MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lim Structured version   Visualization version   GIF version

Definition df-lim 6325
Description: Define the limit ordinal predicate, which is true for a nonempty ordinal that is not a successor (i.e. that is the union of itself). Our definition combines the definition of Lim of [BellMachover] p. 471 and Exercise 1 of [TakeutiZaring] p. 42. See dflim2 6378, dflim3 7803, and dflim4 for alternate definitions. (Contributed by NM, 22-Apr-1994.)
Assertion
Ref Expression
df-lim (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))

Detailed syntax breakdown of Definition df-lim
StepHypRef Expression
1 cA . . 3 class 𝐴
21wlim 6321 . 2 wff Lim 𝐴
31word 6319 . . 3 wff Ord 𝐴
4 c0 4292 . . . 4 class
51, 4wne 2925 . . 3 wff 𝐴 ≠ ∅
61cuni 4867 . . . 4 class 𝐴
71, 6wceq 1540 . . 3 wff 𝐴 = 𝐴
83, 5, 7w3a 1086 . 2 wff (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴)
92, 8wb 206 1 wff (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  limeq  6332  dflim2  6378  limord  6381  limuni  6382  unizlim  6445  limon  7791  dflim3  7803  nnsuc  7840  onfununi  8287  nlim1  8430  nlim2  8431  dfrdg2  35756  ellimits  35871  onsucuni3  37328  omlimcl2  43204  dflim5  43291
  Copyright terms: Public domain W3C validator