MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ord Structured version   Visualization version   GIF version

Definition df-ord 6323
Description: Define the ordinal predicate, which is true for a class that is transitive and is well-ordered by the membership relation. Variant of definition of [BellMachover] p. 468.

Some sources will define a notation for ordinal order corresponding to < and but we just use and respectively.

(Contributed by NM, 17-Sep-1993.)

Assertion
Ref Expression
df-ord (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))

Detailed syntax breakdown of Definition df-ord
StepHypRef Expression
1 cA . . 3 class 𝐴
21word 6319 . 2 wff Ord 𝐴
31wtr 5209 . . 3 wff Tr 𝐴
4 cep 5530 . . . 4 class E
51, 4wwe 5583 . . 3 wff E We 𝐴
63, 5wa 395 . 2 wff (Tr 𝐴 ∧ E We 𝐴)
72, 6wb 206 1 wff (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  ordeq  6327  ordwe  6333  ordtr  6334  trssord  6337  ordelord  6342  ord0  6374  ordon  7733  dford5  7740  dfrecs3  8318  dford2  9549  smobeth  10515  gruina  10747  dford5reg  35763  dfon2  35773  oaun3lem1  43356
  Copyright terms: Public domain W3C validator