| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ord | Structured version Visualization version GIF version | ||
| Description: Define the ordinal
predicate, which is true for a class that is transitive
and is well-ordered by the membership relation. Variant of definition of
[BellMachover] p. 468.
Some sources will define a notation for ordinal order corresponding to < and ≤ but we just use ∈ and ⊆ respectively. (Contributed by NM, 17-Sep-1993.) |
| Ref | Expression |
|---|---|
| df-ord | ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | word 6306 | . 2 wff Ord 𝐴 |
| 3 | 1 | wtr 5199 | . . 3 wff Tr 𝐴 |
| 4 | cep 5518 | . . . 4 class E | |
| 5 | 1, 4 | wwe 5571 | . . 3 wff E We 𝐴 |
| 6 | 3, 5 | wa 395 | . 2 wff (Tr 𝐴 ∧ E We 𝐴) |
| 7 | 2, 6 | wb 206 | 1 wff (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: ordeq 6314 ordwe 6320 ordtr 6321 trssord 6324 ordelord 6329 ord0 6361 ordon 7713 dford5 7720 dfrecs3 8295 dford2 9516 smobeth 10480 gruina 10712 dford5reg 35766 dfon2 35776 oaun3lem1 43357 |
| Copyright terms: Public domain | W3C validator |