| Metamath
Proof Explorer Theorem List (p. 64 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | wfi 6301* | The Principle of Well-Ordered Induction. Theorem 6.27 of [TakeutiZaring] p. 32. This principle states that if 𝐵 is a subclass of a well-ordered class 𝐴 with the property that every element of 𝐵 whose inital segment is included in 𝐴 is itself equal to 𝐴. (Contributed by Scott Fenton, 29-Jan-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
| ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 → 𝑦 ∈ 𝐵))) → 𝐴 = 𝐵) | ||
| Theorem | wfii 6302* | The Principle of Well-Ordered Induction. Theorem 6.27 of [TakeutiZaring] p. 32. This principle states that if 𝐵 is a subclass of a well-ordered class 𝐴 with the property that every element of 𝐵 whose inital segment is included in 𝐴 is itself equal to 𝐴. (Contributed by Scott Fenton, 29-Jan-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| ⊢ 𝑅 We 𝐴 & ⊢ 𝑅 Se 𝐴 ⇒ ⊢ ((𝐵 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 → 𝑦 ∈ 𝐵)) → 𝐴 = 𝐵) | ||
| Theorem | wfisg 6303* | Well-Ordered Induction Schema. If a property passes from all elements less than 𝑦 of a well-ordered class 𝐴 to 𝑦 itself (induction hypothesis), then the property holds for all elements of 𝐴. (Contributed by Scott Fenton, 11-Feb-2011.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
| ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 → 𝜑)) ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ 𝐴 𝜑) | ||
| Theorem | wfis 6304* | Well-Ordered Induction Schema. If all elements less than a given set 𝑥 of the well-ordered class 𝐴 have a property (induction hypothesis), then all elements of 𝐴 have that property. (Contributed by Scott Fenton, 29-Jan-2011.) |
| ⊢ 𝑅 We 𝐴 & ⊢ 𝑅 Se 𝐴 & ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 → 𝜑)) ⇒ ⊢ (𝑦 ∈ 𝐴 → 𝜑) | ||
| Theorem | wfis2fg 6305* | Well-Ordered Induction Schema, using implicit substitution. (Contributed by Scott Fenton, 11-Feb-2011.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
| ⊢ Ⅎ𝑦𝜓 & ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ 𝐴 𝜑) | ||
| Theorem | wfis2f 6306* | Well-Ordered Induction schema, using implicit substitution. (Contributed by Scott Fenton, 29-Jan-2011.) |
| ⊢ 𝑅 We 𝐴 & ⊢ 𝑅 Se 𝐴 & ⊢ Ⅎ𝑦𝜓 & ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) ⇒ ⊢ (𝑦 ∈ 𝐴 → 𝜑) | ||
| Theorem | wfis2g 6307* | Well-Ordered Induction Schema, using implicit substitution. (Contributed by Scott Fenton, 11-Feb-2011.) |
| ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ 𝐴 𝜑) | ||
| Theorem | wfis2 6308* | Well-Ordered Induction schema, using implicit substitution. (Contributed by Scott Fenton, 29-Jan-2011.) |
| ⊢ 𝑅 We 𝐴 & ⊢ 𝑅 Se 𝐴 & ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) ⇒ ⊢ (𝑦 ∈ 𝐴 → 𝜑) | ||
| Theorem | wfis3 6309* | Well-Ordered Induction schema, using implicit substitution. (Contributed by Scott Fenton, 29-Jan-2011.) |
| ⊢ 𝑅 We 𝐴 & ⊢ 𝑅 Se 𝐴 & ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) ⇒ ⊢ (𝐵 ∈ 𝐴 → 𝜒) | ||
| Syntax | word 6310 | Extend the definition of a wff to include the ordinal predicate. |
| wff Ord 𝐴 | ||
| Syntax | con0 6311 | Extend the definition of a class to include the class of all ordinal numbers. (The 0 in the name prevents creating a file called con.html, which causes problems in Windows.) |
| class On | ||
| Syntax | wlim 6312 | Extend the definition of a wff to include the limit ordinal predicate. |
| wff Lim 𝐴 | ||
| Syntax | csuc 6313 | Extend class notation to include the successor function. |
| class suc 𝐴 | ||
| Definition | df-ord 6314 |
Define the ordinal predicate, which is true for a class that is transitive
and is well-ordered by the membership relation. Variant of definition of
[BellMachover] p. 468.
Some sources will define a notation for ordinal order corresponding to < and ≤ but we just use ∈ and ⊆ respectively. (Contributed by NM, 17-Sep-1993.) |
| ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | ||
| Definition | df-on 6315 | Define the class of all ordinal numbers. Definition 7.11 of [TakeutiZaring] p. 38. (Contributed by NM, 5-Jun-1994.) |
| ⊢ On = {𝑥 ∣ Ord 𝑥} | ||
| Definition | df-lim 6316 | Define the limit ordinal predicate, which is true for a nonempty ordinal that is not a successor (i.e. that is the union of itself). Our definition combines the definition of Lim of [BellMachover] p. 471 and Exercise 1 of [TakeutiZaring] p. 42. See dflim2 6369, dflim3 7787, and dflim4 for alternate definitions. (Contributed by NM, 22-Apr-1994.) |
| ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | ||
| Definition | df-suc 6317 | Define the successor of a class. When applied to an ordinal number, the successor means the same thing as "plus 1" (see oa1suc 8456). Definition 7.22 of [TakeutiZaring] p. 41, who use "+ 1" to denote this function. Definition 1.4 of [Schloeder] p. 1, similarly. Ordinal natural numbers defined using this successor function and 0 as the empty set are also called von Neumann ordinals; 0 is the empty set {}, 1 is {0, {0}}, 2 is {1, {1}}, and so on. Our definition is a generalization to classes. Although it is not conventional to use it with proper classes, it has no effect on a proper class (sucprc 6389), so that the successor of any ordinal class is still an ordinal class (ordsuc 7752), simplifying certain proofs. Some authors denote the successor operation with a prime (apostrophe-like) symbol, such as Definition 6 of [Suppes] p. 134 and the definition of successor in [Mendelson] p. 246 (who uses the symbol "Suc" as a predicate to mean "is a successor ordinal"). The definition of successor of [Enderton] p. 68 denotes the operation with a plus-sign superscript. (Contributed by NM, 30-Aug-1993.) |
| ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | ||
| Theorem | ordeq 6318 | Equality theorem for the ordinal predicate. (Contributed by NM, 17-Sep-1993.) |
| ⊢ (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵)) | ||
| Theorem | elong 6319 | An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ On ↔ Ord 𝐴)) | ||
| Theorem | elon 6320 | An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ On ↔ Ord 𝐴) | ||
| Theorem | eloni 6321 | An ordinal number has the ordinal property. (Contributed by NM, 5-Jun-1994.) |
| ⊢ (𝐴 ∈ On → Ord 𝐴) | ||
| Theorem | elon2 6322 | An ordinal number is an ordinal set. Part of Definition 1.2 of [Schloeder] p. 1. (Contributed by NM, 8-Feb-2004.) |
| ⊢ (𝐴 ∈ On ↔ (Ord 𝐴 ∧ 𝐴 ∈ V)) | ||
| Theorem | limeq 6323 | Equality theorem for the limit predicate. (Contributed by NM, 22-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵)) | ||
| Theorem | ordwe 6324 | Membership well-orders every ordinal. Proposition 7.4 of [TakeutiZaring] p. 36. (Contributed by NM, 3-Apr-1994.) |
| ⊢ (Ord 𝐴 → E We 𝐴) | ||
| Theorem | ordtr 6325 | An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.) |
| ⊢ (Ord 𝐴 → Tr 𝐴) | ||
| Theorem | ordfr 6326 | Membership is well-founded on an ordinal class. In other words, an ordinal class is well-founded. (Contributed by NM, 22-Apr-1994.) |
| ⊢ (Ord 𝐴 → E Fr 𝐴) | ||
| Theorem | ordelss 6327 | An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.) |
| ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) | ||
| Theorem | trssord 6328 | A transitive subclass of an ordinal class is ordinal. (Contributed by NM, 29-May-1994.) |
| ⊢ ((Tr 𝐴 ∧ 𝐴 ⊆ 𝐵 ∧ Ord 𝐵) → Ord 𝐴) | ||
| Theorem | ordirr 6329 | No ordinal class is a member of itself. In other words, the membership relation is irreflexive on ordinal classes. Theorem 2.2(i) of [BellMachover] p. 469, generalized to classes. Theorem 1.9(i) of [Schloeder] p. 1. We prove this without invoking the Axiom of Regularity. (Contributed by NM, 2-Jan-1994.) |
| ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | ||
| Theorem | nordeq 6330 | A member of an ordinal class is not equal to it. (Contributed by NM, 25-May-1998.) |
| ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐴 ≠ 𝐵) | ||
| Theorem | ordn2lp 6331 | An ordinal class cannot be an element of one of its members. Variant of first part of Theorem 2.2(vii) of [BellMachover] p. 469. (Contributed by NM, 3-Apr-1994.) |
| ⊢ (Ord 𝐴 → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) | ||
| Theorem | tz7.5 6332* | A nonempty subclass of an ordinal class has a minimal element. Proposition 7.5 of [TakeutiZaring] p. 36. (Contributed by NM, 18-Feb-2004.) (Revised by David Abernethy, 16-Mar-2011.) |
| ⊢ ((Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 (𝐵 ∩ 𝑥) = ∅) | ||
| Theorem | ordelord 6333 | An element of an ordinal class is ordinal. Proposition 7.6 of [TakeutiZaring] p. 36. Lemma 1.3 of [Schloeder] p. 1. (Contributed by NM, 23-Apr-1994.) |
| ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → Ord 𝐵) | ||
| Theorem | tron 6334 | The class of all ordinal numbers is transitive. (Contributed by NM, 4-May-2009.) |
| ⊢ Tr On | ||
| Theorem | ordelon 6335 | An element of an ordinal class is an ordinal number. Lemma 1.3 of [Schloeder] p. 1. (Contributed by NM, 26-Oct-2003.) |
| ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) | ||
| Theorem | onelon 6336 | An element of an ordinal number is an ordinal number. Theorem 2.2(iii) of [BellMachover] p. 469. Lemma 1.3 of [Schloeder] p. 1. (Contributed by NM, 26-Oct-2003.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) | ||
| Theorem | tz7.7 6337 | A transitive class belongs to an ordinal class iff it is strictly included in it. Proposition 7.7 of [TakeutiZaring] p. 37. (Contributed by NM, 5-May-1994.) |
| ⊢ ((Ord 𝐴 ∧ Tr 𝐵) → (𝐵 ∈ 𝐴 ↔ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴))) | ||
| Theorem | ordelssne 6338 | For ordinal classes, membership is equivalent to strict inclusion. Corollary 7.8 of [TakeutiZaring] p. 37. (Contributed by NM, 25-Nov-1995.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵))) | ||
| Theorem | ordelpss 6339 | For ordinal classes, membership is equivalent to strict inclusion. Corollary 7.8 of [TakeutiZaring] p. 37. (Contributed by NM, 17-Jun-1998.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ 𝐴 ⊊ 𝐵)) | ||
| Theorem | ordsseleq 6340 | For ordinal classes, inclusion is equivalent to membership or equality. (Contributed by NM, 25-Nov-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | ||
| Theorem | ordin 6341 | The intersection of two ordinal classes is ordinal. Proposition 7.9 of [TakeutiZaring] p. 37. (Contributed by NM, 9-May-1994.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴 ∩ 𝐵)) | ||
| Theorem | onin 6342 | The intersection of two ordinal numbers is an ordinal number. (Contributed by NM, 7-Apr-1995.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∩ 𝐵) ∈ On) | ||
| Theorem | ordtri3or 6343 | A trichotomy law for ordinals. Proposition 7.10 of [TakeutiZaring] p. 38. Theorem 1.9(iii) of [Schloeder] p. 1. (Contributed by NM, 10-May-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | ||
| Theorem | ordtri1 6344 | A trichotomy law for ordinals. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | ||
| Theorem | ontri1 6345 | A trichotomy law for ordinal numbers. (Contributed by NM, 6-Nov-2003.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | ||
| Theorem | ordtri2 6346 | A trichotomy law for ordinals. (Contributed by NM, 25-Nov-1995.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) | ||
| Theorem | ordtri3 6347 | A trichotomy law for ordinals. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof shortened by JJ, 24-Sep-2021.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 ↔ ¬ (𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴))) | ||
| Theorem | ordtri4 6348 | A trichotomy law for ordinals. (Contributed by NM, 1-Nov-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 ∈ 𝐵))) | ||
| Theorem | orddisj 6349 | An ordinal class and its singleton are disjoint. (Contributed by NM, 19-May-1998.) |
| ⊢ (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅) | ||
| Theorem | onfr 6350 | The ordinal class is well-founded. This proof does not require the axiom of regularity. This lemma is used in ordon 7717 (through epweon 7715) in order to eliminate the need for the axiom of regularity. (Contributed by NM, 17-May-1994.) |
| ⊢ E Fr On | ||
| Theorem | onelpss 6351 | Relationship between membership and proper subset of an ordinal number. (Contributed by NM, 15-Sep-1995.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵))) | ||
| Theorem | onsseleq 6352 | Relationship between subset and membership of an ordinal number. (Contributed by NM, 15-Sep-1995.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | ||
| Theorem | onelss 6353 | An element of an ordinal number is a subset of the number. (Contributed by NM, 5-Jun-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | ||
| Theorem | oneltri 6354 | The elementhood relation on the ordinals is complete, so we have triality. Theorem 1.9(iii) of [Schloeder] p. 1. See ordtri3or 6343. (Contributed by RP, 15-Jan-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴 ∨ 𝐴 = 𝐵)) | ||
| Theorem | ordtr1 6355 | Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.) |
| ⊢ (Ord 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | ||
| Theorem | ordtr2 6356 | Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐶) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | ||
| Theorem | ordtr3 6357 | Transitive law for ordinal classes. (Contributed by Mario Carneiro, 30-Dec-2014.) (Proof shortened by JJ, 24-Sep-2021.) |
| ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵))) | ||
| Theorem | ontr1 6358 | Transitive law for ordinal numbers. Theorem 7M(b) of [Enderton] p. 192. Theorem 1.9(ii) of [Schloeder] p. 1. (Contributed by NM, 11-Aug-1994.) |
| ⊢ (𝐶 ∈ On → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | ||
| Theorem | ontr2 6359 | Transitive law for ordinal numbers. Exercise 3 of [TakeutiZaring] p. 40. (Contributed by NM, 6-Nov-2003.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | ||
| Theorem | onelssex 6360* | Ordinal less than is equivalent to having an ordinal between them. (Contributed by Scott Fenton, 8-Aug-2024.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐶 ↔ ∃𝑏 ∈ 𝐶 𝐴 ⊆ 𝑏)) | ||
| Theorem | ordunidif 6361 | The union of an ordinal stays the same if a subset equal to one of its elements is removed. (Contributed by NM, 10-Dec-2004.) |
| ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → ∪ (𝐴 ∖ 𝐵) = ∪ 𝐴) | ||
| Theorem | ordintdif 6362 | If 𝐵 is smaller than 𝐴, then it equals the intersection of the difference. Exercise 11 in [TakeutiZaring] p. 44. (Contributed by Andrew Salmon, 14-Nov-2011.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ (𝐴 ∖ 𝐵) ≠ ∅) → 𝐵 = ∩ (𝐴 ∖ 𝐵)) | ||
| Theorem | onintss 6363* | If a property is true for an ordinal number, then the minimum ordinal number for which it is true is smaller or equal. Theorem Schema 61 of [Suppes] p. 228. (Contributed by NM, 3-Oct-2003.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ On → (𝜓 → ∩ {𝑥 ∈ On ∣ 𝜑} ⊆ 𝐴)) | ||
| Theorem | oneqmini 6364* | A way to show that an ordinal number equals the minimum of a collection of ordinal numbers: it must be in the collection, and it must not be larger than any member of the collection. (Contributed by NM, 14-Nov-2003.) |
| ⊢ (𝐵 ⊆ On → ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) → 𝐴 = ∩ 𝐵)) | ||
| Theorem | ord0 6365 | The empty set is an ordinal class. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 11-May-1994.) |
| ⊢ Ord ∅ | ||
| Theorem | 0elon 6366 | The empty set is an ordinal number. Corollary 7N(b) of [Enderton] p. 193. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 17-Sep-1993.) |
| ⊢ ∅ ∈ On | ||
| Theorem | ord0eln0 6367 | A nonempty ordinal contains the empty set. Lemma 1.10 of [Schloeder] p. 2. (Contributed by NM, 25-Nov-1995.) |
| ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | ||
| Theorem | on0eln0 6368 | An ordinal number contains zero iff it is nonzero. (Contributed by NM, 6-Dec-2004.) |
| ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | ||
| Theorem | dflim2 6369 | An alternate definition of a limit ordinal. (Contributed by NM, 4-Nov-2004.) |
| ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴)) | ||
| Theorem | inton 6370 | The intersection of the class of ordinal numbers is the empty set. (Contributed by NM, 20-Oct-2003.) |
| ⊢ ∩ On = ∅ | ||
| Theorem | nlim0 6371 | The empty set is not a limit ordinal. (Contributed by NM, 24-Mar-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ ¬ Lim ∅ | ||
| Theorem | limord 6372 | A limit ordinal is ordinal. (Contributed by NM, 4-May-1995.) |
| ⊢ (Lim 𝐴 → Ord 𝐴) | ||
| Theorem | limuni 6373 | A limit ordinal is its own supremum (union). Lemma 2.13 of [Schloeder] p. 5. (Contributed by NM, 4-May-1995.) |
| ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) | ||
| Theorem | limuni2 6374 | The union of a limit ordinal is a limit ordinal. (Contributed by NM, 19-Sep-2006.) |
| ⊢ (Lim 𝐴 → Lim ∪ 𝐴) | ||
| Theorem | 0ellim 6375 | A limit ordinal contains the empty set. (Contributed by NM, 15-May-1994.) |
| ⊢ (Lim 𝐴 → ∅ ∈ 𝐴) | ||
| Theorem | limelon 6376 | A limit ordinal class that is also a set is an ordinal number. (Contributed by NM, 26-Apr-2004.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ Lim 𝐴) → 𝐴 ∈ On) | ||
| Theorem | onn0 6377 | The class of all ordinal numbers is not empty. (Contributed by NM, 17-Sep-1995.) |
| ⊢ On ≠ ∅ | ||
| Theorem | suceqd 6378 | Deduction associated with suceq 6379. (Contributed by Rohan Ridenour, 8-Aug-2023.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → suc 𝐴 = suc 𝐵) | ||
| Theorem | suceq 6379 | Equality of successors. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵) | ||
| Theorem | elsuci 6380 | Membership in a successor. This one-way implication does not require that either 𝐴 or 𝐵 be sets. Lemma 1.13 of [Schloeder] p. 2. (Contributed by NM, 6-Jun-1994.) |
| ⊢ (𝐴 ∈ suc 𝐵 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) | ||
| Theorem | elsucg 6381 | Membership in a successor. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 15-Sep-1995.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | ||
| Theorem | elsuc2g 6382 | Variant of membership in a successor, requiring that 𝐵 rather than 𝐴 be a set. (Contributed by NM, 28-Oct-2003.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | ||
| Theorem | elsuc 6383 | Membership in a successor. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 15-Sep-2003.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) | ||
| Theorem | elsuc2 6384 | Membership in a successor. (Contributed by NM, 15-Sep-2003.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐵 ∈ suc 𝐴 ↔ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) | ||
| Theorem | nfsuc 6385 | Bound-variable hypothesis builder for successor. (Contributed by NM, 15-Sep-2003.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥 suc 𝐴 | ||
| Theorem | elelsuc 6386 | Membership in a successor. (Contributed by NM, 20-Jun-1998.) |
| ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ suc 𝐵) | ||
| Theorem | sucel 6387* | Membership of a successor in another class. (Contributed by NM, 29-Jun-2004.) |
| ⊢ (suc 𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))) | ||
| Theorem | suc0 6388 | The successor of the empty set. (Contributed by NM, 1-Feb-2005.) |
| ⊢ suc ∅ = {∅} | ||
| Theorem | sucprc 6389 | A proper class is its own successor. (Contributed by NM, 3-Apr-1995.) |
| ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) | ||
| Theorem | unisucs 6390 | The union of the successor of a set is equal to the binary union of that set with its union. (Contributed by NM, 30-Aug-1993.) Extract from unisuc 6392. (Revised by BJ, 28-Dec-2024.) |
| ⊢ (𝐴 ∈ 𝑉 → ∪ suc 𝐴 = (∪ 𝐴 ∪ 𝐴)) | ||
| Theorem | unisucg 6391 | A transitive class is equal to the union of its successor, closed form. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.) Generalize from unisuc 6392. (Revised by BJ, 28-Dec-2024.) |
| ⊢ (𝐴 ∈ 𝑉 → (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴)) | ||
| Theorem | unisuc 6392 | A transitive class is equal to the union of its successor, inference form. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴) | ||
| Theorem | sssucid 6393 | A class is included in its own successor. Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized to arbitrary classes). (Contributed by NM, 31-May-1994.) |
| ⊢ 𝐴 ⊆ suc 𝐴 | ||
| Theorem | sucidg 6394 | Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized). Lemma 1.7 of [Schloeder] p. 1. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) | ||
| Theorem | sucid 6395 | A set belongs to its successor. (Contributed by NM, 22-Jun-1994.) (Proof shortened by Alan Sare, 18-Feb-2012.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ 𝐴 ∈ suc 𝐴 | ||
| Theorem | nsuceq0 6396 | No successor is empty. (Contributed by NM, 3-Apr-1995.) |
| ⊢ suc 𝐴 ≠ ∅ | ||
| Theorem | eqelsuc 6397 | A set belongs to the successor of an equal set. (Contributed by NM, 18-Aug-1994.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 = 𝐵 → 𝐴 ∈ suc 𝐵) | ||
| Theorem | iunsuc 6398* | Inductive definition for the indexed union at a successor. (Contributed by Mario Carneiro, 4-Feb-2013.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ ∪ 𝑥 ∈ suc 𝐴𝐵 = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ 𝐶) | ||
| Theorem | suctr 6399 | The successor of a transitive class is transitive. (Contributed by Alan Sare, 11-Apr-2009.) (Proof shortened by JJ, 24-Sep-2021.) |
| ⊢ (Tr 𝐴 → Tr suc 𝐴) | ||
| Theorem | trsuc 6400 | A set whose successor belongs to a transitive class also belongs. (Contributed by NM, 5-Sep-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| ⊢ ((Tr 𝐴 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |