![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elong | Structured version Visualization version GIF version |
Description: An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.) |
Ref | Expression |
---|---|
elong | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ On ↔ Ord 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordeq 6402 | . 2 ⊢ (𝑥 = 𝐴 → (Ord 𝑥 ↔ Ord 𝐴)) | |
2 | df-on 6399 | . 2 ⊢ On = {𝑥 ∣ Ord 𝑥} | |
3 | 1, 2 | elab2g 3696 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ On ↔ Ord 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 Ord word 6394 Oncon0 6395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-v 3490 df-ss 3993 df-uni 4932 df-tr 5284 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 |
This theorem is referenced by: elon 6404 eloni 6405 elon2 6406 ordelon 6419 onin 6426 limelon 6459 ordsssuc2 6486 onprc 7813 ssonuni 7815 sucexeloni 7845 sucexeloniOLD 7846 suceloniOLD 7848 ordsucOLD 7850 cofon1 8728 cofon2 8729 enp1i 9341 oion 9605 hartogs 9613 card2on 9623 tskwe 10019 onssnum 10109 hsmexlem1 10495 ondomon 10632 1stcrestlem 23481 nosupno 27766 noinfno 27781 hfninf 36150 rn1st 45183 |
Copyright terms: Public domain | W3C validator |