| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elong | Structured version Visualization version GIF version | ||
| Description: An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.) |
| Ref | Expression |
|---|---|
| elong | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ On ↔ Ord 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordeq 6327 | . 2 ⊢ (𝑥 = 𝐴 → (Ord 𝑥 ↔ Ord 𝐴)) | |
| 2 | df-on 6324 | . 2 ⊢ On = {𝑥 ∣ Ord 𝑥} | |
| 3 | 1, 2 | elab2g 3644 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ On ↔ Ord 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 Ord word 6319 Oncon0 6320 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-v 3446 df-ss 3928 df-uni 4868 df-tr 5210 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-ord 6323 df-on 6324 |
| This theorem is referenced by: elon 6329 eloni 6330 elon2 6331 ordelon 6344 onin 6351 limelon 6385 ordsssuc2 6413 onprc 7734 ssonuni 7736 sucexeloni 7765 sucexeloniOLD 7766 ordsucOLD 7769 cofon1 8613 cofon2 8614 enp1i 9200 oion 9465 hartogs 9473 card2on 9483 tskwe 9879 onssnum 9969 hsmexlem1 10355 ondomon 10492 1stcrestlem 23372 nosupno 27648 noinfno 27663 hfninf 36167 rn1st 45260 |
| Copyright terms: Public domain | W3C validator |