| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-lim | Structured version Visualization version GIF version | ||
| Description: Define the limit ordinal predicate, which is true for a nonempty ordinal that is not a successor (i.e. that is the union of itself). Our definition combines the definition of Lim of [BellMachover] p. 471 and Exercise 1 of [TakeutiZaring] p. 42. See dflim2 6410, dflim3 7840, and dflim4 for alternate definitions. (Contributed by NM, 22-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-lim | ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | wlim 6353 | . 2 wff Lim 𝐴 |
| 3 | 1 | word 6351 | . . 3 wff Ord 𝐴 |
| 4 | c0 4308 | . . . 4 class ∅ | |
| 5 | 1, 4 | wne 2932 | . . 3 wff 𝐴 ≠ ∅ |
| 6 | 1 | cuni 4883 | . . . 4 class ∪ 𝐴 |
| 7 | 1, 6 | wceq 1540 | . . 3 wff 𝐴 = ∪ 𝐴 |
| 8 | 3, 5, 7 | w3a 1086 | . 2 wff (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) |
| 9 | 2, 8 | wb 206 | 1 wff (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: limeq 6364 dflim2 6410 limord 6413 limuni 6414 unizlim 6476 limon 7828 dflim3 7840 nnsuc 7877 onfununi 8353 nlim1 8499 nlim2 8500 dfrdg2 35759 ellimits 35874 onsucuni3 37331 omlimcl2 43213 dflim5 43300 |
| Copyright terms: Public domain | W3C validator |