MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lim Structured version   Visualization version   GIF version

Definition df-lim 6316
Description: Define the limit ordinal predicate, which is true for a nonempty ordinal that is not a successor (i.e. that is the union of itself). Our definition combines the definition of Lim of [BellMachover] p. 471 and Exercise 1 of [TakeutiZaring] p. 42. See dflim2 6369, dflim3 7787, and dflim4 for alternate definitions. (Contributed by NM, 22-Apr-1994.)
Assertion
Ref Expression
df-lim (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))

Detailed syntax breakdown of Definition df-lim
StepHypRef Expression
1 cA . . 3 class 𝐴
21wlim 6312 . 2 wff Lim 𝐴
31word 6310 . . 3 wff Ord 𝐴
4 c0 4286 . . . 4 class
51, 4wne 2925 . . 3 wff 𝐴 ≠ ∅
61cuni 4861 . . . 4 class 𝐴
71, 6wceq 1540 . . 3 wff 𝐴 = 𝐴
83, 5, 7w3a 1086 . 2 wff (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴)
92, 8wb 206 1 wff (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  limeq  6323  dflim2  6369  limord  6372  limuni  6373  unizlim  6435  limon  7775  dflim3  7787  nnsuc  7824  onfununi  8271  nlim1  8414  nlim2  8415  dfrdg2  35788  ellimits  35903  onsucuni3  37360  omlimcl2  43235  dflim5  43322
  Copyright terms: Public domain W3C validator