MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ord Structured version   Visualization version   GIF version

Definition df-ord 6355
Description: Define the ordinal predicate, which is true for a class that is transitive and is well-ordered by the membership relation. Variant of definition of [BellMachover] p. 468.

Some sources will define a notation for ordinal order corresponding to < and but we just use and respectively.

(Contributed by NM, 17-Sep-1993.)

Assertion
Ref Expression
df-ord (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))

Detailed syntax breakdown of Definition df-ord
StepHypRef Expression
1 cA . . 3 class 𝐴
21word 6351 . 2 wff Ord 𝐴
31wtr 5229 . . 3 wff Tr 𝐴
4 cep 5552 . . . 4 class E
51, 4wwe 5605 . . 3 wff E We 𝐴
63, 5wa 395 . 2 wff (Tr 𝐴 ∧ E We 𝐴)
72, 6wb 206 1 wff (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  ordeq  6359  ordwe  6365  ordtr  6366  trssord  6369  ordelord  6374  ord0  6406  ordon  7769  dford5  7776  dfrecs3  8384  dfrecs3OLD  8385  dford2  9632  smobeth  10598  gruina  10830  dford5reg  35746  dfon2  35756  oaun3lem1  43345
  Copyright terms: Public domain W3C validator