MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ord Structured version   Visualization version   GIF version

Definition df-ord 6335
Description: Define the ordinal predicate, which is true for a class that is transitive and is well-ordered by the membership relation. Variant of definition of [BellMachover] p. 468.

Some sources will define a notation for ordinal order corresponding to < and but we just use and respectively.

(Contributed by NM, 17-Sep-1993.)

Assertion
Ref Expression
df-ord (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))

Detailed syntax breakdown of Definition df-ord
StepHypRef Expression
1 cA . . 3 class 𝐴
21word 6331 . 2 wff Ord 𝐴
31wtr 5214 . . 3 wff Tr 𝐴
4 cep 5537 . . . 4 class E
51, 4wwe 5590 . . 3 wff E We 𝐴
63, 5wa 395 . 2 wff (Tr 𝐴 ∧ E We 𝐴)
72, 6wb 206 1 wff (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  ordeq  6339  ordwe  6345  ordtr  6346  trssord  6349  ordelord  6354  ord0  6386  ordon  7753  dford5  7760  dfrecs3  8341  dford2  9573  smobeth  10539  gruina  10771  dford5reg  35770  dfon2  35780  oaun3lem1  43363
  Copyright terms: Public domain W3C validator