| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-lim | Structured version Visualization version GIF version | ||
| Description: Define the limit ordinal predicate, which is true for a nonempty ordinal that is not a successor (i.e. that is the union of itself). Our definition combines the definition of Lim of [BellMachover] p. 471 and Exercise 1 of [TakeutiZaring] p. 42. See dflim2 6364, dflim3 7777, and dflim4 for alternate definitions. (Contributed by NM, 22-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-lim | ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | wlim 6307 | . 2 wff Lim 𝐴 |
| 3 | 1 | word 6305 | . . 3 wff Ord 𝐴 |
| 4 | c0 4280 | . . . 4 class ∅ | |
| 5 | 1, 4 | wne 2928 | . . 3 wff 𝐴 ≠ ∅ |
| 6 | 1 | cuni 4856 | . . . 4 class ∪ 𝐴 |
| 7 | 1, 6 | wceq 1541 | . . 3 wff 𝐴 = ∪ 𝐴 |
| 8 | 3, 5, 7 | w3a 1086 | . 2 wff (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) |
| 9 | 2, 8 | wb 206 | 1 wff (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: limeq 6318 dflim2 6364 limord 6367 limuni 6368 unizlim 6430 limon 7766 dflim3 7777 nnsuc 7814 onfununi 8261 nlim1 8404 nlim2 8405 dfrdg2 35837 ellimits 35952 onsucuni3 37409 omlimcl2 43283 dflim5 43370 |
| Copyright terms: Public domain | W3C validator |