Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon2 Structured version   Visualization version   GIF version

Theorem dfon2 33150
Description: On consists of all sets that contain all its transitive proper subsets. This definition comes from J. R. Isbell, "A Definition of Ordinal Numbers", American Mathematical Monthly, vol 67 (1960), pp. 51-52. (Contributed by Scott Fenton, 20-Feb-2011.)
Assertion
Ref Expression
dfon2 On = {𝑥 ∣ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)}
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfon2
Dummy variables 𝑧 𝑤 𝑡 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-on 6163 . 2 On = {𝑥 ∣ Ord 𝑥}
2 tz7.7 6185 . . . . . . . . 9 ((Ord 𝑥 ∧ Tr 𝑦) → (𝑦𝑥 ↔ (𝑦𝑥𝑦𝑥)))
3 df-pss 3900 . . . . . . . . 9 (𝑦𝑥 ↔ (𝑦𝑥𝑦𝑥))
42, 3syl6bbr 292 . . . . . . . 8 ((Ord 𝑥 ∧ Tr 𝑦) → (𝑦𝑥𝑦𝑥))
54exbiri 810 . . . . . . 7 (Ord 𝑥 → (Tr 𝑦 → (𝑦𝑥𝑦𝑥)))
65com23 86 . . . . . 6 (Ord 𝑥 → (𝑦𝑥 → (Tr 𝑦𝑦𝑥)))
76impd 414 . . . . 5 (Ord 𝑥 → ((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥))
87alrimiv 1928 . . . 4 (Ord 𝑥 → ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥))
9 vex 3444 . . . . . . 7 𝑥 ∈ V
10 dfon2lem3 33143 . . . . . . 7 (𝑥 ∈ V → (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → (Tr 𝑥 ∧ ∀𝑧𝑥 ¬ 𝑧𝑧)))
119, 10ax-mp 5 . . . . . 6 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → (Tr 𝑥 ∧ ∀𝑧𝑥 ¬ 𝑧𝑧))
1211simpld 498 . . . . 5 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → Tr 𝑥)
139dfon2lem7 33147 . . . . . . . 8 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → (𝑡𝑥 → ∀𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡)))
1413ralrimiv 3148 . . . . . . 7 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → ∀𝑡𝑥𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡))
15 dfon2lem9 33149 . . . . . . . 8 (∀𝑡𝑥𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) → E Fr 𝑥)
16 psseq2 4016 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑧 → (𝑢𝑡𝑢𝑧))
1716anbi1d 632 . . . . . . . . . . . . . . 15 (𝑡 = 𝑧 → ((𝑢𝑡 ∧ Tr 𝑢) ↔ (𝑢𝑧 ∧ Tr 𝑢)))
18 elequ2 2126 . . . . . . . . . . . . . . 15 (𝑡 = 𝑧 → (𝑢𝑡𝑢𝑧))
1917, 18imbi12d 348 . . . . . . . . . . . . . 14 (𝑡 = 𝑧 → (((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) ↔ ((𝑢𝑧 ∧ Tr 𝑢) → 𝑢𝑧)))
2019albidv 1921 . . . . . . . . . . . . 13 (𝑡 = 𝑧 → (∀𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) ↔ ∀𝑢((𝑢𝑧 ∧ Tr 𝑢) → 𝑢𝑧)))
21 psseq1 4015 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑣 → (𝑢𝑧𝑣𝑧))
22 treq 5142 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑣 → (Tr 𝑢 ↔ Tr 𝑣))
2321, 22anbi12d 633 . . . . . . . . . . . . . . 15 (𝑢 = 𝑣 → ((𝑢𝑧 ∧ Tr 𝑢) ↔ (𝑣𝑧 ∧ Tr 𝑣)))
24 elequ1 2118 . . . . . . . . . . . . . . 15 (𝑢 = 𝑣 → (𝑢𝑧𝑣𝑧))
2523, 24imbi12d 348 . . . . . . . . . . . . . 14 (𝑢 = 𝑣 → (((𝑢𝑧 ∧ Tr 𝑢) → 𝑢𝑧) ↔ ((𝑣𝑧 ∧ Tr 𝑣) → 𝑣𝑧)))
2625cbvalvw 2043 . . . . . . . . . . . . 13 (∀𝑢((𝑢𝑧 ∧ Tr 𝑢) → 𝑢𝑧) ↔ ∀𝑣((𝑣𝑧 ∧ Tr 𝑣) → 𝑣𝑧))
2720, 26syl6bb 290 . . . . . . . . . . . 12 (𝑡 = 𝑧 → (∀𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) ↔ ∀𝑣((𝑣𝑧 ∧ Tr 𝑣) → 𝑣𝑧)))
2827rspccv 3568 . . . . . . . . . . 11 (∀𝑡𝑥𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) → (𝑧𝑥 → ∀𝑣((𝑣𝑧 ∧ Tr 𝑣) → 𝑣𝑧)))
29 psseq2 4016 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑤 → (𝑢𝑡𝑢𝑤))
3029anbi1d 632 . . . . . . . . . . . . . . 15 (𝑡 = 𝑤 → ((𝑢𝑡 ∧ Tr 𝑢) ↔ (𝑢𝑤 ∧ Tr 𝑢)))
31 elequ2 2126 . . . . . . . . . . . . . . 15 (𝑡 = 𝑤 → (𝑢𝑡𝑢𝑤))
3230, 31imbi12d 348 . . . . . . . . . . . . . 14 (𝑡 = 𝑤 → (((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) ↔ ((𝑢𝑤 ∧ Tr 𝑢) → 𝑢𝑤)))
3332albidv 1921 . . . . . . . . . . . . 13 (𝑡 = 𝑤 → (∀𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) ↔ ∀𝑢((𝑢𝑤 ∧ Tr 𝑢) → 𝑢𝑤)))
34 psseq1 4015 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑦 → (𝑢𝑤𝑦𝑤))
35 treq 5142 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑦 → (Tr 𝑢 ↔ Tr 𝑦))
3634, 35anbi12d 633 . . . . . . . . . . . . . . 15 (𝑢 = 𝑦 → ((𝑢𝑤 ∧ Tr 𝑢) ↔ (𝑦𝑤 ∧ Tr 𝑦)))
37 elequ1 2118 . . . . . . . . . . . . . . 15 (𝑢 = 𝑦 → (𝑢𝑤𝑦𝑤))
3836, 37imbi12d 348 . . . . . . . . . . . . . 14 (𝑢 = 𝑦 → (((𝑢𝑤 ∧ Tr 𝑢) → 𝑢𝑤) ↔ ((𝑦𝑤 ∧ Tr 𝑦) → 𝑦𝑤)))
3938cbvalvw 2043 . . . . . . . . . . . . 13 (∀𝑢((𝑢𝑤 ∧ Tr 𝑢) → 𝑢𝑤) ↔ ∀𝑦((𝑦𝑤 ∧ Tr 𝑦) → 𝑦𝑤))
4033, 39syl6bb 290 . . . . . . . . . . . 12 (𝑡 = 𝑤 → (∀𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) ↔ ∀𝑦((𝑦𝑤 ∧ Tr 𝑦) → 𝑦𝑤)))
4140rspccv 3568 . . . . . . . . . . 11 (∀𝑡𝑥𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) → (𝑤𝑥 → ∀𝑦((𝑦𝑤 ∧ Tr 𝑦) → 𝑦𝑤)))
4228, 41anim12d 611 . . . . . . . . . 10 (∀𝑡𝑥𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) → ((𝑧𝑥𝑤𝑥) → (∀𝑣((𝑣𝑧 ∧ Tr 𝑣) → 𝑣𝑧) ∧ ∀𝑦((𝑦𝑤 ∧ Tr 𝑦) → 𝑦𝑤))))
43 vex 3444 . . . . . . . . . . 11 𝑧 ∈ V
44 vex 3444 . . . . . . . . . . 11 𝑤 ∈ V
4543, 44dfon2lem5 33145 . . . . . . . . . 10 ((∀𝑣((𝑣𝑧 ∧ Tr 𝑣) → 𝑣𝑧) ∧ ∀𝑦((𝑦𝑤 ∧ Tr 𝑦) → 𝑦𝑤)) → (𝑧𝑤𝑧 = 𝑤𝑤𝑧))
4642, 45syl6 35 . . . . . . . . 9 (∀𝑡𝑥𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) → ((𝑧𝑥𝑤𝑥) → (𝑧𝑤𝑧 = 𝑤𝑤𝑧)))
4746ralrimivv 3155 . . . . . . . 8 (∀𝑡𝑥𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) → ∀𝑧𝑥𝑤𝑥 (𝑧𝑤𝑧 = 𝑤𝑤𝑧))
4815, 47jca 515 . . . . . . 7 (∀𝑡𝑥𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) → ( E Fr 𝑥 ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤𝑧 = 𝑤𝑤𝑧)))
4914, 48syl 17 . . . . . 6 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → ( E Fr 𝑥 ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤𝑧 = 𝑤𝑤𝑧)))
50 dfwe2 7476 . . . . . . 7 ( E We 𝑥 ↔ ( E Fr 𝑥 ∧ ∀𝑧𝑥𝑤𝑥 (𝑧 E 𝑤𝑧 = 𝑤𝑤 E 𝑧)))
51 epel 5433 . . . . . . . . . 10 (𝑧 E 𝑤𝑧𝑤)
52 biid 264 . . . . . . . . . 10 (𝑧 = 𝑤𝑧 = 𝑤)
53 epel 5433 . . . . . . . . . 10 (𝑤 E 𝑧𝑤𝑧)
5451, 52, 533orbi123i 1153 . . . . . . . . 9 ((𝑧 E 𝑤𝑧 = 𝑤𝑤 E 𝑧) ↔ (𝑧𝑤𝑧 = 𝑤𝑤𝑧))
55542ralbii 3134 . . . . . . . 8 (∀𝑧𝑥𝑤𝑥 (𝑧 E 𝑤𝑧 = 𝑤𝑤 E 𝑧) ↔ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤𝑧 = 𝑤𝑤𝑧))
5655anbi2i 625 . . . . . . 7 (( E Fr 𝑥 ∧ ∀𝑧𝑥𝑤𝑥 (𝑧 E 𝑤𝑧 = 𝑤𝑤 E 𝑧)) ↔ ( E Fr 𝑥 ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤𝑧 = 𝑤𝑤𝑧)))
5750, 56bitri 278 . . . . . 6 ( E We 𝑥 ↔ ( E Fr 𝑥 ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤𝑧 = 𝑤𝑤𝑧)))
5849, 57sylibr 237 . . . . 5 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → E We 𝑥)
59 df-ord 6162 . . . . 5 (Ord 𝑥 ↔ (Tr 𝑥 ∧ E We 𝑥))
6012, 58, 59sylanbrc 586 . . . 4 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → Ord 𝑥)
618, 60impbii 212 . . 3 (Ord 𝑥 ↔ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥))
6261abbii 2863 . 2 {𝑥 ∣ Ord 𝑥} = {𝑥 ∣ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)}
631, 62eqtri 2821 1 On = {𝑥 ∣ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3o 1083  wal 1536   = wceq 1538  wcel 2111  {cab 2776  wne 2987  wral 3106  Vcvv 3441  wss 3881  wpss 3882   class class class wbr 5030  Tr wtr 5136   E cep 5429   Fr wfr 5475   We wwe 5477  Ord word 6158  Oncon0 6159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-tr 5137  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-ord 6162  df-on 6163  df-suc 6165
This theorem is referenced by:  dfon3  33466
  Copyright terms: Public domain W3C validator