Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isopos Structured version   Visualization version   GIF version

Theorem isopos 37121
Description: The predicate "is an orthoposet." (Contributed by NM, 20-Oct-2011.) (Revised by NM, 14-Sep-2018.)
Hypotheses
Ref Expression
isopos.b 𝐵 = (Base‘𝐾)
isopos.e 𝑈 = (lub‘𝐾)
isopos.g 𝐺 = (glb‘𝐾)
isopos.l = (le‘𝐾)
isopos.o = (oc‘𝐾)
isopos.j = (join‘𝐾)
isopos.m = (meet‘𝐾)
isopos.f 0 = (0.‘𝐾)
isopos.u 1 = (1.‘𝐾)
Assertion
Ref Expression
isopos (𝐾 ∈ OP ↔ ((𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺) ∧ ∀𝑥𝐵𝑦𝐵 ((( 𝑥) ∈ 𝐵 ∧ ( ‘( 𝑥)) = 𝑥 ∧ (𝑥 𝑦 → ( 𝑦) ( 𝑥))) ∧ (𝑥 ( 𝑥)) = 1 ∧ (𝑥 ( 𝑥)) = 0 )))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥, ,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   1 (𝑥,𝑦)   𝐺(𝑥,𝑦)   (𝑥,𝑦)   (𝑥,𝑦)   (𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem isopos
Dummy variables 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . . . . . 7 (𝑝 = 𝐾 → (Base‘𝑝) = (Base‘𝐾))
2 isopos.b . . . . . . 7 𝐵 = (Base‘𝐾)
31, 2eqtr4di 2797 . . . . . 6 (𝑝 = 𝐾 → (Base‘𝑝) = 𝐵)
4 fveq2 6756 . . . . . . . 8 (𝑝 = 𝐾 → (lub‘𝑝) = (lub‘𝐾))
5 isopos.e . . . . . . . 8 𝑈 = (lub‘𝐾)
64, 5eqtr4di 2797 . . . . . . 7 (𝑝 = 𝐾 → (lub‘𝑝) = 𝑈)
76dmeqd 5803 . . . . . 6 (𝑝 = 𝐾 → dom (lub‘𝑝) = dom 𝑈)
83, 7eleq12d 2833 . . . . 5 (𝑝 = 𝐾 → ((Base‘𝑝) ∈ dom (lub‘𝑝) ↔ 𝐵 ∈ dom 𝑈))
9 fveq2 6756 . . . . . . . 8 (𝑝 = 𝐾 → (glb‘𝑝) = (glb‘𝐾))
10 isopos.g . . . . . . . 8 𝐺 = (glb‘𝐾)
119, 10eqtr4di 2797 . . . . . . 7 (𝑝 = 𝐾 → (glb‘𝑝) = 𝐺)
1211dmeqd 5803 . . . . . 6 (𝑝 = 𝐾 → dom (glb‘𝑝) = dom 𝐺)
133, 12eleq12d 2833 . . . . 5 (𝑝 = 𝐾 → ((Base‘𝑝) ∈ dom (glb‘𝑝) ↔ 𝐵 ∈ dom 𝐺))
148, 13anbi12d 630 . . . 4 (𝑝 = 𝐾 → (((Base‘𝑝) ∈ dom (lub‘𝑝) ∧ (Base‘𝑝) ∈ dom (glb‘𝑝)) ↔ (𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺)))
15 fveq2 6756 . . . . . . . 8 (𝑝 = 𝐾 → (oc‘𝑝) = (oc‘𝐾))
16 isopos.o . . . . . . . 8 = (oc‘𝐾)
1715, 16eqtr4di 2797 . . . . . . 7 (𝑝 = 𝐾 → (oc‘𝑝) = )
1817eqeq2d 2749 . . . . . 6 (𝑝 = 𝐾 → (𝑛 = (oc‘𝑝) ↔ 𝑛 = ))
193eleq2d 2824 . . . . . . . . . 10 (𝑝 = 𝐾 → ((𝑛𝑥) ∈ (Base‘𝑝) ↔ (𝑛𝑥) ∈ 𝐵))
20 fveq2 6756 . . . . . . . . . . . . 13 (𝑝 = 𝐾 → (le‘𝑝) = (le‘𝐾))
21 isopos.l . . . . . . . . . . . . 13 = (le‘𝐾)
2220, 21eqtr4di 2797 . . . . . . . . . . . 12 (𝑝 = 𝐾 → (le‘𝑝) = )
2322breqd 5081 . . . . . . . . . . 11 (𝑝 = 𝐾 → (𝑥(le‘𝑝)𝑦𝑥 𝑦))
2422breqd 5081 . . . . . . . . . . 11 (𝑝 = 𝐾 → ((𝑛𝑦)(le‘𝑝)(𝑛𝑥) ↔ (𝑛𝑦) (𝑛𝑥)))
2523, 24imbi12d 344 . . . . . . . . . 10 (𝑝 = 𝐾 → ((𝑥(le‘𝑝)𝑦 → (𝑛𝑦)(le‘𝑝)(𝑛𝑥)) ↔ (𝑥 𝑦 → (𝑛𝑦) (𝑛𝑥))))
2619, 253anbi13d 1436 . . . . . . . . 9 (𝑝 = 𝐾 → (((𝑛𝑥) ∈ (Base‘𝑝) ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥(le‘𝑝)𝑦 → (𝑛𝑦)(le‘𝑝)(𝑛𝑥))) ↔ ((𝑛𝑥) ∈ 𝐵 ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥 𝑦 → (𝑛𝑦) (𝑛𝑥)))))
27 fveq2 6756 . . . . . . . . . . . 12 (𝑝 = 𝐾 → (join‘𝑝) = (join‘𝐾))
28 isopos.j . . . . . . . . . . . 12 = (join‘𝐾)
2927, 28eqtr4di 2797 . . . . . . . . . . 11 (𝑝 = 𝐾 → (join‘𝑝) = )
3029oveqd 7272 . . . . . . . . . 10 (𝑝 = 𝐾 → (𝑥(join‘𝑝)(𝑛𝑥)) = (𝑥 (𝑛𝑥)))
31 fveq2 6756 . . . . . . . . . . 11 (𝑝 = 𝐾 → (1.‘𝑝) = (1.‘𝐾))
32 isopos.u . . . . . . . . . . 11 1 = (1.‘𝐾)
3331, 32eqtr4di 2797 . . . . . . . . . 10 (𝑝 = 𝐾 → (1.‘𝑝) = 1 )
3430, 33eqeq12d 2754 . . . . . . . . 9 (𝑝 = 𝐾 → ((𝑥(join‘𝑝)(𝑛𝑥)) = (1.‘𝑝) ↔ (𝑥 (𝑛𝑥)) = 1 ))
35 fveq2 6756 . . . . . . . . . . . 12 (𝑝 = 𝐾 → (meet‘𝑝) = (meet‘𝐾))
36 isopos.m . . . . . . . . . . . 12 = (meet‘𝐾)
3735, 36eqtr4di 2797 . . . . . . . . . . 11 (𝑝 = 𝐾 → (meet‘𝑝) = )
3837oveqd 7272 . . . . . . . . . 10 (𝑝 = 𝐾 → (𝑥(meet‘𝑝)(𝑛𝑥)) = (𝑥 (𝑛𝑥)))
39 fveq2 6756 . . . . . . . . . . 11 (𝑝 = 𝐾 → (0.‘𝑝) = (0.‘𝐾))
40 isopos.f . . . . . . . . . . 11 0 = (0.‘𝐾)
4139, 40eqtr4di 2797 . . . . . . . . . 10 (𝑝 = 𝐾 → (0.‘𝑝) = 0 )
4238, 41eqeq12d 2754 . . . . . . . . 9 (𝑝 = 𝐾 → ((𝑥(meet‘𝑝)(𝑛𝑥)) = (0.‘𝑝) ↔ (𝑥 (𝑛𝑥)) = 0 ))
4326, 34, 423anbi123d 1434 . . . . . . . 8 (𝑝 = 𝐾 → ((((𝑛𝑥) ∈ (Base‘𝑝) ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥(le‘𝑝)𝑦 → (𝑛𝑦)(le‘𝑝)(𝑛𝑥))) ∧ (𝑥(join‘𝑝)(𝑛𝑥)) = (1.‘𝑝) ∧ (𝑥(meet‘𝑝)(𝑛𝑥)) = (0.‘𝑝)) ↔ (((𝑛𝑥) ∈ 𝐵 ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥 𝑦 → (𝑛𝑦) (𝑛𝑥))) ∧ (𝑥 (𝑛𝑥)) = 1 ∧ (𝑥 (𝑛𝑥)) = 0 )))
443, 43raleqbidv 3327 . . . . . . 7 (𝑝 = 𝐾 → (∀𝑦 ∈ (Base‘𝑝)(((𝑛𝑥) ∈ (Base‘𝑝) ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥(le‘𝑝)𝑦 → (𝑛𝑦)(le‘𝑝)(𝑛𝑥))) ∧ (𝑥(join‘𝑝)(𝑛𝑥)) = (1.‘𝑝) ∧ (𝑥(meet‘𝑝)(𝑛𝑥)) = (0.‘𝑝)) ↔ ∀𝑦𝐵 (((𝑛𝑥) ∈ 𝐵 ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥 𝑦 → (𝑛𝑦) (𝑛𝑥))) ∧ (𝑥 (𝑛𝑥)) = 1 ∧ (𝑥 (𝑛𝑥)) = 0 )))
453, 44raleqbidv 3327 . . . . . 6 (𝑝 = 𝐾 → (∀𝑥 ∈ (Base‘𝑝)∀𝑦 ∈ (Base‘𝑝)(((𝑛𝑥) ∈ (Base‘𝑝) ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥(le‘𝑝)𝑦 → (𝑛𝑦)(le‘𝑝)(𝑛𝑥))) ∧ (𝑥(join‘𝑝)(𝑛𝑥)) = (1.‘𝑝) ∧ (𝑥(meet‘𝑝)(𝑛𝑥)) = (0.‘𝑝)) ↔ ∀𝑥𝐵𝑦𝐵 (((𝑛𝑥) ∈ 𝐵 ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥 𝑦 → (𝑛𝑦) (𝑛𝑥))) ∧ (𝑥 (𝑛𝑥)) = 1 ∧ (𝑥 (𝑛𝑥)) = 0 )))
4618, 45anbi12d 630 . . . . 5 (𝑝 = 𝐾 → ((𝑛 = (oc‘𝑝) ∧ ∀𝑥 ∈ (Base‘𝑝)∀𝑦 ∈ (Base‘𝑝)(((𝑛𝑥) ∈ (Base‘𝑝) ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥(le‘𝑝)𝑦 → (𝑛𝑦)(le‘𝑝)(𝑛𝑥))) ∧ (𝑥(join‘𝑝)(𝑛𝑥)) = (1.‘𝑝) ∧ (𝑥(meet‘𝑝)(𝑛𝑥)) = (0.‘𝑝))) ↔ (𝑛 = ∧ ∀𝑥𝐵𝑦𝐵 (((𝑛𝑥) ∈ 𝐵 ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥 𝑦 → (𝑛𝑦) (𝑛𝑥))) ∧ (𝑥 (𝑛𝑥)) = 1 ∧ (𝑥 (𝑛𝑥)) = 0 ))))
4746exbidv 1925 . . . 4 (𝑝 = 𝐾 → (∃𝑛(𝑛 = (oc‘𝑝) ∧ ∀𝑥 ∈ (Base‘𝑝)∀𝑦 ∈ (Base‘𝑝)(((𝑛𝑥) ∈ (Base‘𝑝) ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥(le‘𝑝)𝑦 → (𝑛𝑦)(le‘𝑝)(𝑛𝑥))) ∧ (𝑥(join‘𝑝)(𝑛𝑥)) = (1.‘𝑝) ∧ (𝑥(meet‘𝑝)(𝑛𝑥)) = (0.‘𝑝))) ↔ ∃𝑛(𝑛 = ∧ ∀𝑥𝐵𝑦𝐵 (((𝑛𝑥) ∈ 𝐵 ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥 𝑦 → (𝑛𝑦) (𝑛𝑥))) ∧ (𝑥 (𝑛𝑥)) = 1 ∧ (𝑥 (𝑛𝑥)) = 0 ))))
4814, 47anbi12d 630 . . 3 (𝑝 = 𝐾 → ((((Base‘𝑝) ∈ dom (lub‘𝑝) ∧ (Base‘𝑝) ∈ dom (glb‘𝑝)) ∧ ∃𝑛(𝑛 = (oc‘𝑝) ∧ ∀𝑥 ∈ (Base‘𝑝)∀𝑦 ∈ (Base‘𝑝)(((𝑛𝑥) ∈ (Base‘𝑝) ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥(le‘𝑝)𝑦 → (𝑛𝑦)(le‘𝑝)(𝑛𝑥))) ∧ (𝑥(join‘𝑝)(𝑛𝑥)) = (1.‘𝑝) ∧ (𝑥(meet‘𝑝)(𝑛𝑥)) = (0.‘𝑝)))) ↔ ((𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺) ∧ ∃𝑛(𝑛 = ∧ ∀𝑥𝐵𝑦𝐵 (((𝑛𝑥) ∈ 𝐵 ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥 𝑦 → (𝑛𝑦) (𝑛𝑥))) ∧ (𝑥 (𝑛𝑥)) = 1 ∧ (𝑥 (𝑛𝑥)) = 0 )))))
49 df-oposet 37117 . . 3 OP = {𝑝 ∈ Poset ∣ (((Base‘𝑝) ∈ dom (lub‘𝑝) ∧ (Base‘𝑝) ∈ dom (glb‘𝑝)) ∧ ∃𝑛(𝑛 = (oc‘𝑝) ∧ ∀𝑥 ∈ (Base‘𝑝)∀𝑦 ∈ (Base‘𝑝)(((𝑛𝑥) ∈ (Base‘𝑝) ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥(le‘𝑝)𝑦 → (𝑛𝑦)(le‘𝑝)(𝑛𝑥))) ∧ (𝑥(join‘𝑝)(𝑛𝑥)) = (1.‘𝑝) ∧ (𝑥(meet‘𝑝)(𝑛𝑥)) = (0.‘𝑝))))}
5048, 49elrab2 3620 . 2 (𝐾 ∈ OP ↔ (𝐾 ∈ Poset ∧ ((𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺) ∧ ∃𝑛(𝑛 = ∧ ∀𝑥𝐵𝑦𝐵 (((𝑛𝑥) ∈ 𝐵 ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥 𝑦 → (𝑛𝑦) (𝑛𝑥))) ∧ (𝑥 (𝑛𝑥)) = 1 ∧ (𝑥 (𝑛𝑥)) = 0 )))))
51 anass 468 . 2 (((𝐾 ∈ Poset ∧ (𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺)) ∧ ∃𝑛(𝑛 = ∧ ∀𝑥𝐵𝑦𝐵 (((𝑛𝑥) ∈ 𝐵 ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥 𝑦 → (𝑛𝑦) (𝑛𝑥))) ∧ (𝑥 (𝑛𝑥)) = 1 ∧ (𝑥 (𝑛𝑥)) = 0 ))) ↔ (𝐾 ∈ Poset ∧ ((𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺) ∧ ∃𝑛(𝑛 = ∧ ∀𝑥𝐵𝑦𝐵 (((𝑛𝑥) ∈ 𝐵 ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥 𝑦 → (𝑛𝑦) (𝑛𝑥))) ∧ (𝑥 (𝑛𝑥)) = 1 ∧ (𝑥 (𝑛𝑥)) = 0 )))))
52 3anass 1093 . . . 4 ((𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺) ↔ (𝐾 ∈ Poset ∧ (𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺)))
5352bicomi 223 . . 3 ((𝐾 ∈ Poset ∧ (𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺)) ↔ (𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺))
5416fvexi 6770 . . . 4 ∈ V
55 fveq1 6755 . . . . . . . 8 (𝑛 = → (𝑛𝑥) = ( 𝑥))
5655eleq1d 2823 . . . . . . 7 (𝑛 = → ((𝑛𝑥) ∈ 𝐵 ↔ ( 𝑥) ∈ 𝐵))
57 id 22 . . . . . . . . 9 (𝑛 = 𝑛 = )
5857, 55fveq12d 6763 . . . . . . . 8 (𝑛 = → (𝑛‘(𝑛𝑥)) = ( ‘( 𝑥)))
5958eqeq1d 2740 . . . . . . 7 (𝑛 = → ((𝑛‘(𝑛𝑥)) = 𝑥 ↔ ( ‘( 𝑥)) = 𝑥))
60 fveq1 6755 . . . . . . . . 9 (𝑛 = → (𝑛𝑦) = ( 𝑦))
6160, 55breq12d 5083 . . . . . . . 8 (𝑛 = → ((𝑛𝑦) (𝑛𝑥) ↔ ( 𝑦) ( 𝑥)))
6261imbi2d 340 . . . . . . 7 (𝑛 = → ((𝑥 𝑦 → (𝑛𝑦) (𝑛𝑥)) ↔ (𝑥 𝑦 → ( 𝑦) ( 𝑥))))
6356, 59, 623anbi123d 1434 . . . . . 6 (𝑛 = → (((𝑛𝑥) ∈ 𝐵 ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥 𝑦 → (𝑛𝑦) (𝑛𝑥))) ↔ (( 𝑥) ∈ 𝐵 ∧ ( ‘( 𝑥)) = 𝑥 ∧ (𝑥 𝑦 → ( 𝑦) ( 𝑥)))))
6455oveq2d 7271 . . . . . . 7 (𝑛 = → (𝑥 (𝑛𝑥)) = (𝑥 ( 𝑥)))
6564eqeq1d 2740 . . . . . 6 (𝑛 = → ((𝑥 (𝑛𝑥)) = 1 ↔ (𝑥 ( 𝑥)) = 1 ))
6655oveq2d 7271 . . . . . . 7 (𝑛 = → (𝑥 (𝑛𝑥)) = (𝑥 ( 𝑥)))
6766eqeq1d 2740 . . . . . 6 (𝑛 = → ((𝑥 (𝑛𝑥)) = 0 ↔ (𝑥 ( 𝑥)) = 0 ))
6863, 65, 673anbi123d 1434 . . . . 5 (𝑛 = → ((((𝑛𝑥) ∈ 𝐵 ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥 𝑦 → (𝑛𝑦) (𝑛𝑥))) ∧ (𝑥 (𝑛𝑥)) = 1 ∧ (𝑥 (𝑛𝑥)) = 0 ) ↔ ((( 𝑥) ∈ 𝐵 ∧ ( ‘( 𝑥)) = 𝑥 ∧ (𝑥 𝑦 → ( 𝑦) ( 𝑥))) ∧ (𝑥 ( 𝑥)) = 1 ∧ (𝑥 ( 𝑥)) = 0 )))
69682ralbidv 3122 . . . 4 (𝑛 = → (∀𝑥𝐵𝑦𝐵 (((𝑛𝑥) ∈ 𝐵 ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥 𝑦 → (𝑛𝑦) (𝑛𝑥))) ∧ (𝑥 (𝑛𝑥)) = 1 ∧ (𝑥 (𝑛𝑥)) = 0 ) ↔ ∀𝑥𝐵𝑦𝐵 ((( 𝑥) ∈ 𝐵 ∧ ( ‘( 𝑥)) = 𝑥 ∧ (𝑥 𝑦 → ( 𝑦) ( 𝑥))) ∧ (𝑥 ( 𝑥)) = 1 ∧ (𝑥 ( 𝑥)) = 0 )))
7054, 69ceqsexv 3469 . . 3 (∃𝑛(𝑛 = ∧ ∀𝑥𝐵𝑦𝐵 (((𝑛𝑥) ∈ 𝐵 ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥 𝑦 → (𝑛𝑦) (𝑛𝑥))) ∧ (𝑥 (𝑛𝑥)) = 1 ∧ (𝑥 (𝑛𝑥)) = 0 )) ↔ ∀𝑥𝐵𝑦𝐵 ((( 𝑥) ∈ 𝐵 ∧ ( ‘( 𝑥)) = 𝑥 ∧ (𝑥 𝑦 → ( 𝑦) ( 𝑥))) ∧ (𝑥 ( 𝑥)) = 1 ∧ (𝑥 ( 𝑥)) = 0 ))
7153, 70anbi12i 626 . 2 (((𝐾 ∈ Poset ∧ (𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺)) ∧ ∃𝑛(𝑛 = ∧ ∀𝑥𝐵𝑦𝐵 (((𝑛𝑥) ∈ 𝐵 ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥 𝑦 → (𝑛𝑦) (𝑛𝑥))) ∧ (𝑥 (𝑛𝑥)) = 1 ∧ (𝑥 (𝑛𝑥)) = 0 ))) ↔ ((𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺) ∧ ∀𝑥𝐵𝑦𝐵 ((( 𝑥) ∈ 𝐵 ∧ ( ‘( 𝑥)) = 𝑥 ∧ (𝑥 𝑦 → ( 𝑦) ( 𝑥))) ∧ (𝑥 ( 𝑥)) = 1 ∧ (𝑥 ( 𝑥)) = 0 )))
7250, 51, 713bitr2i 298 1 (𝐾 ∈ OP ↔ ((𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺) ∧ ∀𝑥𝐵𝑦𝐵 ((( 𝑥) ∈ 𝐵 ∧ ( ‘( 𝑥)) = 𝑥 ∧ (𝑥 𝑦 → ( 𝑦) ( 𝑥))) ∧ (𝑥 ( 𝑥)) = 1 ∧ (𝑥 ( 𝑥)) = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wral 3063   class class class wbr 5070  dom cdm 5580  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  occoc 16896  Posetcpo 17940  lubclub 17942  glbcglb 17943  joincjn 17944  meetcmee 17945  0.cp0 18056  1.cp1 18057  OPcops 37113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-dm 5590  df-iota 6376  df-fv 6426  df-ov 7258  df-oposet 37117
This theorem is referenced by:  opposet  37122  oposlem  37123  op01dm  37124
  Copyright terms: Public domain W3C validator