Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elong | Structured version Visualization version GIF version |
Description: An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.) |
Ref | Expression |
---|---|
elong | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ On ↔ Ord 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordeq 6303 | . 2 ⊢ (𝑥 = 𝐴 → (Ord 𝑥 ↔ Ord 𝐴)) | |
2 | df-on 6300 | . 2 ⊢ On = {𝑥 ∣ Ord 𝑥} | |
3 | 1, 2 | elab2g 3621 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ On ↔ Ord 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2105 Ord word 6295 Oncon0 6296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-v 3443 df-in 3904 df-ss 3914 df-uni 4852 df-tr 5207 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-ord 6299 df-on 6300 |
This theorem is referenced by: elon 6305 eloni 6306 elon2 6307 ordelon 6320 onin 6327 limelon 6359 ordsssuc2 6386 onprc 7682 ssonuni 7684 sucexeloni 7714 sucexeloniOLD 7715 suceloniOLD 7717 ordsucOLD 7719 enp1i 9136 oion 9385 hartogs 9393 card2on 9403 tskwe 9799 onssnum 9889 hsmexlem1 10275 ondomon 10412 1stcrestlem 22701 nosupno 26949 noinfno 26964 hfninf 34579 |
Copyright terms: Public domain | W3C validator |