![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elong | Structured version Visualization version GIF version |
Description: An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.) |
Ref | Expression |
---|---|
elong | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ On ↔ Ord 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordeq 6392 | . 2 ⊢ (𝑥 = 𝐴 → (Ord 𝑥 ↔ Ord 𝐴)) | |
2 | df-on 6389 | . 2 ⊢ On = {𝑥 ∣ Ord 𝑥} | |
3 | 1, 2 | elab2g 3682 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ On ↔ Ord 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2105 Ord word 6384 Oncon0 6385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-v 3479 df-ss 3979 df-uni 4912 df-tr 5265 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-ord 6388 df-on 6389 |
This theorem is referenced by: elon 6394 eloni 6395 elon2 6396 ordelon 6409 onin 6416 limelon 6449 ordsssuc2 6476 onprc 7796 ssonuni 7798 sucexeloni 7828 sucexeloniOLD 7829 suceloniOLD 7831 ordsucOLD 7833 cofon1 8708 cofon2 8709 enp1i 9310 oion 9573 hartogs 9581 card2on 9591 tskwe 9987 onssnum 10077 hsmexlem1 10463 ondomon 10600 1stcrestlem 23475 nosupno 27762 noinfno 27777 hfninf 36167 rn1st 45218 |
Copyright terms: Public domain | W3C validator |