MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lim Structured version   Visualization version   GIF version

Definition df-lim 6337
Description: Define the limit ordinal predicate, which is true for a nonempty ordinal that is not a successor (i.e. that is the union of itself). Our definition combines the definition of Lim of [BellMachover] p. 471 and Exercise 1 of [TakeutiZaring] p. 42. See dflim2 6390, dflim3 7823, and dflim4 for alternate definitions. (Contributed by NM, 22-Apr-1994.)
Assertion
Ref Expression
df-lim (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))

Detailed syntax breakdown of Definition df-lim
StepHypRef Expression
1 cA . . 3 class 𝐴
21wlim 6333 . 2 wff Lim 𝐴
31word 6331 . . 3 wff Ord 𝐴
4 c0 4296 . . . 4 class
51, 4wne 2925 . . 3 wff 𝐴 ≠ ∅
61cuni 4871 . . . 4 class 𝐴
71, 6wceq 1540 . . 3 wff 𝐴 = 𝐴
83, 5, 7w3a 1086 . 2 wff (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴)
92, 8wb 206 1 wff (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  limeq  6344  dflim2  6390  limord  6393  limuni  6394  unizlim  6457  limon  7811  dflim3  7823  nnsuc  7860  onfununi  8310  nlim1  8453  nlim2  8454  dfrdg2  35783  ellimits  35898  onsucuni3  37355  omlimcl2  43231  dflim5  43318
  Copyright terms: Public domain W3C validator