Step | Hyp | Ref
| Expression |
1 | | df-on 6255 |
. 2
⊢ On =
{𝑥 ∣ Ord 𝑥} |
2 | | tz7.7 6277 |
. . . . . . . . 9
⊢ ((Ord
𝑥 ∧ Tr 𝑦) → (𝑦 ∈ 𝑥 ↔ (𝑦 ⊆ 𝑥 ∧ 𝑦 ≠ 𝑥))) |
3 | | df-pss 3902 |
. . . . . . . . 9
⊢ (𝑦 ⊊ 𝑥 ↔ (𝑦 ⊆ 𝑥 ∧ 𝑦 ≠ 𝑥)) |
4 | 2, 3 | bitr4di 288 |
. . . . . . . 8
⊢ ((Ord
𝑥 ∧ Tr 𝑦) → (𝑦 ∈ 𝑥 ↔ 𝑦 ⊊ 𝑥)) |
5 | 4 | exbiri 807 |
. . . . . . 7
⊢ (Ord
𝑥 → (Tr 𝑦 → (𝑦 ⊊ 𝑥 → 𝑦 ∈ 𝑥))) |
6 | 5 | com23 86 |
. . . . . 6
⊢ (Ord
𝑥 → (𝑦 ⊊ 𝑥 → (Tr 𝑦 → 𝑦 ∈ 𝑥))) |
7 | 6 | impd 410 |
. . . . 5
⊢ (Ord
𝑥 → ((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥)) |
8 | 7 | alrimiv 1931 |
. . . 4
⊢ (Ord
𝑥 → ∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥)) |
9 | | vex 3426 |
. . . . . . 7
⊢ 𝑥 ∈ V |
10 | | dfon2lem3 33667 |
. . . . . . 7
⊢ (𝑥 ∈ V → (∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥) → (Tr 𝑥 ∧ ∀𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧))) |
11 | 9, 10 | ax-mp 5 |
. . . . . 6
⊢
(∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥) → (Tr 𝑥 ∧ ∀𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧)) |
12 | 11 | simpld 494 |
. . . . 5
⊢
(∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥) → Tr 𝑥) |
13 | 9 | dfon2lem7 33671 |
. . . . . . . 8
⊢
(∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥) → (𝑡 ∈ 𝑥 → ∀𝑢((𝑢 ⊊ 𝑡 ∧ Tr 𝑢) → 𝑢 ∈ 𝑡))) |
14 | 13 | ralrimiv 3106 |
. . . . . . 7
⊢
(∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥) → ∀𝑡 ∈ 𝑥 ∀𝑢((𝑢 ⊊ 𝑡 ∧ Tr 𝑢) → 𝑢 ∈ 𝑡)) |
15 | | dfon2lem9 33673 |
. . . . . . . 8
⊢
(∀𝑡 ∈
𝑥 ∀𝑢((𝑢 ⊊ 𝑡 ∧ Tr 𝑢) → 𝑢 ∈ 𝑡) → E Fr 𝑥) |
16 | | psseq2 4019 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = 𝑧 → (𝑢 ⊊ 𝑡 ↔ 𝑢 ⊊ 𝑧)) |
17 | 16 | anbi1d 629 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑧 → ((𝑢 ⊊ 𝑡 ∧ Tr 𝑢) ↔ (𝑢 ⊊ 𝑧 ∧ Tr 𝑢))) |
18 | | elequ2 2123 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑧 → (𝑢 ∈ 𝑡 ↔ 𝑢 ∈ 𝑧)) |
19 | 17, 18 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑧 → (((𝑢 ⊊ 𝑡 ∧ Tr 𝑢) → 𝑢 ∈ 𝑡) ↔ ((𝑢 ⊊ 𝑧 ∧ Tr 𝑢) → 𝑢 ∈ 𝑧))) |
20 | 19 | albidv 1924 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑧 → (∀𝑢((𝑢 ⊊ 𝑡 ∧ Tr 𝑢) → 𝑢 ∈ 𝑡) ↔ ∀𝑢((𝑢 ⊊ 𝑧 ∧ Tr 𝑢) → 𝑢 ∈ 𝑧))) |
21 | | psseq1 4018 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = 𝑣 → (𝑢 ⊊ 𝑧 ↔ 𝑣 ⊊ 𝑧)) |
22 | | treq 5193 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = 𝑣 → (Tr 𝑢 ↔ Tr 𝑣)) |
23 | 21, 22 | anbi12d 630 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑣 → ((𝑢 ⊊ 𝑧 ∧ Tr 𝑢) ↔ (𝑣 ⊊ 𝑧 ∧ Tr 𝑣))) |
24 | | elequ1 2115 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑣 → (𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧)) |
25 | 23, 24 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑣 → (((𝑢 ⊊ 𝑧 ∧ Tr 𝑢) → 𝑢 ∈ 𝑧) ↔ ((𝑣 ⊊ 𝑧 ∧ Tr 𝑣) → 𝑣 ∈ 𝑧))) |
26 | 25 | cbvalvw 2040 |
. . . . . . . . . . . . 13
⊢
(∀𝑢((𝑢 ⊊ 𝑧 ∧ Tr 𝑢) → 𝑢 ∈ 𝑧) ↔ ∀𝑣((𝑣 ⊊ 𝑧 ∧ Tr 𝑣) → 𝑣 ∈ 𝑧)) |
27 | 20, 26 | bitrdi 286 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑧 → (∀𝑢((𝑢 ⊊ 𝑡 ∧ Tr 𝑢) → 𝑢 ∈ 𝑡) ↔ ∀𝑣((𝑣 ⊊ 𝑧 ∧ Tr 𝑣) → 𝑣 ∈ 𝑧))) |
28 | 27 | rspccv 3549 |
. . . . . . . . . . 11
⊢
(∀𝑡 ∈
𝑥 ∀𝑢((𝑢 ⊊ 𝑡 ∧ Tr 𝑢) → 𝑢 ∈ 𝑡) → (𝑧 ∈ 𝑥 → ∀𝑣((𝑣 ⊊ 𝑧 ∧ Tr 𝑣) → 𝑣 ∈ 𝑧))) |
29 | | psseq2 4019 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = 𝑤 → (𝑢 ⊊ 𝑡 ↔ 𝑢 ⊊ 𝑤)) |
30 | 29 | anbi1d 629 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑤 → ((𝑢 ⊊ 𝑡 ∧ Tr 𝑢) ↔ (𝑢 ⊊ 𝑤 ∧ Tr 𝑢))) |
31 | | elequ2 2123 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑤 → (𝑢 ∈ 𝑡 ↔ 𝑢 ∈ 𝑤)) |
32 | 30, 31 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑤 → (((𝑢 ⊊ 𝑡 ∧ Tr 𝑢) → 𝑢 ∈ 𝑡) ↔ ((𝑢 ⊊ 𝑤 ∧ Tr 𝑢) → 𝑢 ∈ 𝑤))) |
33 | 32 | albidv 1924 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑤 → (∀𝑢((𝑢 ⊊ 𝑡 ∧ Tr 𝑢) → 𝑢 ∈ 𝑡) ↔ ∀𝑢((𝑢 ⊊ 𝑤 ∧ Tr 𝑢) → 𝑢 ∈ 𝑤))) |
34 | | psseq1 4018 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = 𝑦 → (𝑢 ⊊ 𝑤 ↔ 𝑦 ⊊ 𝑤)) |
35 | | treq 5193 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = 𝑦 → (Tr 𝑢 ↔ Tr 𝑦)) |
36 | 34, 35 | anbi12d 630 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑦 → ((𝑢 ⊊ 𝑤 ∧ Tr 𝑢) ↔ (𝑦 ⊊ 𝑤 ∧ Tr 𝑦))) |
37 | | elequ1 2115 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑦 → (𝑢 ∈ 𝑤 ↔ 𝑦 ∈ 𝑤)) |
38 | 36, 37 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑦 → (((𝑢 ⊊ 𝑤 ∧ Tr 𝑢) → 𝑢 ∈ 𝑤) ↔ ((𝑦 ⊊ 𝑤 ∧ Tr 𝑦) → 𝑦 ∈ 𝑤))) |
39 | 38 | cbvalvw 2040 |
. . . . . . . . . . . . 13
⊢
(∀𝑢((𝑢 ⊊ 𝑤 ∧ Tr 𝑢) → 𝑢 ∈ 𝑤) ↔ ∀𝑦((𝑦 ⊊ 𝑤 ∧ Tr 𝑦) → 𝑦 ∈ 𝑤)) |
40 | 33, 39 | bitrdi 286 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑤 → (∀𝑢((𝑢 ⊊ 𝑡 ∧ Tr 𝑢) → 𝑢 ∈ 𝑡) ↔ ∀𝑦((𝑦 ⊊ 𝑤 ∧ Tr 𝑦) → 𝑦 ∈ 𝑤))) |
41 | 40 | rspccv 3549 |
. . . . . . . . . . 11
⊢
(∀𝑡 ∈
𝑥 ∀𝑢((𝑢 ⊊ 𝑡 ∧ Tr 𝑢) → 𝑢 ∈ 𝑡) → (𝑤 ∈ 𝑥 → ∀𝑦((𝑦 ⊊ 𝑤 ∧ Tr 𝑦) → 𝑦 ∈ 𝑤))) |
42 | 28, 41 | anim12d 608 |
. . . . . . . . . 10
⊢
(∀𝑡 ∈
𝑥 ∀𝑢((𝑢 ⊊ 𝑡 ∧ Tr 𝑢) → 𝑢 ∈ 𝑡) → ((𝑧 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥) → (∀𝑣((𝑣 ⊊ 𝑧 ∧ Tr 𝑣) → 𝑣 ∈ 𝑧) ∧ ∀𝑦((𝑦 ⊊ 𝑤 ∧ Tr 𝑦) → 𝑦 ∈ 𝑤)))) |
43 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑧 ∈ V |
44 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑤 ∈ V |
45 | 43, 44 | dfon2lem5 33669 |
. . . . . . . . . 10
⊢
((∀𝑣((𝑣 ⊊ 𝑧 ∧ Tr 𝑣) → 𝑣 ∈ 𝑧) ∧ ∀𝑦((𝑦 ⊊ 𝑤 ∧ Tr 𝑦) → 𝑦 ∈ 𝑤)) → (𝑧 ∈ 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 ∈ 𝑧)) |
46 | 42, 45 | syl6 35 |
. . . . . . . . 9
⊢
(∀𝑡 ∈
𝑥 ∀𝑢((𝑢 ⊊ 𝑡 ∧ Tr 𝑢) → 𝑢 ∈ 𝑡) → ((𝑧 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥) → (𝑧 ∈ 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 ∈ 𝑧))) |
47 | 46 | ralrimivv 3113 |
. . . . . . . 8
⊢
(∀𝑡 ∈
𝑥 ∀𝑢((𝑢 ⊊ 𝑡 ∧ Tr 𝑢) → 𝑢 ∈ 𝑡) → ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ∈ 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 ∈ 𝑧)) |
48 | 15, 47 | jca 511 |
. . . . . . 7
⊢
(∀𝑡 ∈
𝑥 ∀𝑢((𝑢 ⊊ 𝑡 ∧ Tr 𝑢) → 𝑢 ∈ 𝑡) → ( E Fr 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ∈ 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 ∈ 𝑧))) |
49 | 14, 48 | syl 17 |
. . . . . 6
⊢
(∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥) → ( E Fr 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ∈ 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 ∈ 𝑧))) |
50 | | dfwe2 7602 |
. . . . . . 7
⊢ ( E We
𝑥 ↔ ( E Fr 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 E 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 E 𝑧))) |
51 | | epel 5489 |
. . . . . . . . . 10
⊢ (𝑧 E 𝑤 ↔ 𝑧 ∈ 𝑤) |
52 | | biid 260 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑤 ↔ 𝑧 = 𝑤) |
53 | | epel 5489 |
. . . . . . . . . 10
⊢ (𝑤 E 𝑧 ↔ 𝑤 ∈ 𝑧) |
54 | 51, 52, 53 | 3orbi123i 1154 |
. . . . . . . . 9
⊢ ((𝑧 E 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 E 𝑧) ↔ (𝑧 ∈ 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 ∈ 𝑧)) |
55 | 54 | 2ralbii 3091 |
. . . . . . . 8
⊢
(∀𝑧 ∈
𝑥 ∀𝑤 ∈ 𝑥 (𝑧 E 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 E 𝑧) ↔ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ∈ 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 ∈ 𝑧)) |
56 | 55 | anbi2i 622 |
. . . . . . 7
⊢ (( E Fr
𝑥 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 E 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 E 𝑧)) ↔ ( E Fr 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ∈ 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 ∈ 𝑧))) |
57 | 50, 56 | bitri 274 |
. . . . . 6
⊢ ( E We
𝑥 ↔ ( E Fr 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ∈ 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 ∈ 𝑧))) |
58 | 49, 57 | sylibr 233 |
. . . . 5
⊢
(∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥) → E We 𝑥) |
59 | | df-ord 6254 |
. . . . 5
⊢ (Ord
𝑥 ↔ (Tr 𝑥 ∧ E We 𝑥)) |
60 | 12, 58, 59 | sylanbrc 582 |
. . . 4
⊢
(∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥) → Ord 𝑥) |
61 | 8, 60 | impbii 208 |
. . 3
⊢ (Ord
𝑥 ↔ ∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥)) |
62 | 61 | abbii 2809 |
. 2
⊢ {𝑥 ∣ Ord 𝑥} = {𝑥 ∣ ∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥)} |
63 | 1, 62 | eqtri 2766 |
1
⊢ On =
{𝑥 ∣ ∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥)} |