validator