| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-lim | Structured version Visualization version GIF version | ||
| Description: Define the limit ordinal predicate, which is true for a nonempty ordinal that is not a successor (i.e. that is the union of itself). Our definition combines the definition of Lim of [BellMachover] p. 471 and Exercise 1 of [TakeutiZaring] p. 42. See dflim2 6369, dflim3 7787, and dflim4 for alternate definitions. (Contributed by NM, 22-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-lim | ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | wlim 6312 | . 2 wff Lim 𝐴 |
| 3 | 1 | word 6310 | . . 3 wff Ord 𝐴 |
| 4 | c0 4286 | . . . 4 class ∅ | |
| 5 | 1, 4 | wne 2925 | . . 3 wff 𝐴 ≠ ∅ |
| 6 | 1 | cuni 4861 | . . . 4 class ∪ 𝐴 |
| 7 | 1, 6 | wceq 1540 | . . 3 wff 𝐴 = ∪ 𝐴 |
| 8 | 3, 5, 7 | w3a 1086 | . 2 wff (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) |
| 9 | 2, 8 | wb 206 | 1 wff (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: limeq 6323 dflim2 6369 limord 6372 limuni 6373 unizlim 6435 limon 7775 dflim3 7787 nnsuc 7824 onfununi 8271 nlim1 8414 nlim2 8415 dfrdg2 35788 ellimits 35903 onsucuni3 37360 omlimcl2 43235 dflim5 43322 |
| Copyright terms: Public domain | W3C validator |