MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elong Structured version   Visualization version   GIF version

Theorem elong 6403
Description: An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.)
Assertion
Ref Expression
elong (𝐴𝑉 → (𝐴 ∈ On ↔ Ord 𝐴))

Proof of Theorem elong
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ordeq 6402 . 2 (𝑥 = 𝐴 → (Ord 𝑥 ↔ Ord 𝐴))
2 df-on 6399 . 2 On = {𝑥 ∣ Ord 𝑥}
31, 2elab2g 3696 1 (𝐴𝑉 → (𝐴 ∈ On ↔ Ord 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2108  Ord word 6394  Oncon0 6395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-v 3490  df-ss 3993  df-uni 4932  df-tr 5284  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399
This theorem is referenced by:  elon  6404  eloni  6405  elon2  6406  ordelon  6419  onin  6426  limelon  6459  ordsssuc2  6486  onprc  7813  ssonuni  7815  sucexeloni  7845  sucexeloniOLD  7846  suceloniOLD  7848  ordsucOLD  7850  cofon1  8728  cofon2  8729  enp1i  9341  oion  9605  hartogs  9613  card2on  9623  tskwe  10019  onssnum  10109  hsmexlem1  10495  ondomon  10632  1stcrestlem  23481  nosupno  27766  noinfno  27781  hfninf  36150  rn1st  45183
  Copyright terms: Public domain W3C validator