![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-ord | Structured version Visualization version GIF version |
Description: Define the ordinal
predicate, which is true for a class that is transitive
and is well-ordered by the membership relation. Variant of definition of
[BellMachover] p. 468.
Some sources will define a notation for ordinal order corresponding to < and ≤ but we just use ∈ and ⊆ respectively. (Contributed by NM, 17-Sep-1993.) |
Ref | Expression |
---|---|
df-ord | ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | word 6389 | . 2 wff Ord 𝐴 |
3 | 1 | wtr 5283 | . . 3 wff Tr 𝐴 |
4 | cep 5598 | . . . 4 class E | |
5 | 1, 4 | wwe 5649 | . . 3 wff E We 𝐴 |
6 | 3, 5 | wa 395 | . 2 wff (Tr 𝐴 ∧ E We 𝐴) |
7 | 2, 6 | wb 206 | 1 wff (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) |
Colors of variables: wff setvar class |
This definition is referenced by: ordeq 6397 ordwe 6403 ordtr 6404 trssord 6407 ordelord 6412 ord0 6443 ordon 7806 dford5 7813 dfrecs3 8422 dfrecs3OLD 8423 dford2 9683 smobeth 10649 gruina 10881 dford5reg 35738 dfon2 35748 oaun3lem1 43331 |
Copyright terms: Public domain | W3C validator |