| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-lim | Structured version Visualization version GIF version | ||
| Description: Define the limit ordinal predicate, which is true for a nonempty ordinal that is not a successor (i.e. that is the union of itself). Our definition combines the definition of Lim of [BellMachover] p. 471 and Exercise 1 of [TakeutiZaring] p. 42. See dflim2 6378, dflim3 7803, and dflim4 for alternate definitions. (Contributed by NM, 22-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-lim | ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | wlim 6321 | . 2 wff Lim 𝐴 |
| 3 | 1 | word 6319 | . . 3 wff Ord 𝐴 |
| 4 | c0 4292 | . . . 4 class ∅ | |
| 5 | 1, 4 | wne 2925 | . . 3 wff 𝐴 ≠ ∅ |
| 6 | 1 | cuni 4867 | . . . 4 class ∪ 𝐴 |
| 7 | 1, 6 | wceq 1540 | . . 3 wff 𝐴 = ∪ 𝐴 |
| 8 | 3, 5, 7 | w3a 1086 | . 2 wff (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) |
| 9 | 2, 8 | wb 206 | 1 wff (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: limeq 6332 dflim2 6378 limord 6381 limuni 6382 unizlim 6445 limon 7791 dflim3 7803 nnsuc 7840 onfununi 8287 nlim1 8430 nlim2 8431 dfrdg2 35756 ellimits 35871 onsucuni3 37328 omlimcl2 43204 dflim5 43291 |
| Copyright terms: Public domain | W3C validator |