| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ord | Structured version Visualization version GIF version | ||
| Description: Define the ordinal
predicate, which is true for a class that is transitive
and is well-ordered by the membership relation. Variant of definition of
[BellMachover] p. 468.
Some sources will define a notation for ordinal order corresponding to < and ≤ but we just use ∈ and ⊆ respectively. (Contributed by NM, 17-Sep-1993.) |
| Ref | Expression |
|---|---|
| df-ord | ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | word 6351 | . 2 wff Ord 𝐴 |
| 3 | 1 | wtr 5229 | . . 3 wff Tr 𝐴 |
| 4 | cep 5552 | . . . 4 class E | |
| 5 | 1, 4 | wwe 5605 | . . 3 wff E We 𝐴 |
| 6 | 3, 5 | wa 395 | . 2 wff (Tr 𝐴 ∧ E We 𝐴) |
| 7 | 2, 6 | wb 206 | 1 wff (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: ordeq 6359 ordwe 6365 ordtr 6366 trssord 6369 ordelord 6374 ord0 6406 ordon 7769 dford5 7776 dfrecs3 8384 dfrecs3OLD 8385 dford2 9632 smobeth 10598 gruina 10830 dford5reg 35746 dfon2 35756 oaun3lem1 43345 |
| Copyright terms: Public domain | W3C validator |