Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-ord | Structured version Visualization version GIF version |
Description: Define the ordinal
predicate, which is true for a class that is transitive
and is well-ordered by the membership relation. Variant of definition of
[BellMachover] p. 468.
Some sources will define a notation for ordinal order corresponding to < and ≤ but we just use ∈ and ⊆ respectively. (Contributed by NM, 17-Sep-1993.) |
Ref | Expression |
---|---|
df-ord | ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | word 6269 | . 2 wff Ord 𝐴 |
3 | 1 | wtr 5192 | . . 3 wff Tr 𝐴 |
4 | cep 5495 | . . . 4 class E | |
5 | 1, 4 | wwe 5544 | . . 3 wff E We 𝐴 |
6 | 3, 5 | wa 396 | . 2 wff (Tr 𝐴 ∧ E We 𝐴) |
7 | 2, 6 | wb 205 | 1 wff (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) |
Colors of variables: wff setvar class |
This definition is referenced by: ordeq 6277 ordwe 6283 ordtr 6284 trssord 6287 ordelord 6292 ord0 6322 ordon 7636 dfrecs3 8212 dfrecs3OLD 8213 dford2 9387 smobeth 10351 gruina 10583 dford5 33680 dford5reg 33767 dfon2 33777 |
Copyright terms: Public domain | W3C validator |