![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-lim | Structured version Visualization version GIF version |
Description: Define the limit ordinal predicate, which is true for a nonempty ordinal that is not a successor (i.e. that is the union of itself). Our definition combines the definition of Lim of [BellMachover] p. 471 and Exercise 1 of [TakeutiZaring] p. 42. See dflim2 6452, dflim3 7884, and dflim4 for alternate definitions. (Contributed by NM, 22-Apr-1994.) |
Ref | Expression |
---|---|
df-lim | ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | wlim 6396 | . 2 wff Lim 𝐴 |
3 | 1 | word 6394 | . . 3 wff Ord 𝐴 |
4 | c0 4352 | . . . 4 class ∅ | |
5 | 1, 4 | wne 2946 | . . 3 wff 𝐴 ≠ ∅ |
6 | 1 | cuni 4931 | . . . 4 class ∪ 𝐴 |
7 | 1, 6 | wceq 1537 | . . 3 wff 𝐴 = ∪ 𝐴 |
8 | 3, 5, 7 | w3a 1087 | . 2 wff (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) |
9 | 2, 8 | wb 206 | 1 wff (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) |
Colors of variables: wff setvar class |
This definition is referenced by: limeq 6407 dflim2 6452 limord 6455 limuni 6456 unizlim 6518 limon 7872 dflim3 7884 nnsuc 7921 onfununi 8397 nlim1 8545 nlim2 8546 dfrdg2 35759 ellimits 35874 onsucuni3 37333 omlimcl2 43203 dflim5 43291 |
Copyright terms: Public domain | W3C validator |