MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ord Structured version   Visualization version   GIF version

Definition df-ord 6254
Description: Define the ordinal predicate, which is true for a class that is transitive and is well-ordered by the membership relation. Variant of definition of [BellMachover] p. 468.

Some sources will define a notation for ordinal order corresponding to < and but we just use and respectively.

(Contributed by NM, 17-Sep-1993.)

Assertion
Ref Expression
df-ord (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))

Detailed syntax breakdown of Definition df-ord
StepHypRef Expression
1 cA . . 3 class 𝐴
21word 6250 . 2 wff Ord 𝐴
31wtr 5187 . . 3 wff Tr 𝐴
4 cep 5485 . . . 4 class E
51, 4wwe 5534 . . 3 wff E We 𝐴
63, 5wa 395 . 2 wff (Tr 𝐴 ∧ E We 𝐴)
72, 6wb 205 1 wff (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  ordeq  6258  ordwe  6264  ordtr  6265  trssord  6268  ordelord  6273  ord0  6303  ordon  7604  dfrecs3  8174  dfrecs3OLD  8175  dford2  9308  smobeth  10273  gruina  10505  dford5  33573  dford5reg  33664  dfon2  33674
  Copyright terms: Public domain W3C validator