MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lim Structured version   Visualization version   GIF version

Definition df-lim 6357
Description: Define the limit ordinal predicate, which is true for a nonempty ordinal that is not a successor (i.e. that is the union of itself). Our definition combines the definition of Lim of [BellMachover] p. 471 and Exercise 1 of [TakeutiZaring] p. 42. See dflim2 6410, dflim3 7840, and dflim4 for alternate definitions. (Contributed by NM, 22-Apr-1994.)
Assertion
Ref Expression
df-lim (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))

Detailed syntax breakdown of Definition df-lim
StepHypRef Expression
1 cA . . 3 class 𝐴
21wlim 6353 . 2 wff Lim 𝐴
31word 6351 . . 3 wff Ord 𝐴
4 c0 4308 . . . 4 class
51, 4wne 2932 . . 3 wff 𝐴 ≠ ∅
61cuni 4883 . . . 4 class 𝐴
71, 6wceq 1540 . . 3 wff 𝐴 = 𝐴
83, 5, 7w3a 1086 . 2 wff (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴)
92, 8wb 206 1 wff (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  limeq  6364  dflim2  6410  limord  6413  limuni  6414  unizlim  6476  limon  7828  dflim3  7840  nnsuc  7877  onfununi  8353  nlim1  8499  nlim2  8500  dfrdg2  35759  ellimits  35874  onsucuni3  37331  omlimcl2  43213  dflim5  43300
  Copyright terms: Public domain W3C validator