MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elong Structured version   Visualization version   GIF version

Theorem elong 6315
Description: An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.)
Assertion
Ref Expression
elong (𝐴𝑉 → (𝐴 ∈ On ↔ Ord 𝐴))

Proof of Theorem elong
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ordeq 6314 . 2 (𝑥 = 𝐴 → (Ord 𝑥 ↔ Ord 𝐴))
2 df-on 6311 . 2 On = {𝑥 ∣ Ord 𝑥}
31, 2elab2g 3636 1 (𝐴𝑉 → (𝐴 ∈ On ↔ Ord 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  Ord word 6306  Oncon0 6307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-v 3438  df-ss 3920  df-uni 4859  df-tr 5200  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-ord 6310  df-on 6311
This theorem is referenced by:  elon  6316  eloni  6317  elon2  6318  ordelon  6331  onin  6338  limelon  6372  ordsssuc2  6400  onprc  7714  ssonuni  7716  sucexeloni  7745  cofon1  8590  cofon2  8591  enp1i  9168  oion  9428  hartogs  9436  card2on  9446  tskwe  9846  onssnum  9934  hsmexlem1  10320  ondomon  10457  1stcrestlem  23337  nosupno  27613  noinfno  27628  hfninf  36170  rn1st  45261
  Copyright terms: Public domain W3C validator