| Metamath
Proof Explorer Theorem List (p. 64 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30909) |
(30910-32432) |
(32433-49920) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | frpoins3g 6301* | Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 19-Aug-2024.) |
| ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ Pred (𝑅, 𝐴, 𝑥)𝜓 → 𝜑)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) ⇒ ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝐵 ∈ 𝐴) → 𝜒) | ||
| Theorem | tz6.26 6302* | All nonempty subclasses of a class having a well-ordered set-like relation have minimal elements for that relation. Proposition 6.26 of [TakeutiZaring] p. 31. (Contributed by Scott Fenton, 29-Jan-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
| ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑦 ∈ 𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅) | ||
| Theorem | tz6.26i 6303* | All nonempty subclasses of a class having a well-ordered set-like relation 𝑅 have 𝑅-minimal elements. Proposition 6.26 of [TakeutiZaring] p. 31. (Contributed by Scott Fenton, 14-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| ⊢ 𝑅 We 𝐴 & ⊢ 𝑅 Se 𝐴 ⇒ ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑦 ∈ 𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅) | ||
| Theorem | wfi 6304* | The Principle of Well-Ordered Induction. Theorem 6.27 of [TakeutiZaring] p. 32. This principle states that if 𝐵 is a subclass of a well-ordered class 𝐴 with the property that every element of 𝐵 whose inital segment is included in 𝐴 is itself equal to 𝐴. (Contributed by Scott Fenton, 29-Jan-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
| ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 → 𝑦 ∈ 𝐵))) → 𝐴 = 𝐵) | ||
| Theorem | wfii 6305* | The Principle of Well-Ordered Induction. Theorem 6.27 of [TakeutiZaring] p. 32. This principle states that if 𝐵 is a subclass of a well-ordered class 𝐴 with the property that every element of 𝐵 whose inital segment is included in 𝐴 is itself equal to 𝐴. (Contributed by Scott Fenton, 29-Jan-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| ⊢ 𝑅 We 𝐴 & ⊢ 𝑅 Se 𝐴 ⇒ ⊢ ((𝐵 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 → 𝑦 ∈ 𝐵)) → 𝐴 = 𝐵) | ||
| Theorem | wfisg 6306* | Well-Ordered Induction Schema. If a property passes from all elements less than 𝑦 of a well-ordered class 𝐴 to 𝑦 itself (induction hypothesis), then the property holds for all elements of 𝐴. (Contributed by Scott Fenton, 11-Feb-2011.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
| ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 → 𝜑)) ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ 𝐴 𝜑) | ||
| Theorem | wfis 6307* | Well-Ordered Induction Schema. If all elements less than a given set 𝑥 of the well-ordered class 𝐴 have a property (induction hypothesis), then all elements of 𝐴 have that property. (Contributed by Scott Fenton, 29-Jan-2011.) |
| ⊢ 𝑅 We 𝐴 & ⊢ 𝑅 Se 𝐴 & ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 → 𝜑)) ⇒ ⊢ (𝑦 ∈ 𝐴 → 𝜑) | ||
| Theorem | wfis2fg 6308* | Well-Ordered Induction Schema, using implicit substitution. (Contributed by Scott Fenton, 11-Feb-2011.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
| ⊢ Ⅎ𝑦𝜓 & ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ 𝐴 𝜑) | ||
| Theorem | wfis2f 6309* | Well-Ordered Induction schema, using implicit substitution. (Contributed by Scott Fenton, 29-Jan-2011.) |
| ⊢ 𝑅 We 𝐴 & ⊢ 𝑅 Se 𝐴 & ⊢ Ⅎ𝑦𝜓 & ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) ⇒ ⊢ (𝑦 ∈ 𝐴 → 𝜑) | ||
| Theorem | wfis2g 6310* | Well-Ordered Induction Schema, using implicit substitution. (Contributed by Scott Fenton, 11-Feb-2011.) |
| ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ 𝐴 𝜑) | ||
| Theorem | wfis2 6311* | Well-Ordered Induction schema, using implicit substitution. (Contributed by Scott Fenton, 29-Jan-2011.) |
| ⊢ 𝑅 We 𝐴 & ⊢ 𝑅 Se 𝐴 & ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) ⇒ ⊢ (𝑦 ∈ 𝐴 → 𝜑) | ||
| Theorem | wfis3 6312* | Well-Ordered Induction schema, using implicit substitution. (Contributed by Scott Fenton, 29-Jan-2011.) |
| ⊢ 𝑅 We 𝐴 & ⊢ 𝑅 Se 𝐴 & ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) ⇒ ⊢ (𝐵 ∈ 𝐴 → 𝜒) | ||
| Syntax | word 6313 | Extend the definition of a wff to include the ordinal predicate. |
| wff Ord 𝐴 | ||
| Syntax | con0 6314 | Extend the definition of a class to include the class of all ordinal numbers. (The 0 in the name prevents creating a file called con.html, which causes problems in Windows.) |
| class On | ||
| Syntax | wlim 6315 | Extend the definition of a wff to include the limit ordinal predicate. |
| wff Lim 𝐴 | ||
| Syntax | csuc 6316 | Extend class notation to include the successor function. |
| class suc 𝐴 | ||
| Definition | df-ord 6317 |
Define the ordinal predicate, which is true for a class that is transitive
and is well-ordered by the membership relation. Variant of definition of
[BellMachover] p. 468.
Some sources will define a notation for ordinal order corresponding to < and ≤ but we just use ∈ and ⊆ respectively. (Contributed by NM, 17-Sep-1993.) |
| ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | ||
| Definition | df-on 6318 | Define the class of all ordinal numbers. Definition 7.11 of [TakeutiZaring] p. 38. (Contributed by NM, 5-Jun-1994.) |
| ⊢ On = {𝑥 ∣ Ord 𝑥} | ||
| Definition | df-lim 6319 | Define the limit ordinal predicate, which is true for a nonempty ordinal that is not a successor (i.e. that is the union of itself). Our definition combines the definition of Lim of [BellMachover] p. 471 and Exercise 1 of [TakeutiZaring] p. 42. See dflim2 6372, dflim3 7786, and dflim4 for alternate definitions. (Contributed by NM, 22-Apr-1994.) |
| ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | ||
| Definition | df-suc 6320 | Define the successor of a class. When applied to an ordinal number, the successor means the same thing as "plus 1" (see oa1suc 8455). Definition 7.22 of [TakeutiZaring] p. 41, who use "+ 1" to denote this function. Definition 1.4 of [Schloeder] p. 1, similarly. Ordinal natural numbers defined using this successor function and 0 as the empty set are also called von Neumann ordinals; 0 is the empty set {}, 1 is {0, {0}}, 2 is {1, {1}}, and so on. Our definition is a generalization to classes. Although it is not conventional to use it with proper classes, it has no effect on a proper class (sucprc 6392), so that the successor of any ordinal class is still an ordinal class (ordsuc 7753), simplifying certain proofs. Some authors denote the successor operation with a prime (apostrophe-like) symbol, such as Definition 6 of [Suppes] p. 134 and the definition of successor in [Mendelson] p. 246 (who uses the symbol "Suc" as a predicate to mean "is a successor ordinal"). The definition of successor of [Enderton] p. 68 denotes the operation with a plus-sign superscript. (Contributed by NM, 30-Aug-1993.) |
| ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | ||
| Theorem | ordeq 6321 | Equality theorem for the ordinal predicate. (Contributed by NM, 17-Sep-1993.) |
| ⊢ (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵)) | ||
| Theorem | elong 6322 | An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ On ↔ Ord 𝐴)) | ||
| Theorem | elon 6323 | An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ On ↔ Ord 𝐴) | ||
| Theorem | eloni 6324 | An ordinal number has the ordinal property. (Contributed by NM, 5-Jun-1994.) |
| ⊢ (𝐴 ∈ On → Ord 𝐴) | ||
| Theorem | elon2 6325 | An ordinal number is an ordinal set. Part of Definition 1.2 of [Schloeder] p. 1. (Contributed by NM, 8-Feb-2004.) |
| ⊢ (𝐴 ∈ On ↔ (Ord 𝐴 ∧ 𝐴 ∈ V)) | ||
| Theorem | limeq 6326 | Equality theorem for the limit predicate. (Contributed by NM, 22-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵)) | ||
| Theorem | ordwe 6327 | Membership well-orders every ordinal. Proposition 7.4 of [TakeutiZaring] p. 36. (Contributed by NM, 3-Apr-1994.) |
| ⊢ (Ord 𝐴 → E We 𝐴) | ||
| Theorem | ordtr 6328 | An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.) |
| ⊢ (Ord 𝐴 → Tr 𝐴) | ||
| Theorem | ordfr 6329 | Membership is well-founded on an ordinal class. In other words, an ordinal class is well-founded. (Contributed by NM, 22-Apr-1994.) |
| ⊢ (Ord 𝐴 → E Fr 𝐴) | ||
| Theorem | ordelss 6330 | An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.) |
| ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) | ||
| Theorem | trssord 6331 | A transitive subclass of an ordinal class is ordinal. (Contributed by NM, 29-May-1994.) |
| ⊢ ((Tr 𝐴 ∧ 𝐴 ⊆ 𝐵 ∧ Ord 𝐵) → Ord 𝐴) | ||
| Theorem | ordirr 6332 | No ordinal class is a member of itself. In other words, the membership relation is irreflexive on ordinal classes. Theorem 2.2(i) of [BellMachover] p. 469, generalized to classes. Theorem 1.9(i) of [Schloeder] p. 1. We prove this without invoking the Axiom of Regularity. (Contributed by NM, 2-Jan-1994.) |
| ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | ||
| Theorem | nordeq 6333 | A member of an ordinal class is not equal to it. (Contributed by NM, 25-May-1998.) |
| ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐴 ≠ 𝐵) | ||
| Theorem | ordn2lp 6334 | An ordinal class cannot be an element of one of its members. Variant of first part of Theorem 2.2(vii) of [BellMachover] p. 469. (Contributed by NM, 3-Apr-1994.) |
| ⊢ (Ord 𝐴 → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) | ||
| Theorem | tz7.5 6335* | A nonempty subclass of an ordinal class has a minimal element. Proposition 7.5 of [TakeutiZaring] p. 36. (Contributed by NM, 18-Feb-2004.) (Revised by David Abernethy, 16-Mar-2011.) |
| ⊢ ((Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 (𝐵 ∩ 𝑥) = ∅) | ||
| Theorem | ordelord 6336 | An element of an ordinal class is ordinal. Proposition 7.6 of [TakeutiZaring] p. 36. Lemma 1.3 of [Schloeder] p. 1. (Contributed by NM, 23-Apr-1994.) |
| ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → Ord 𝐵) | ||
| Theorem | tron 6337 | The class of all ordinal numbers is transitive. (Contributed by NM, 4-May-2009.) |
| ⊢ Tr On | ||
| Theorem | ordelon 6338 | An element of an ordinal class is an ordinal number. Lemma 1.3 of [Schloeder] p. 1. (Contributed by NM, 26-Oct-2003.) |
| ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) | ||
| Theorem | onelon 6339 | An element of an ordinal number is an ordinal number. Theorem 2.2(iii) of [BellMachover] p. 469. Lemma 1.3 of [Schloeder] p. 1. (Contributed by NM, 26-Oct-2003.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) | ||
| Theorem | tz7.7 6340 | A transitive class belongs to an ordinal class iff it is strictly included in it. Proposition 7.7 of [TakeutiZaring] p. 37. (Contributed by NM, 5-May-1994.) |
| ⊢ ((Ord 𝐴 ∧ Tr 𝐵) → (𝐵 ∈ 𝐴 ↔ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴))) | ||
| Theorem | ordelssne 6341 | For ordinal classes, membership is equivalent to strict inclusion. Corollary 7.8 of [TakeutiZaring] p. 37. (Contributed by NM, 25-Nov-1995.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵))) | ||
| Theorem | ordelpss 6342 | For ordinal classes, membership is equivalent to strict inclusion. Corollary 7.8 of [TakeutiZaring] p. 37. (Contributed by NM, 17-Jun-1998.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ 𝐴 ⊊ 𝐵)) | ||
| Theorem | ordsseleq 6343 | For ordinal classes, inclusion is equivalent to membership or equality. (Contributed by NM, 25-Nov-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | ||
| Theorem | ordin 6344 | The intersection of two ordinal classes is ordinal. Proposition 7.9 of [TakeutiZaring] p. 37. (Contributed by NM, 9-May-1994.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴 ∩ 𝐵)) | ||
| Theorem | onin 6345 | The intersection of two ordinal numbers is an ordinal number. (Contributed by NM, 7-Apr-1995.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∩ 𝐵) ∈ On) | ||
| Theorem | ordtri3or 6346 | A trichotomy law for ordinals. Proposition 7.10 of [TakeutiZaring] p. 38. Theorem 1.9(iii) of [Schloeder] p. 1. (Contributed by NM, 10-May-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | ||
| Theorem | ordtri1 6347 | A trichotomy law for ordinals. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | ||
| Theorem | ontri1 6348 | A trichotomy law for ordinal numbers. (Contributed by NM, 6-Nov-2003.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | ||
| Theorem | ordtri2 6349 | A trichotomy law for ordinals. (Contributed by NM, 25-Nov-1995.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) | ||
| Theorem | ordtri3 6350 | A trichotomy law for ordinals. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof shortened by JJ, 24-Sep-2021.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 ↔ ¬ (𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴))) | ||
| Theorem | ordtri4 6351 | A trichotomy law for ordinals. (Contributed by NM, 1-Nov-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 ∈ 𝐵))) | ||
| Theorem | orddisj 6352 | An ordinal class and its singleton are disjoint. (Contributed by NM, 19-May-1998.) |
| ⊢ (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅) | ||
| Theorem | onfr 6353 | The ordinal class is well-founded. This proof does not require the axiom of regularity. This lemma is used in ordon 7719 (through epweon 7717) in order to eliminate the need for the axiom of regularity. (Contributed by NM, 17-May-1994.) |
| ⊢ E Fr On | ||
| Theorem | onelpss 6354 | Relationship between membership and proper subset of an ordinal number. (Contributed by NM, 15-Sep-1995.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵))) | ||
| Theorem | onsseleq 6355 | Relationship between subset and membership of an ordinal number. (Contributed by NM, 15-Sep-1995.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | ||
| Theorem | onelss 6356 | An element of an ordinal number is a subset of the number. (Contributed by NM, 5-Jun-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | ||
| Theorem | oneltri 6357 | The elementhood relation on the ordinals is complete, so we have triality. Theorem 1.9(iii) of [Schloeder] p. 1. See ordtri3or 6346. (Contributed by RP, 15-Jan-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴 ∨ 𝐴 = 𝐵)) | ||
| Theorem | ordtr1 6358 | Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.) |
| ⊢ (Ord 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | ||
| Theorem | ordtr2 6359 | Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐶) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | ||
| Theorem | ordtr3 6360 | Transitive law for ordinal classes. (Contributed by Mario Carneiro, 30-Dec-2014.) (Proof shortened by JJ, 24-Sep-2021.) |
| ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵))) | ||
| Theorem | ontr1 6361 | Transitive law for ordinal numbers. Theorem 7M(b) of [Enderton] p. 192. Theorem 1.9(ii) of [Schloeder] p. 1. (Contributed by NM, 11-Aug-1994.) |
| ⊢ (𝐶 ∈ On → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | ||
| Theorem | ontr2 6362 | Transitive law for ordinal numbers. Exercise 3 of [TakeutiZaring] p. 40. (Contributed by NM, 6-Nov-2003.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | ||
| Theorem | onelssex 6363* | Ordinal less than is equivalent to having an ordinal between them. (Contributed by Scott Fenton, 8-Aug-2024.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐶 ↔ ∃𝑏 ∈ 𝐶 𝐴 ⊆ 𝑏)) | ||
| Theorem | ordunidif 6364 | The union of an ordinal stays the same if a subset equal to one of its elements is removed. (Contributed by NM, 10-Dec-2004.) |
| ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → ∪ (𝐴 ∖ 𝐵) = ∪ 𝐴) | ||
| Theorem | ordintdif 6365 | If 𝐵 is smaller than 𝐴, then it equals the intersection of the difference. Exercise 11 in [TakeutiZaring] p. 44. (Contributed by Andrew Salmon, 14-Nov-2011.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ (𝐴 ∖ 𝐵) ≠ ∅) → 𝐵 = ∩ (𝐴 ∖ 𝐵)) | ||
| Theorem | onintss 6366* | If a property is true for an ordinal number, then the minimum ordinal number for which it is true is smaller or equal. Theorem Schema 61 of [Suppes] p. 228. (Contributed by NM, 3-Oct-2003.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ On → (𝜓 → ∩ {𝑥 ∈ On ∣ 𝜑} ⊆ 𝐴)) | ||
| Theorem | oneqmini 6367* | A way to show that an ordinal number equals the minimum of a collection of ordinal numbers: it must be in the collection, and it must not be larger than any member of the collection. (Contributed by NM, 14-Nov-2003.) |
| ⊢ (𝐵 ⊆ On → ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) → 𝐴 = ∩ 𝐵)) | ||
| Theorem | ord0 6368 | The empty set is an ordinal class. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 11-May-1994.) |
| ⊢ Ord ∅ | ||
| Theorem | 0elon 6369 | The empty set is an ordinal number. Corollary 7N(b) of [Enderton] p. 193. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 17-Sep-1993.) |
| ⊢ ∅ ∈ On | ||
| Theorem | ord0eln0 6370 | A nonempty ordinal contains the empty set. Lemma 1.10 of [Schloeder] p. 2. (Contributed by NM, 25-Nov-1995.) |
| ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | ||
| Theorem | on0eln0 6371 | An ordinal number contains zero iff it is nonzero. (Contributed by NM, 6-Dec-2004.) |
| ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | ||
| Theorem | dflim2 6372 | An alternate definition of a limit ordinal. (Contributed by NM, 4-Nov-2004.) |
| ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴)) | ||
| Theorem | inton 6373 | The intersection of the class of ordinal numbers is the empty set. (Contributed by NM, 20-Oct-2003.) |
| ⊢ ∩ On = ∅ | ||
| Theorem | nlim0 6374 | The empty set is not a limit ordinal. (Contributed by NM, 24-Mar-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ ¬ Lim ∅ | ||
| Theorem | limord 6375 | A limit ordinal is ordinal. (Contributed by NM, 4-May-1995.) |
| ⊢ (Lim 𝐴 → Ord 𝐴) | ||
| Theorem | limuni 6376 | A limit ordinal is its own supremum (union). Lemma 2.13 of [Schloeder] p. 5. (Contributed by NM, 4-May-1995.) |
| ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) | ||
| Theorem | limuni2 6377 | The union of a limit ordinal is a limit ordinal. (Contributed by NM, 19-Sep-2006.) |
| ⊢ (Lim 𝐴 → Lim ∪ 𝐴) | ||
| Theorem | 0ellim 6378 | A limit ordinal contains the empty set. (Contributed by NM, 15-May-1994.) |
| ⊢ (Lim 𝐴 → ∅ ∈ 𝐴) | ||
| Theorem | limelon 6379 | A limit ordinal class that is also a set is an ordinal number. (Contributed by NM, 26-Apr-2004.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ Lim 𝐴) → 𝐴 ∈ On) | ||
| Theorem | onn0 6380 | The class of all ordinal numbers is not empty. (Contributed by NM, 17-Sep-1995.) |
| ⊢ On ≠ ∅ | ||
| Theorem | suceqd 6381 | Deduction associated with suceq 6382. (Contributed by Rohan Ridenour, 8-Aug-2023.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → suc 𝐴 = suc 𝐵) | ||
| Theorem | suceq 6382 | Equality of successors. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵) | ||
| Theorem | elsuci 6383 | Membership in a successor. This one-way implication does not require that either 𝐴 or 𝐵 be sets. Lemma 1.13 of [Schloeder] p. 2. (Contributed by NM, 6-Jun-1994.) |
| ⊢ (𝐴 ∈ suc 𝐵 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) | ||
| Theorem | elsucg 6384 | Membership in a successor. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 15-Sep-1995.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | ||
| Theorem | elsuc2g 6385 | Variant of membership in a successor, requiring that 𝐵 rather than 𝐴 be a set. (Contributed by NM, 28-Oct-2003.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | ||
| Theorem | elsuc 6386 | Membership in a successor. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 15-Sep-2003.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) | ||
| Theorem | elsuc2 6387 | Membership in a successor. (Contributed by NM, 15-Sep-2003.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐵 ∈ suc 𝐴 ↔ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) | ||
| Theorem | nfsuc 6388 | Bound-variable hypothesis builder for successor. (Contributed by NM, 15-Sep-2003.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥 suc 𝐴 | ||
| Theorem | elelsuc 6389 | Membership in a successor. (Contributed by NM, 20-Jun-1998.) |
| ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ suc 𝐵) | ||
| Theorem | sucel 6390* | Membership of a successor in another class. (Contributed by NM, 29-Jun-2004.) |
| ⊢ (suc 𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))) | ||
| Theorem | suc0 6391 | The successor of the empty set. (Contributed by NM, 1-Feb-2005.) |
| ⊢ suc ∅ = {∅} | ||
| Theorem | sucprc 6392 | A proper class is its own successor. (Contributed by NM, 3-Apr-1995.) |
| ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) | ||
| Theorem | unisucs 6393 | The union of the successor of a set is equal to the binary union of that set with its union. (Contributed by NM, 30-Aug-1993.) Extract from unisuc 6395. (Revised by BJ, 28-Dec-2024.) |
| ⊢ (𝐴 ∈ 𝑉 → ∪ suc 𝐴 = (∪ 𝐴 ∪ 𝐴)) | ||
| Theorem | unisucg 6394 | A transitive class is equal to the union of its successor, closed form. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.) Generalize from unisuc 6395. (Revised by BJ, 28-Dec-2024.) |
| ⊢ (𝐴 ∈ 𝑉 → (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴)) | ||
| Theorem | unisuc 6395 | A transitive class is equal to the union of its successor, inference form. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴) | ||
| Theorem | sssucid 6396 | A class is included in its own successor. Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized to arbitrary classes). (Contributed by NM, 31-May-1994.) |
| ⊢ 𝐴 ⊆ suc 𝐴 | ||
| Theorem | sucidg 6397 | Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized). Lemma 1.7 of [Schloeder] p. 1. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) | ||
| Theorem | sucid 6398 | A set belongs to its successor. (Contributed by NM, 22-Jun-1994.) (Proof shortened by Alan Sare, 18-Feb-2012.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ 𝐴 ∈ suc 𝐴 | ||
| Theorem | nsuceq0 6399 | No successor is empty. (Contributed by NM, 3-Apr-1995.) |
| ⊢ suc 𝐴 ≠ ∅ | ||
| Theorem | eqelsuc 6400 | A set belongs to the successor of an equal set. (Contributed by NM, 18-Aug-1994.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 = 𝐵 → 𝐴 ∈ suc 𝐵) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |