Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon2 Structured version   Visualization version   GIF version

Theorem dfon2 33284
Description: On consists of all sets that contain all its transitive proper subsets. This definition comes from J. R. Isbell, "A Definition of Ordinal Numbers", American Mathematical Monthly, vol 67 (1960), pp. 51-52. (Contributed by Scott Fenton, 20-Feb-2011.)
Assertion
Ref Expression
dfon2 On = {𝑥 ∣ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)}
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfon2
Dummy variables 𝑧 𝑤 𝑡 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-on 6173 . 2 On = {𝑥 ∣ Ord 𝑥}
2 tz7.7 6195 . . . . . . . . 9 ((Ord 𝑥 ∧ Tr 𝑦) → (𝑦𝑥 ↔ (𝑦𝑥𝑦𝑥)))
3 df-pss 3877 . . . . . . . . 9 (𝑦𝑥 ↔ (𝑦𝑥𝑦𝑥))
42, 3bitr4di 292 . . . . . . . 8 ((Ord 𝑥 ∧ Tr 𝑦) → (𝑦𝑥𝑦𝑥))
54exbiri 810 . . . . . . 7 (Ord 𝑥 → (Tr 𝑦 → (𝑦𝑥𝑦𝑥)))
65com23 86 . . . . . 6 (Ord 𝑥 → (𝑦𝑥 → (Tr 𝑦𝑦𝑥)))
76impd 414 . . . . 5 (Ord 𝑥 → ((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥))
87alrimiv 1928 . . . 4 (Ord 𝑥 → ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥))
9 vex 3413 . . . . . . 7 𝑥 ∈ V
10 dfon2lem3 33277 . . . . . . 7 (𝑥 ∈ V → (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → (Tr 𝑥 ∧ ∀𝑧𝑥 ¬ 𝑧𝑧)))
119, 10ax-mp 5 . . . . . 6 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → (Tr 𝑥 ∧ ∀𝑧𝑥 ¬ 𝑧𝑧))
1211simpld 498 . . . . 5 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → Tr 𝑥)
139dfon2lem7 33281 . . . . . . . 8 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → (𝑡𝑥 → ∀𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡)))
1413ralrimiv 3112 . . . . . . 7 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → ∀𝑡𝑥𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡))
15 dfon2lem9 33283 . . . . . . . 8 (∀𝑡𝑥𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) → E Fr 𝑥)
16 psseq2 3994 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑧 → (𝑢𝑡𝑢𝑧))
1716anbi1d 632 . . . . . . . . . . . . . . 15 (𝑡 = 𝑧 → ((𝑢𝑡 ∧ Tr 𝑢) ↔ (𝑢𝑧 ∧ Tr 𝑢)))
18 elequ2 2126 . . . . . . . . . . . . . . 15 (𝑡 = 𝑧 → (𝑢𝑡𝑢𝑧))
1917, 18imbi12d 348 . . . . . . . . . . . . . 14 (𝑡 = 𝑧 → (((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) ↔ ((𝑢𝑧 ∧ Tr 𝑢) → 𝑢𝑧)))
2019albidv 1921 . . . . . . . . . . . . 13 (𝑡 = 𝑧 → (∀𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) ↔ ∀𝑢((𝑢𝑧 ∧ Tr 𝑢) → 𝑢𝑧)))
21 psseq1 3993 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑣 → (𝑢𝑧𝑣𝑧))
22 treq 5144 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑣 → (Tr 𝑢 ↔ Tr 𝑣))
2321, 22anbi12d 633 . . . . . . . . . . . . . . 15 (𝑢 = 𝑣 → ((𝑢𝑧 ∧ Tr 𝑢) ↔ (𝑣𝑧 ∧ Tr 𝑣)))
24 elequ1 2118 . . . . . . . . . . . . . . 15 (𝑢 = 𝑣 → (𝑢𝑧𝑣𝑧))
2523, 24imbi12d 348 . . . . . . . . . . . . . 14 (𝑢 = 𝑣 → (((𝑢𝑧 ∧ Tr 𝑢) → 𝑢𝑧) ↔ ((𝑣𝑧 ∧ Tr 𝑣) → 𝑣𝑧)))
2625cbvalvw 2043 . . . . . . . . . . . . 13 (∀𝑢((𝑢𝑧 ∧ Tr 𝑢) → 𝑢𝑧) ↔ ∀𝑣((𝑣𝑧 ∧ Tr 𝑣) → 𝑣𝑧))
2720, 26bitrdi 290 . . . . . . . . . . . 12 (𝑡 = 𝑧 → (∀𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) ↔ ∀𝑣((𝑣𝑧 ∧ Tr 𝑣) → 𝑣𝑧)))
2827rspccv 3538 . . . . . . . . . . 11 (∀𝑡𝑥𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) → (𝑧𝑥 → ∀𝑣((𝑣𝑧 ∧ Tr 𝑣) → 𝑣𝑧)))
29 psseq2 3994 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑤 → (𝑢𝑡𝑢𝑤))
3029anbi1d 632 . . . . . . . . . . . . . . 15 (𝑡 = 𝑤 → ((𝑢𝑡 ∧ Tr 𝑢) ↔ (𝑢𝑤 ∧ Tr 𝑢)))
31 elequ2 2126 . . . . . . . . . . . . . . 15 (𝑡 = 𝑤 → (𝑢𝑡𝑢𝑤))
3230, 31imbi12d 348 . . . . . . . . . . . . . 14 (𝑡 = 𝑤 → (((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) ↔ ((𝑢𝑤 ∧ Tr 𝑢) → 𝑢𝑤)))
3332albidv 1921 . . . . . . . . . . . . 13 (𝑡 = 𝑤 → (∀𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) ↔ ∀𝑢((𝑢𝑤 ∧ Tr 𝑢) → 𝑢𝑤)))
34 psseq1 3993 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑦 → (𝑢𝑤𝑦𝑤))
35 treq 5144 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑦 → (Tr 𝑢 ↔ Tr 𝑦))
3634, 35anbi12d 633 . . . . . . . . . . . . . . 15 (𝑢 = 𝑦 → ((𝑢𝑤 ∧ Tr 𝑢) ↔ (𝑦𝑤 ∧ Tr 𝑦)))
37 elequ1 2118 . . . . . . . . . . . . . . 15 (𝑢 = 𝑦 → (𝑢𝑤𝑦𝑤))
3836, 37imbi12d 348 . . . . . . . . . . . . . 14 (𝑢 = 𝑦 → (((𝑢𝑤 ∧ Tr 𝑢) → 𝑢𝑤) ↔ ((𝑦𝑤 ∧ Tr 𝑦) → 𝑦𝑤)))
3938cbvalvw 2043 . . . . . . . . . . . . 13 (∀𝑢((𝑢𝑤 ∧ Tr 𝑢) → 𝑢𝑤) ↔ ∀𝑦((𝑦𝑤 ∧ Tr 𝑦) → 𝑦𝑤))
4033, 39bitrdi 290 . . . . . . . . . . . 12 (𝑡 = 𝑤 → (∀𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) ↔ ∀𝑦((𝑦𝑤 ∧ Tr 𝑦) → 𝑦𝑤)))
4140rspccv 3538 . . . . . . . . . . 11 (∀𝑡𝑥𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) → (𝑤𝑥 → ∀𝑦((𝑦𝑤 ∧ Tr 𝑦) → 𝑦𝑤)))
4228, 41anim12d 611 . . . . . . . . . 10 (∀𝑡𝑥𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) → ((𝑧𝑥𝑤𝑥) → (∀𝑣((𝑣𝑧 ∧ Tr 𝑣) → 𝑣𝑧) ∧ ∀𝑦((𝑦𝑤 ∧ Tr 𝑦) → 𝑦𝑤))))
43 vex 3413 . . . . . . . . . . 11 𝑧 ∈ V
44 vex 3413 . . . . . . . . . . 11 𝑤 ∈ V
4543, 44dfon2lem5 33279 . . . . . . . . . 10 ((∀𝑣((𝑣𝑧 ∧ Tr 𝑣) → 𝑣𝑧) ∧ ∀𝑦((𝑦𝑤 ∧ Tr 𝑦) → 𝑦𝑤)) → (𝑧𝑤𝑧 = 𝑤𝑤𝑧))
4642, 45syl6 35 . . . . . . . . 9 (∀𝑡𝑥𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) → ((𝑧𝑥𝑤𝑥) → (𝑧𝑤𝑧 = 𝑤𝑤𝑧)))
4746ralrimivv 3119 . . . . . . . 8 (∀𝑡𝑥𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) → ∀𝑧𝑥𝑤𝑥 (𝑧𝑤𝑧 = 𝑤𝑤𝑧))
4815, 47jca 515 . . . . . . 7 (∀𝑡𝑥𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) → ( E Fr 𝑥 ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤𝑧 = 𝑤𝑤𝑧)))
4914, 48syl 17 . . . . . 6 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → ( E Fr 𝑥 ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤𝑧 = 𝑤𝑤𝑧)))
50 dfwe2 7495 . . . . . . 7 ( E We 𝑥 ↔ ( E Fr 𝑥 ∧ ∀𝑧𝑥𝑤𝑥 (𝑧 E 𝑤𝑧 = 𝑤𝑤 E 𝑧)))
51 epel 5438 . . . . . . . . . 10 (𝑧 E 𝑤𝑧𝑤)
52 biid 264 . . . . . . . . . 10 (𝑧 = 𝑤𝑧 = 𝑤)
53 epel 5438 . . . . . . . . . 10 (𝑤 E 𝑧𝑤𝑧)
5451, 52, 533orbi123i 1153 . . . . . . . . 9 ((𝑧 E 𝑤𝑧 = 𝑤𝑤 E 𝑧) ↔ (𝑧𝑤𝑧 = 𝑤𝑤𝑧))
55542ralbii 3098 . . . . . . . 8 (∀𝑧𝑥𝑤𝑥 (𝑧 E 𝑤𝑧 = 𝑤𝑤 E 𝑧) ↔ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤𝑧 = 𝑤𝑤𝑧))
5655anbi2i 625 . . . . . . 7 (( E Fr 𝑥 ∧ ∀𝑧𝑥𝑤𝑥 (𝑧 E 𝑤𝑧 = 𝑤𝑤 E 𝑧)) ↔ ( E Fr 𝑥 ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤𝑧 = 𝑤𝑤𝑧)))
5750, 56bitri 278 . . . . . 6 ( E We 𝑥 ↔ ( E Fr 𝑥 ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤𝑧 = 𝑤𝑤𝑧)))
5849, 57sylibr 237 . . . . 5 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → E We 𝑥)
59 df-ord 6172 . . . . 5 (Ord 𝑥 ↔ (Tr 𝑥 ∧ E We 𝑥))
6012, 58, 59sylanbrc 586 . . . 4 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → Ord 𝑥)
618, 60impbii 212 . . 3 (Ord 𝑥 ↔ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥))
6261abbii 2823 . 2 {𝑥 ∣ Ord 𝑥} = {𝑥 ∣ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)}
631, 62eqtri 2781 1 On = {𝑥 ∣ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3o 1083  wal 1536   = wceq 1538  wcel 2111  {cab 2735  wne 2951  wral 3070  Vcvv 3409  wss 3858  wpss 3859   class class class wbr 5032  Tr wtr 5138   E cep 5434   Fr wfr 5480   We wwe 5482  Ord word 6168  Oncon0 6169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3697  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-tr 5139  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-ord 6172  df-on 6173  df-suc 6175
This theorem is referenced by:  dfon3  33743
  Copyright terms: Public domain W3C validator