MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lim Structured version   Visualization version   GIF version

Definition df-lim 6311
Description: Define the limit ordinal predicate, which is true for a nonempty ordinal that is not a successor (i.e. that is the union of itself). Our definition combines the definition of Lim of [BellMachover] p. 471 and Exercise 1 of [TakeutiZaring] p. 42. See dflim2 6364, dflim3 7777, and dflim4 for alternate definitions. (Contributed by NM, 22-Apr-1994.)
Assertion
Ref Expression
df-lim (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))

Detailed syntax breakdown of Definition df-lim
StepHypRef Expression
1 cA . . 3 class 𝐴
21wlim 6307 . 2 wff Lim 𝐴
31word 6305 . . 3 wff Ord 𝐴
4 c0 4280 . . . 4 class
51, 4wne 2928 . . 3 wff 𝐴 ≠ ∅
61cuni 4856 . . . 4 class 𝐴
71, 6wceq 1541 . . 3 wff 𝐴 = 𝐴
83, 5, 7w3a 1086 . 2 wff (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴)
92, 8wb 206 1 wff (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  limeq  6318  dflim2  6364  limord  6367  limuni  6368  unizlim  6430  limon  7766  dflim3  7777  nnsuc  7814  onfununi  8261  nlim1  8404  nlim2  8405  dfrdg2  35837  ellimits  35952  onsucuni3  37409  omlimcl2  43283  dflim5  43370
  Copyright terms: Public domain W3C validator