| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elong | Structured version Visualization version GIF version | ||
| Description: An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.) |
| Ref | Expression |
|---|---|
| elong | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ On ↔ Ord 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordeq 6359 | . 2 ⊢ (𝑥 = 𝐴 → (Ord 𝑥 ↔ Ord 𝐴)) | |
| 2 | df-on 6356 | . 2 ⊢ On = {𝑥 ∣ Ord 𝑥} | |
| 3 | 1, 2 | elab2g 3659 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ On ↔ Ord 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 Ord word 6351 Oncon0 6352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-v 3461 df-ss 3943 df-uni 4884 df-tr 5230 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 df-on 6356 |
| This theorem is referenced by: elon 6361 eloni 6362 elon2 6363 ordelon 6376 onin 6383 limelon 6417 ordsssuc2 6444 onprc 7770 ssonuni 7772 sucexeloni 7801 sucexeloniOLD 7802 suceloniOLD 7804 ordsucOLD 7806 cofon1 8682 cofon2 8683 enp1i 9283 oion 9548 hartogs 9556 card2on 9566 tskwe 9962 onssnum 10052 hsmexlem1 10438 ondomon 10575 1stcrestlem 23388 nosupno 27665 noinfno 27680 hfninf 36150 rn1st 45245 |
| Copyright terms: Public domain | W3C validator |