HomeHome Metamath Proof Explorer
Theorem List (p. 64 of 489)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30950)
  Hilbert Space Explorer  Hilbert Space Explorer
(30951-32473)
  Users' Mathboxes  Users' Mathboxes
(32474-48899)
 

Theorem List for Metamath Proof Explorer - 6301-6400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremresssxp 6301 If the 𝑅-image of a class 𝐴 is a subclass of 𝐵, then the restriction of 𝑅 to 𝐴 is a subset of the Cartesian product of 𝐴 and 𝐵. (Contributed by RP, 24-Dec-2019.)
((𝑅𝐴) ⊆ 𝐵 ↔ (𝑅𝐴) ⊆ (𝐴 × 𝐵))
 
Theoremcnvssrndm 6302 The converse is a subset of the cartesian product of range and domain. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐴 ⊆ (ran 𝐴 × dom 𝐴)
 
Theoremcossxp 6303 Composition as a subset of the Cartesian product of factors. (Contributed by Mario Carneiro, 12-Jan-2017.)
(𝐴𝐵) ⊆ (dom 𝐵 × ran 𝐴)
 
Theoremrelrelss 6304 Two ways to describe the structure of a two-place operation. (Contributed by NM, 17-Dec-2008.)
((Rel 𝐴 ∧ Rel dom 𝐴) ↔ 𝐴 ⊆ ((V × V) × V))
 
Theoremunielrel 6305 The membership relation for a relation is inherited by class union. (Contributed by NM, 17-Sep-2006.)
((Rel 𝑅𝐴𝑅) → 𝐴 𝑅)
 
Theoremrelfld 6306 The double union of a relation is its field. (Contributed by NM, 17-Sep-2006.)
(Rel 𝑅 𝑅 = (dom 𝑅 ∪ ran 𝑅))
 
Theoremrelresfld 6307 Restriction of a relation to its field. (Contributed by FL, 15-Apr-2012.)
(Rel 𝑅 → (𝑅 𝑅) = 𝑅)
 
Theoremrelcoi2 6308 Composition with the identity relation restricted to a relation's field. (Contributed by FL, 2-May-2011.)
(Rel 𝑅 → (( I ↾ 𝑅) ∘ 𝑅) = 𝑅)
 
Theoremrelcoi1 6309 Composition with the identity relation restricted to a relation's field. (Contributed by FL, 8-May-2011.) (Proof shortened by OpenAI, 3-Jul-2020.)
(Rel 𝑅 → (𝑅 ∘ ( I ↾ 𝑅)) = 𝑅)
 
Theoremunidmrn 6310 The double union of the converse of a class is its field. (Contributed by NM, 4-Jun-2008.)
𝐴 = (dom 𝐴 ∪ ran 𝐴)
 
Theoremrelcnvfld 6311 if 𝑅 is a relation, its double union equals the double union of its converse. (Contributed by FL, 5-Jan-2009.)
(Rel 𝑅 𝑅 = 𝑅)
 
Theoremdfdm2 6312 Alternate definition of domain df-dm 5710 that doesn't require dummy variables. (Contributed by NM, 2-Aug-2010.)
dom 𝐴 = (𝐴𝐴)
 
Theoremunixp 6313 The double class union of a nonempty Cartesian product is the union of it members. (Contributed by NM, 17-Sep-2006.)
((𝐴 × 𝐵) ≠ ∅ → (𝐴 × 𝐵) = (𝐴𝐵))
 
Theoremunixp0 6314 A Cartesian product is empty iff its union is empty. (Contributed by NM, 20-Sep-2006.)
((𝐴 × 𝐵) = ∅ ↔ (𝐴 × 𝐵) = ∅)
 
Theoremunixpid 6315 Field of a Cartesian square. (Contributed by FL, 10-Oct-2009.)
(𝐴 × 𝐴) = 𝐴
 
Theoremressn 6316 Restriction of a class to a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
(𝐴 ↾ {𝐵}) = ({𝐵} × (𝐴 “ {𝐵}))
 
Theoremcnviin 6317* The converse of an intersection is the intersection of the converse. (Contributed by FL, 15-Oct-2012.)
(𝐴 ≠ ∅ → 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵)
 
Theoremcnvpo 6318 The converse of a partial order is a partial order. (Contributed by NM, 15-Jun-2005.)
(𝑅 Po 𝐴𝑅 Po 𝐴)
 
Theoremcnvso 6319 The converse of a strict order relation is a strict order relation. (Contributed by NM, 15-Jun-2005.)
(𝑅 Or 𝐴𝑅 Or 𝐴)
 
Theoremxpco 6320 Composition of two Cartesian products. (Contributed by Thierry Arnoux, 17-Nov-2017.)
(𝐵 ≠ ∅ → ((𝐵 × 𝐶) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐶))
 
Theoremxpcoid 6321 Composition of two Cartesian squares. (Contributed by Thierry Arnoux, 14-Jan-2018.)
((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) = (𝐴 × 𝐴)
 
Theoremelsnxp 6322* Membership in a Cartesian product with a singleton. (Contributed by Thierry Arnoux, 10-Apr-2020.) (Proof shortened by JJ, 14-Jul-2021.)
(𝑋𝑉 → (𝑍 ∈ ({𝑋} × 𝐴) ↔ ∃𝑦𝐴 𝑍 = ⟨𝑋, 𝑦⟩))
 
Theoremreu3op 6323* There is a unique ordered pair fulfilling a wff iff there are uniquely two sets fulfilling a corresponding wff. (Contributed by AV, 1-Jul-2023.)
(𝑝 = ⟨𝑎, 𝑏⟩ → (𝜓𝜒))       (∃!𝑝 ∈ (𝑋 × 𝑌)𝜓 ↔ (∃𝑎𝑋𝑏𝑌 𝜒 ∧ ∃𝑥𝑋𝑦𝑌𝑎𝑋𝑏𝑌 (𝜒 → ⟨𝑥, 𝑦⟩ = ⟨𝑎, 𝑏⟩)))
 
Theoremreuop 6324* There is a unique ordered pair fulfilling a wff iff there are uniquely two sets fulfilling a corresponding wff. (Contributed by AV, 23-Jun-2023.)
(𝑝 = ⟨𝑎, 𝑏⟩ → (𝜓𝜒))    &   (𝑝 = ⟨𝑥, 𝑦⟩ → (𝜓𝜃))       (∃!𝑝 ∈ (𝑋 × 𝑌)𝜓 ↔ ∃𝑎𝑋𝑏𝑌 (𝜒 ∧ ∀𝑥𝑋𝑦𝑌 (𝜃 → ⟨𝑥, 𝑦⟩ = ⟨𝑎, 𝑏⟩)))
 
Theoremopreu2reurex 6325* There is a unique ordered pair fulfilling a wff iff there are uniquely two sets fulfilling a corresponding wff. (Contributed by AV, 24-Jun-2023.) (Revised by AV, 1-Jul-2023.)
(𝑝 = ⟨𝑎, 𝑏⟩ → (𝜑𝜒))       (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 ↔ (∃!𝑎𝐴𝑏𝐵 𝜒 ∧ ∃!𝑏𝐵𝑎𝐴 𝜒))
 
Theoremopreu2reu 6326* If there is a unique ordered pair fulfilling a wff, then there is a double restricted unique existential qualification fulfilling a corresponding wff. (Contributed by AV, 25-Jun-2023.) (Revised by AV, 2-Jul-2023.)
(𝑝 = ⟨𝑎, 𝑏⟩ → (𝜑𝜒))       (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 → ∃!𝑎𝐴 ∃!𝑏𝐵 𝜒)
 
Theoremdfpo2 6327 Quantifier-free definition of a partial ordering. (Contributed by Scott Fenton, 22-Feb-2013.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
(𝑅 Po 𝐴 ↔ ((𝑅 ∩ ( I ↾ 𝐴)) = ∅ ∧ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅))
 
Theoremcsbcog 6328 Distribute proper substitution through a composition of relations. (Contributed by RP, 28-Jun-2020.)
(𝐴𝑉𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
 
Theoremsnres0 6329 Condition for restriction of a singleton to be empty. (Contributed by Scott Fenton, 9-Aug-2024.)
𝐵 ∈ V       (({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅ ↔ ¬ 𝐴𝐶)
 
Theoremimaindm 6330 The image is unaffected by intersection with the domain. (Contributed by Scott Fenton, 17-Dec-2021.)
(𝑅𝐴) = (𝑅 “ (𝐴 ∩ dom 𝑅))
 
2.3.11  The Predecessor Class
 
Syntaxcpred 6331 The predecessors symbol.
class Pred(𝑅, 𝐴, 𝑋)
 
Definitiondf-pred 6332 Define the predecessor class of a binary relation. This is the class of all elements 𝑦 of 𝐴 such that 𝑦𝑅𝑋 (see elpred 6349). (Contributed by Scott Fenton, 29-Jan-2011.)
Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
 
Theorempredeq123 6333 Equality theorem for the predecessor class. (Contributed by Scott Fenton, 13-Jun-2018.)
((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐵, 𝑌))
 
Theorempredeq1 6334 Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011.)
(𝑅 = 𝑆 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐴, 𝑋))
 
Theorempredeq2 6335 Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011.)
(𝐴 = 𝐵 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐵, 𝑋))
 
Theorempredeq3 6336 Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011.)
(𝑋 = 𝑌 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌))
 
Theoremnfpred 6337 Bound-variable hypothesis builder for the predecessor class. (Contributed by Scott Fenton, 9-Jun-2018.)
𝑥𝑅    &   𝑥𝐴    &   𝑥𝑋       𝑥Pred(𝑅, 𝐴, 𝑋)
 
Theoremcsbpredg 6338 Move class substitution in and out of the predecessor class of a relation. (Contributed by ML, 25-Oct-2020.)
(𝐴𝑉𝐴 / 𝑥Pred(𝑅, 𝐷, 𝑋) = Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥𝑋))
 
Theorempredpredss 6339 If 𝐴 is a subset of 𝐵, then their predecessor classes are also subsets. (Contributed by Scott Fenton, 2-Feb-2011.)
(𝐴𝐵 → Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, 𝐵, 𝑋))
 
Theorempredss 6340 The predecessor class of 𝐴 is a subset of 𝐴. (Contributed by Scott Fenton, 2-Feb-2011.)
Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐴
 
Theoremsspred 6341 Another subset/predecessor class relationship. (Contributed by Scott Fenton, 6-Feb-2011.)
((𝐵𝐴 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐵, 𝑋))
 
Theoremdfpred2 6342* An alternate definition of predecessor class when 𝑋 is a set. (Contributed by Scott Fenton, 8-Feb-2011.)
𝑋 ∈ V       Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ {𝑦𝑦𝑅𝑋})
 
Theoremdfpred3 6343* An alternate definition of predecessor class when 𝑋 is a set. (Contributed by Scott Fenton, 13-Jun-2018.)
𝑋 ∈ V       Pred(𝑅, 𝐴, 𝑋) = {𝑦𝐴𝑦𝑅𝑋}
 
Theoremdfpred3g 6344* An alternate definition of predecessor class when 𝑋 is a set. (Contributed by Scott Fenton, 13-Jun-2018.)
(𝑋𝑉 → Pred(𝑅, 𝐴, 𝑋) = {𝑦𝐴𝑦𝑅𝑋})
 
Theoremelpredgg 6345 Membership in a predecessor class. (Contributed by Scott Fenton, 17-Apr-2011.) Generalize to closed form. (Revised by BJ, 16-Oct-2024.)
((𝑋𝑉𝑌𝑊) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌𝐴𝑌𝑅𝑋)))
 
Theoremelpredg 6346 Membership in a predecessor class. (Contributed by Scott Fenton, 17-Apr-2011.) (Proof shortened by BJ, 16-Oct-2024.)
((𝑋𝐵𝑌𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅𝑋))
 
Theoremelpredimg 6347 Membership in a predecessor class - implicative version. (Contributed by Scott Fenton, 13-Apr-2011.) (Revised by NM, 5-Apr-2016.) (Proof shortened by BJ, 16-Oct-2024.)
((𝑋𝑉𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → 𝑌𝑅𝑋)
 
Theoremelpredim 6348 Membership in a predecessor class - implicative version. (Contributed by Scott Fenton, 9-May-2012.) (Proof shortened by BJ, 16-Oct-2024.)
𝑋 ∈ V       (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌𝑅𝑋)
 
Theoremelpred 6349 Membership in a predecessor class. (Contributed by Scott Fenton, 4-Feb-2011.) (Proof shortened by BJ, 16-Oct-2024.)
𝑌 ∈ V       (𝑋𝐷 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌𝐴𝑌𝑅𝑋)))
 
Theorempredexg 6350 The predecessor class exists when 𝐴 does. (Contributed by Scott Fenton, 8-Feb-2011.) Generalize to closed form. (Revised by BJ, 27-Oct-2024.)
(𝐴𝑉 → Pred(𝑅, 𝐴, 𝑋) ∈ V)
 
TheorempredasetexOLD 6351 Obsolete form of predexg 6350 as of 27-Oct-2024. (Contributed by Scott Fenton, 8-Feb-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐴 ∈ V       Pred(𝑅, 𝐴, 𝑋) ∈ V
 
Theoremdffr4 6352* Alternate definition of well-founded relation. (Contributed by Scott Fenton, 2-Feb-2011.)
(𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 Pred(𝑅, 𝑥, 𝑦) = ∅))
 
Theorempredel 6353 Membership in the predecessor class implies membership in the base class. (Contributed by Scott Fenton, 11-Feb-2011.)
(𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌𝐴)
 
Theorempredtrss 6354 If 𝑅 is transitive over 𝐴 and 𝑌𝑅𝑋, then Pred(𝑅, 𝐴, 𝑌) is a subclass of Pred(𝑅, 𝐴, 𝑋). (Contributed by Scott Fenton, 28-Oct-2024.)
((((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∧ 𝑋𝐴) → Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑋))
 
Theorempredpo 6355 Property of the predecessor class for partial orders. (Contributed by Scott Fenton, 28-Apr-2012.) (Proof shortened by Scott Fenton, 28-Oct-2024.)
((𝑅 Po 𝐴𝑋𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑋)))
 
Theorempredso 6356 Property of the predecessor class for strict total orders. (Contributed by Scott Fenton, 11-Feb-2011.)
((𝑅 Or 𝐴𝑋𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑋)))
 
Theoremsetlikespec 6357 If 𝑅 is set-like in 𝐴, then all predecessor classes of elements of 𝐴 exist. (Contributed by Scott Fenton, 20-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
((𝑋𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V)
 
Theorempredidm 6358 Idempotent law for the predecessor class. (Contributed by Scott Fenton, 29-Mar-2011.)
Pred(𝑅, Pred(𝑅, 𝐴, 𝑋), 𝑋) = Pred(𝑅, 𝐴, 𝑋)
 
Theorempredin 6359 Intersection law for predecessor classes. (Contributed by Scott Fenton, 29-Mar-2011.)
Pred(𝑅, (𝐴𝐵), 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∩ Pred(𝑅, 𝐵, 𝑋))
 
Theorempredun 6360 Union law for predecessor classes. (Contributed by Scott Fenton, 29-Mar-2011.)
Pred(𝑅, (𝐴𝐵), 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∪ Pred(𝑅, 𝐵, 𝑋))
 
Theorempreddif 6361 Difference law for predecessor classes. (Contributed by Scott Fenton, 14-Apr-2011.)
Pred(𝑅, (𝐴𝐵), 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∖ Pred(𝑅, 𝐵, 𝑋))
 
Theorempredep 6362 The predecessor under the membership relation is equivalent to an intersection. (Contributed by Scott Fenton, 27-Mar-2011.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
(𝑋𝐵 → Pred( E , 𝐴, 𝑋) = (𝐴𝑋))
 
Theoremtrpred 6363 The class of predecessors of an element of a transitive class for the membership relation is that element. (Contributed by BJ, 12-Oct-2024.)
((Tr 𝐴𝑋𝐴) → Pred( E , 𝐴, 𝑋) = 𝑋)
 
Theorempreddowncl 6364* A property of classes that are downward closed under predecessor. (Contributed by Scott Fenton, 13-Apr-2011.)
((𝐵𝐴 ∧ ∀𝑥𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵) → (𝑋𝐵 → Pred(𝑅, 𝐵, 𝑋) = Pred(𝑅, 𝐴, 𝑋)))
 
Theorempredpoirr 6365 Given a partial ordering, a class is not a member of its predecessor class. (Contributed by Scott Fenton, 17-Apr-2011.)
(𝑅 Po 𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋))
 
Theorempredfrirr 6366 Given a well-founded relation, a class is not a member of its predecessor class. (Contributed by Scott Fenton, 22-Apr-2011.)
(𝑅 Fr 𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋))
 
Theorempred0 6367 The predecessor class over is always . (Contributed by Scott Fenton, 16-Apr-2011.) (Proof shortened by AV, 11-Jun-2021.)
Pred(𝑅, ∅, 𝑋) = ∅
 
Theoremdfse3 6368* Alternate definition of set-like relationships. (Contributed by Scott Fenton, 19-Aug-2024.)
(𝑅 Se 𝐴 ↔ ∀𝑥𝐴 Pred(𝑅, 𝐴, 𝑥) ∈ V)
 
Theorempredrelss 6369 Subset carries from relation to predecessor class. (Contributed by Scott Fenton, 25-Nov-2024.)
(𝑅𝑆 → Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑆, 𝐴, 𝑋))
 
Theorempredprc 6370 The predecessor of a proper class is empty. (Contributed by Scott Fenton, 25-Nov-2024.)
𝑋 ∈ V → Pred(𝑅, 𝐴, 𝑋) = ∅)
 
Theorempredres 6371 Predecessor class is unaffected by restriction to the base class. (Contributed by Scott Fenton, 25-Nov-2024.)
Pred(𝑅, 𝐴, 𝑋) = Pred((𝑅𝐴), 𝐴, 𝑋)
 
2.3.12  Well-founded induction (variant)
 
Theoremfrpomin 6372* Every nonempty (possibly proper) subclass of a class 𝐴 with a well-founded set-like partial order 𝑅 has a minimal element. The additional condition of partial order over frmin 9818 enables avoiding the axiom of infinity. (Contributed by Scott Fenton, 11-Feb-2022.)
(((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
 
Theoremfrpomin2 6373* Every nonempty (possibly proper) subclass of a class 𝐴 with a well-founded set-like partial order 𝑅 has a minimal element. The additional condition of partial order over frmin 9818 enables avoiding the axiom of infinity. (Contributed by Scott Fenton, 11-Feb-2022.)
(((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵 Pred(𝑅, 𝐵, 𝑥) = ∅)
 
Theoremfrpoind 6374* The principle of well-founded induction over a partial order. This theorem is a version of frind 9819 that does not require the axiom of infinity and can be used to prove wfi 6382 and tfi 7890. (Contributed by Scott Fenton, 11-Feb-2022.)
(((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴 ∧ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))) → 𝐴 = 𝐵)
 
Theoremfrpoinsg 6375* Well-Founded Induction Schema (variant). If a property passes from all elements less than 𝑦 of a well-founded set-like partial order class 𝐴 to 𝑦 itself (induction hypothesis), then the property holds for all elements of 𝐴. (Contributed by Scott Fenton, 11-Feb-2022.)
(((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑦𝐴) → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑𝜑))       ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
 
Theoremfrpoins2fg 6376* Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 24-Aug-2022.)
(𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))    &   𝑦𝜓    &   (𝑦 = 𝑧 → (𝜑𝜓))       ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
 
Theoremfrpoins2g 6377* Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 24-Aug-2022.)
(𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))    &   (𝑦 = 𝑧 → (𝜑𝜓))       ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
 
Theoremfrpoins3g 6378* Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 19-Aug-2024.)
(𝑥𝐴 → (∀𝑦 ∈ Pred (𝑅, 𝐴, 𝑥)𝜓𝜑))    &   (𝑥 = 𝑦 → (𝜑𝜓))    &   (𝑥 = 𝐵 → (𝜑𝜒))       (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝐵𝐴) → 𝜒)
 
2.3.13  Well-ordered induction
 
Theoremtz6.26 6379* All nonempty subclasses of a class having a well-ordered set-like relation have minimal elements for that relation. Proposition 6.26 of [TakeutiZaring] p. 31. (Contributed by Scott Fenton, 29-Jan-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) (Proof shortened by Scott Fenton, 17-Nov-2024.)
(((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
 
Theoremtz6.26OLD 6380* Obsolete proof of tz6.26 6379 as of 17-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 29-Jan-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
(((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
 
Theoremtz6.26i 6381* All nonempty subclasses of a class having a well-ordered set-like relation 𝑅 have 𝑅-minimal elements. Proposition 6.26 of [TakeutiZaring] p. 31. (Contributed by Scott Fenton, 14-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
𝑅 We 𝐴    &   𝑅 Se 𝐴       ((𝐵𝐴𝐵 ≠ ∅) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
 
Theoremwfi 6382* The Principle of Well-Ordered Induction. Theorem 6.27 of [TakeutiZaring] p. 32. This principle states that if 𝐵 is a subclass of a well-ordered class 𝐴 with the property that every element of 𝐵 whose inital segment is included in 𝐴 is itself equal to 𝐴. (Contributed by Scott Fenton, 29-Jan-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) (Proof shortened by Scott Fenton, 17-Nov-2024.)
(((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴 ∧ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))) → 𝐴 = 𝐵)
 
TheoremwfiOLD 6383* Obsolete proof of wfi 6382 as of 17-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 29-Jan-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
(((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴 ∧ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))) → 𝐴 = 𝐵)
 
Theoremwfii 6384* The Principle of Well-Ordered Induction. Theorem 6.27 of [TakeutiZaring] p. 32. This principle states that if 𝐵 is a subclass of a well-ordered class 𝐴 with the property that every element of 𝐵 whose inital segment is included in 𝐴 is itself equal to 𝐴. (Contributed by Scott Fenton, 29-Jan-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
𝑅 We 𝐴    &   𝑅 Se 𝐴       ((𝐵𝐴 ∧ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵)) → 𝐴 = 𝐵)
 
Theoremwfisg 6385* Well-Ordered Induction Schema. If a property passes from all elements less than 𝑦 of a well-ordered class 𝐴 to 𝑦 itself (induction hypothesis), then the property holds for all elements of 𝐴. (Contributed by Scott Fenton, 11-Feb-2011.) (Proof shortened by Scott Fenton, 17-Nov-2024.)
(𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑𝜑))       ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
 
TheoremwfisgOLD 6386* Obsolete version of wfisg 6385 as of 17-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 11-Feb-2011.)
(𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑𝜑))       ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
 
Theoremwfis 6387* Well-Ordered Induction Schema. If all elements less than a given set 𝑥 of the well-ordered class 𝐴 have a property (induction hypothesis), then all elements of 𝐴 have that property. (Contributed by Scott Fenton, 29-Jan-2011.)
𝑅 We 𝐴    &   𝑅 Se 𝐴    &   (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑𝜑))       (𝑦𝐴𝜑)
 
Theoremwfis2fg 6388* Well-Ordered Induction Schema, using implicit substitution. (Contributed by Scott Fenton, 11-Feb-2011.) (Proof shortened by Scott Fenton, 17-Nov-2024.)
𝑦𝜓    &   (𝑦 = 𝑧 → (𝜑𝜓))    &   (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))       ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
 
Theoremwfis2fgOLD 6389* Obsolete version of wfis2fg 6388 as of 17-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 11-Feb-2011.)
𝑦𝜓    &   (𝑦 = 𝑧 → (𝜑𝜓))    &   (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))       ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
 
Theoremwfis2f 6390* Well-Ordered Induction schema, using implicit substitution. (Contributed by Scott Fenton, 29-Jan-2011.)
𝑅 We 𝐴    &   𝑅 Se 𝐴    &   𝑦𝜓    &   (𝑦 = 𝑧 → (𝜑𝜓))    &   (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))       (𝑦𝐴𝜑)
 
Theoremwfis2g 6391* Well-Ordered Induction Schema, using implicit substitution. (Contributed by Scott Fenton, 11-Feb-2011.)
(𝑦 = 𝑧 → (𝜑𝜓))    &   (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))       ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
 
Theoremwfis2 6392* Well-Ordered Induction schema, using implicit substitution. (Contributed by Scott Fenton, 29-Jan-2011.)
𝑅 We 𝐴    &   𝑅 Se 𝐴    &   (𝑦 = 𝑧 → (𝜑𝜓))    &   (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))       (𝑦𝐴𝜑)
 
Theoremwfis3 6393* Well-Ordered Induction schema, using implicit substitution. (Contributed by Scott Fenton, 29-Jan-2011.)
𝑅 We 𝐴    &   𝑅 Se 𝐴    &   (𝑦 = 𝑧 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜑𝜒))    &   (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))       (𝐵𝐴𝜒)
 
2.3.14  Ordinals
 
Syntaxword 6394 Extend the definition of a wff to include the ordinal predicate.
wff Ord 𝐴
 
Syntaxcon0 6395 Extend the definition of a class to include the class of all ordinal numbers. (The 0 in the name prevents creating a file called con.html, which causes problems in Windows.)
class On
 
Syntaxwlim 6396 Extend the definition of a wff to include the limit ordinal predicate.
wff Lim 𝐴
 
Syntaxcsuc 6397 Extend class notation to include the successor function.
class suc 𝐴
 
Definitiondf-ord 6398 Define the ordinal predicate, which is true for a class that is transitive and is well-ordered by the membership relation. Variant of definition of [BellMachover] p. 468.

Some sources will define a notation for ordinal order corresponding to < and but we just use and respectively.

(Contributed by NM, 17-Sep-1993.)

(Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))
 
Definitiondf-on 6399 Define the class of all ordinal numbers. Definition 7.11 of [TakeutiZaring] p. 38. (Contributed by NM, 5-Jun-1994.)
On = {𝑥 ∣ Ord 𝑥}
 
Definitiondf-lim 6400 Define the limit ordinal predicate, which is true for a nonempty ordinal that is not a successor (i.e. that is the union of itself). Our definition combines the definition of Lim of [BellMachover] p. 471 and Exercise 1 of [TakeutiZaring] p. 42. See dflim2 6452, dflim3 7884, and dflim4 for alternate definitions. (Contributed by NM, 22-Apr-1994.)
(Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48200 483 48201-48300 484 48301-48400 485 48401-48500 486 48501-48600 487 48601-48700 488 48701-48800 489 48801-48899
  Copyright terms: Public domain < Previous  Next >