MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lim Structured version   Visualization version   GIF version

Definition df-lim 6400
Description: Define the limit ordinal predicate, which is true for a nonempty ordinal that is not a successor (i.e. that is the union of itself). Our definition combines the definition of Lim of [BellMachover] p. 471 and Exercise 1 of [TakeutiZaring] p. 42. See dflim2 6452, dflim3 7884, and dflim4 for alternate definitions. (Contributed by NM, 22-Apr-1994.)
Assertion
Ref Expression
df-lim (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))

Detailed syntax breakdown of Definition df-lim
StepHypRef Expression
1 cA . . 3 class 𝐴
21wlim 6396 . 2 wff Lim 𝐴
31word 6394 . . 3 wff Ord 𝐴
4 c0 4352 . . . 4 class
51, 4wne 2946 . . 3 wff 𝐴 ≠ ∅
61cuni 4931 . . . 4 class 𝐴
71, 6wceq 1537 . . 3 wff 𝐴 = 𝐴
83, 5, 7w3a 1087 . 2 wff (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴)
92, 8wb 206 1 wff (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  limeq  6407  dflim2  6452  limord  6455  limuni  6456  unizlim  6518  limon  7872  dflim3  7884  nnsuc  7921  onfununi  8397  nlim1  8545  nlim2  8546  dfrdg2  35759  ellimits  35874  onsucuni3  37333  omlimcl2  43203  dflim5  43291
  Copyright terms: Public domain W3C validator