| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elong | Structured version Visualization version GIF version | ||
| Description: An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.) |
| Ref | Expression |
|---|---|
| elong | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ On ↔ Ord 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordeq 6313 | . 2 ⊢ (𝑥 = 𝐴 → (Ord 𝑥 ↔ Ord 𝐴)) | |
| 2 | df-on 6310 | . 2 ⊢ On = {𝑥 ∣ Ord 𝑥} | |
| 3 | 1, 2 | elab2g 3631 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ On ↔ Ord 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2111 Ord word 6305 Oncon0 6306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-v 3438 df-ss 3914 df-uni 4857 df-tr 5197 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6309 df-on 6310 |
| This theorem is referenced by: elon 6315 eloni 6316 elon2 6317 ordelon 6330 onin 6337 limelon 6371 ordsssuc2 6399 onprc 7711 ssonuni 7713 sucexeloni 7742 cofon1 8587 cofon2 8588 enp1i 9163 oion 9422 hartogs 9430 card2on 9440 tskwe 9843 onssnum 9931 hsmexlem1 10317 ondomon 10454 1stcrestlem 23367 nosupno 27642 noinfno 27657 hfninf 36230 rn1st 45369 |
| Copyright terms: Public domain | W3C validator |