| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elong | Structured version Visualization version GIF version | ||
| Description: An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.) |
| Ref | Expression |
|---|---|
| elong | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ On ↔ Ord 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordeq 6339 | . 2 ⊢ (𝑥 = 𝐴 → (Ord 𝑥 ↔ Ord 𝐴)) | |
| 2 | df-on 6336 | . 2 ⊢ On = {𝑥 ∣ Ord 𝑥} | |
| 3 | 1, 2 | elab2g 3647 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ On ↔ Ord 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 Ord word 6331 Oncon0 6332 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-v 3449 df-ss 3931 df-uni 4872 df-tr 5215 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 |
| This theorem is referenced by: elon 6341 eloni 6342 elon2 6343 ordelon 6356 onin 6363 limelon 6397 ordsssuc2 6425 onprc 7754 ssonuni 7756 sucexeloni 7785 sucexeloniOLD 7786 ordsucOLD 7789 cofon1 8636 cofon2 8637 enp1i 9224 oion 9489 hartogs 9497 card2on 9507 tskwe 9903 onssnum 9993 hsmexlem1 10379 ondomon 10516 1stcrestlem 23339 nosupno 27615 noinfno 27630 hfninf 36174 rn1st 45267 |
| Copyright terms: Public domain | W3C validator |