| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-lim | Structured version Visualization version GIF version | ||
| Description: Define the limit ordinal predicate, which is true for a nonempty ordinal that is not a successor (i.e. that is the union of itself). Our definition combines the definition of Lim of [BellMachover] p. 471 and Exercise 1 of [TakeutiZaring] p. 42. See dflim2 6390, dflim3 7823, and dflim4 for alternate definitions. (Contributed by NM, 22-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-lim | ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | wlim 6333 | . 2 wff Lim 𝐴 |
| 3 | 1 | word 6331 | . . 3 wff Ord 𝐴 |
| 4 | c0 4296 | . . . 4 class ∅ | |
| 5 | 1, 4 | wne 2925 | . . 3 wff 𝐴 ≠ ∅ |
| 6 | 1 | cuni 4871 | . . . 4 class ∪ 𝐴 |
| 7 | 1, 6 | wceq 1540 | . . 3 wff 𝐴 = ∪ 𝐴 |
| 8 | 3, 5, 7 | w3a 1086 | . 2 wff (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) |
| 9 | 2, 8 | wb 206 | 1 wff (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: limeq 6344 dflim2 6390 limord 6393 limuni 6394 unizlim 6457 limon 7811 dflim3 7823 nnsuc 7860 onfununi 8310 nlim1 8453 nlim2 8454 dfrdg2 35783 ellimits 35898 onsucuni3 37355 omlimcl2 43231 dflim5 43318 |
| Copyright terms: Public domain | W3C validator |