Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isopos Structured version   Visualization version   GIF version

Theorem isopos 38098
Description: The predicate "is an orthoposet." (Contributed by NM, 20-Oct-2011.) (Revised by NM, 14-Sep-2018.)
Hypotheses
Ref Expression
isopos.b 𝐡 = (Baseβ€˜πΎ)
isopos.e π‘ˆ = (lubβ€˜πΎ)
isopos.g 𝐺 = (glbβ€˜πΎ)
isopos.l ≀ = (leβ€˜πΎ)
isopos.o βŠ₯ = (ocβ€˜πΎ)
isopos.j ∨ = (joinβ€˜πΎ)
isopos.m ∧ = (meetβ€˜πΎ)
isopos.f 0 = (0.β€˜πΎ)
isopos.u 1 = (1.β€˜πΎ)
Assertion
Ref Expression
isopos (𝐾 ∈ OP ↔ ((𝐾 ∈ Poset ∧ 𝐡 ∈ dom π‘ˆ ∧ 𝐡 ∈ dom 𝐺) ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((( βŠ₯ β€˜π‘₯) ∈ 𝐡 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ ( βŠ₯ β€˜π‘¦) ≀ ( βŠ₯ β€˜π‘₯))) ∧ (π‘₯ ∨ ( βŠ₯ β€˜π‘₯)) = 1 ∧ (π‘₯ ∧ ( βŠ₯ β€˜π‘₯)) = 0 )))
Distinct variable groups:   π‘₯,𝑦,𝐡   π‘₯, βŠ₯ ,𝑦   π‘₯,𝐾,𝑦
Allowed substitution hints:   π‘ˆ(π‘₯,𝑦)   1 (π‘₯,𝑦)   𝐺(π‘₯,𝑦)   ∨ (π‘₯,𝑦)   ≀ (π‘₯,𝑦)   ∧ (π‘₯,𝑦)   0 (π‘₯,𝑦)

Proof of Theorem isopos
Dummy variables 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6892 . . . . . . 7 (𝑝 = 𝐾 β†’ (Baseβ€˜π‘) = (Baseβ€˜πΎ))
2 isopos.b . . . . . . 7 𝐡 = (Baseβ€˜πΎ)
31, 2eqtr4di 2791 . . . . . 6 (𝑝 = 𝐾 β†’ (Baseβ€˜π‘) = 𝐡)
4 fveq2 6892 . . . . . . . 8 (𝑝 = 𝐾 β†’ (lubβ€˜π‘) = (lubβ€˜πΎ))
5 isopos.e . . . . . . . 8 π‘ˆ = (lubβ€˜πΎ)
64, 5eqtr4di 2791 . . . . . . 7 (𝑝 = 𝐾 β†’ (lubβ€˜π‘) = π‘ˆ)
76dmeqd 5906 . . . . . 6 (𝑝 = 𝐾 β†’ dom (lubβ€˜π‘) = dom π‘ˆ)
83, 7eleq12d 2828 . . . . 5 (𝑝 = 𝐾 β†’ ((Baseβ€˜π‘) ∈ dom (lubβ€˜π‘) ↔ 𝐡 ∈ dom π‘ˆ))
9 fveq2 6892 . . . . . . . 8 (𝑝 = 𝐾 β†’ (glbβ€˜π‘) = (glbβ€˜πΎ))
10 isopos.g . . . . . . . 8 𝐺 = (glbβ€˜πΎ)
119, 10eqtr4di 2791 . . . . . . 7 (𝑝 = 𝐾 β†’ (glbβ€˜π‘) = 𝐺)
1211dmeqd 5906 . . . . . 6 (𝑝 = 𝐾 β†’ dom (glbβ€˜π‘) = dom 𝐺)
133, 12eleq12d 2828 . . . . 5 (𝑝 = 𝐾 β†’ ((Baseβ€˜π‘) ∈ dom (glbβ€˜π‘) ↔ 𝐡 ∈ dom 𝐺))
148, 13anbi12d 632 . . . 4 (𝑝 = 𝐾 β†’ (((Baseβ€˜π‘) ∈ dom (lubβ€˜π‘) ∧ (Baseβ€˜π‘) ∈ dom (glbβ€˜π‘)) ↔ (𝐡 ∈ dom π‘ˆ ∧ 𝐡 ∈ dom 𝐺)))
15 fveq2 6892 . . . . . . . 8 (𝑝 = 𝐾 β†’ (ocβ€˜π‘) = (ocβ€˜πΎ))
16 isopos.o . . . . . . . 8 βŠ₯ = (ocβ€˜πΎ)
1715, 16eqtr4di 2791 . . . . . . 7 (𝑝 = 𝐾 β†’ (ocβ€˜π‘) = βŠ₯ )
1817eqeq2d 2744 . . . . . 6 (𝑝 = 𝐾 β†’ (𝑛 = (ocβ€˜π‘) ↔ 𝑛 = βŠ₯ ))
193eleq2d 2820 . . . . . . . . . 10 (𝑝 = 𝐾 β†’ ((π‘›β€˜π‘₯) ∈ (Baseβ€˜π‘) ↔ (π‘›β€˜π‘₯) ∈ 𝐡))
20 fveq2 6892 . . . . . . . . . . . . 13 (𝑝 = 𝐾 β†’ (leβ€˜π‘) = (leβ€˜πΎ))
21 isopos.l . . . . . . . . . . . . 13 ≀ = (leβ€˜πΎ)
2220, 21eqtr4di 2791 . . . . . . . . . . . 12 (𝑝 = 𝐾 β†’ (leβ€˜π‘) = ≀ )
2322breqd 5160 . . . . . . . . . . 11 (𝑝 = 𝐾 β†’ (π‘₯(leβ€˜π‘)𝑦 ↔ π‘₯ ≀ 𝑦))
2422breqd 5160 . . . . . . . . . . 11 (𝑝 = 𝐾 β†’ ((π‘›β€˜π‘¦)(leβ€˜π‘)(π‘›β€˜π‘₯) ↔ (π‘›β€˜π‘¦) ≀ (π‘›β€˜π‘₯)))
2523, 24imbi12d 345 . . . . . . . . . 10 (𝑝 = 𝐾 β†’ ((π‘₯(leβ€˜π‘)𝑦 β†’ (π‘›β€˜π‘¦)(leβ€˜π‘)(π‘›β€˜π‘₯)) ↔ (π‘₯ ≀ 𝑦 β†’ (π‘›β€˜π‘¦) ≀ (π‘›β€˜π‘₯))))
2619, 253anbi13d 1439 . . . . . . . . 9 (𝑝 = 𝐾 β†’ (((π‘›β€˜π‘₯) ∈ (Baseβ€˜π‘) ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯(leβ€˜π‘)𝑦 β†’ (π‘›β€˜π‘¦)(leβ€˜π‘)(π‘›β€˜π‘₯))) ↔ ((π‘›β€˜π‘₯) ∈ 𝐡 ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ (π‘›β€˜π‘¦) ≀ (π‘›β€˜π‘₯)))))
27 fveq2 6892 . . . . . . . . . . . 12 (𝑝 = 𝐾 β†’ (joinβ€˜π‘) = (joinβ€˜πΎ))
28 isopos.j . . . . . . . . . . . 12 ∨ = (joinβ€˜πΎ)
2927, 28eqtr4di 2791 . . . . . . . . . . 11 (𝑝 = 𝐾 β†’ (joinβ€˜π‘) = ∨ )
3029oveqd 7426 . . . . . . . . . 10 (𝑝 = 𝐾 β†’ (π‘₯(joinβ€˜π‘)(π‘›β€˜π‘₯)) = (π‘₯ ∨ (π‘›β€˜π‘₯)))
31 fveq2 6892 . . . . . . . . . . 11 (𝑝 = 𝐾 β†’ (1.β€˜π‘) = (1.β€˜πΎ))
32 isopos.u . . . . . . . . . . 11 1 = (1.β€˜πΎ)
3331, 32eqtr4di 2791 . . . . . . . . . 10 (𝑝 = 𝐾 β†’ (1.β€˜π‘) = 1 )
3430, 33eqeq12d 2749 . . . . . . . . 9 (𝑝 = 𝐾 β†’ ((π‘₯(joinβ€˜π‘)(π‘›β€˜π‘₯)) = (1.β€˜π‘) ↔ (π‘₯ ∨ (π‘›β€˜π‘₯)) = 1 ))
35 fveq2 6892 . . . . . . . . . . . 12 (𝑝 = 𝐾 β†’ (meetβ€˜π‘) = (meetβ€˜πΎ))
36 isopos.m . . . . . . . . . . . 12 ∧ = (meetβ€˜πΎ)
3735, 36eqtr4di 2791 . . . . . . . . . . 11 (𝑝 = 𝐾 β†’ (meetβ€˜π‘) = ∧ )
3837oveqd 7426 . . . . . . . . . 10 (𝑝 = 𝐾 β†’ (π‘₯(meetβ€˜π‘)(π‘›β€˜π‘₯)) = (π‘₯ ∧ (π‘›β€˜π‘₯)))
39 fveq2 6892 . . . . . . . . . . 11 (𝑝 = 𝐾 β†’ (0.β€˜π‘) = (0.β€˜πΎ))
40 isopos.f . . . . . . . . . . 11 0 = (0.β€˜πΎ)
4139, 40eqtr4di 2791 . . . . . . . . . 10 (𝑝 = 𝐾 β†’ (0.β€˜π‘) = 0 )
4238, 41eqeq12d 2749 . . . . . . . . 9 (𝑝 = 𝐾 β†’ ((π‘₯(meetβ€˜π‘)(π‘›β€˜π‘₯)) = (0.β€˜π‘) ↔ (π‘₯ ∧ (π‘›β€˜π‘₯)) = 0 ))
4326, 34, 423anbi123d 1437 . . . . . . . 8 (𝑝 = 𝐾 β†’ ((((π‘›β€˜π‘₯) ∈ (Baseβ€˜π‘) ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯(leβ€˜π‘)𝑦 β†’ (π‘›β€˜π‘¦)(leβ€˜π‘)(π‘›β€˜π‘₯))) ∧ (π‘₯(joinβ€˜π‘)(π‘›β€˜π‘₯)) = (1.β€˜π‘) ∧ (π‘₯(meetβ€˜π‘)(π‘›β€˜π‘₯)) = (0.β€˜π‘)) ↔ (((π‘›β€˜π‘₯) ∈ 𝐡 ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ (π‘›β€˜π‘¦) ≀ (π‘›β€˜π‘₯))) ∧ (π‘₯ ∨ (π‘›β€˜π‘₯)) = 1 ∧ (π‘₯ ∧ (π‘›β€˜π‘₯)) = 0 )))
443, 43raleqbidv 3343 . . . . . . 7 (𝑝 = 𝐾 β†’ (βˆ€π‘¦ ∈ (Baseβ€˜π‘)(((π‘›β€˜π‘₯) ∈ (Baseβ€˜π‘) ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯(leβ€˜π‘)𝑦 β†’ (π‘›β€˜π‘¦)(leβ€˜π‘)(π‘›β€˜π‘₯))) ∧ (π‘₯(joinβ€˜π‘)(π‘›β€˜π‘₯)) = (1.β€˜π‘) ∧ (π‘₯(meetβ€˜π‘)(π‘›β€˜π‘₯)) = (0.β€˜π‘)) ↔ βˆ€π‘¦ ∈ 𝐡 (((π‘›β€˜π‘₯) ∈ 𝐡 ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ (π‘›β€˜π‘¦) ≀ (π‘›β€˜π‘₯))) ∧ (π‘₯ ∨ (π‘›β€˜π‘₯)) = 1 ∧ (π‘₯ ∧ (π‘›β€˜π‘₯)) = 0 )))
453, 44raleqbidv 3343 . . . . . 6 (𝑝 = 𝐾 β†’ (βˆ€π‘₯ ∈ (Baseβ€˜π‘)βˆ€π‘¦ ∈ (Baseβ€˜π‘)(((π‘›β€˜π‘₯) ∈ (Baseβ€˜π‘) ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯(leβ€˜π‘)𝑦 β†’ (π‘›β€˜π‘¦)(leβ€˜π‘)(π‘›β€˜π‘₯))) ∧ (π‘₯(joinβ€˜π‘)(π‘›β€˜π‘₯)) = (1.β€˜π‘) ∧ (π‘₯(meetβ€˜π‘)(π‘›β€˜π‘₯)) = (0.β€˜π‘)) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (((π‘›β€˜π‘₯) ∈ 𝐡 ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ (π‘›β€˜π‘¦) ≀ (π‘›β€˜π‘₯))) ∧ (π‘₯ ∨ (π‘›β€˜π‘₯)) = 1 ∧ (π‘₯ ∧ (π‘›β€˜π‘₯)) = 0 )))
4618, 45anbi12d 632 . . . . 5 (𝑝 = 𝐾 β†’ ((𝑛 = (ocβ€˜π‘) ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘)βˆ€π‘¦ ∈ (Baseβ€˜π‘)(((π‘›β€˜π‘₯) ∈ (Baseβ€˜π‘) ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯(leβ€˜π‘)𝑦 β†’ (π‘›β€˜π‘¦)(leβ€˜π‘)(π‘›β€˜π‘₯))) ∧ (π‘₯(joinβ€˜π‘)(π‘›β€˜π‘₯)) = (1.β€˜π‘) ∧ (π‘₯(meetβ€˜π‘)(π‘›β€˜π‘₯)) = (0.β€˜π‘))) ↔ (𝑛 = βŠ₯ ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (((π‘›β€˜π‘₯) ∈ 𝐡 ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ (π‘›β€˜π‘¦) ≀ (π‘›β€˜π‘₯))) ∧ (π‘₯ ∨ (π‘›β€˜π‘₯)) = 1 ∧ (π‘₯ ∧ (π‘›β€˜π‘₯)) = 0 ))))
4746exbidv 1925 . . . 4 (𝑝 = 𝐾 β†’ (βˆƒπ‘›(𝑛 = (ocβ€˜π‘) ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘)βˆ€π‘¦ ∈ (Baseβ€˜π‘)(((π‘›β€˜π‘₯) ∈ (Baseβ€˜π‘) ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯(leβ€˜π‘)𝑦 β†’ (π‘›β€˜π‘¦)(leβ€˜π‘)(π‘›β€˜π‘₯))) ∧ (π‘₯(joinβ€˜π‘)(π‘›β€˜π‘₯)) = (1.β€˜π‘) ∧ (π‘₯(meetβ€˜π‘)(π‘›β€˜π‘₯)) = (0.β€˜π‘))) ↔ βˆƒπ‘›(𝑛 = βŠ₯ ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (((π‘›β€˜π‘₯) ∈ 𝐡 ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ (π‘›β€˜π‘¦) ≀ (π‘›β€˜π‘₯))) ∧ (π‘₯ ∨ (π‘›β€˜π‘₯)) = 1 ∧ (π‘₯ ∧ (π‘›β€˜π‘₯)) = 0 ))))
4814, 47anbi12d 632 . . 3 (𝑝 = 𝐾 β†’ ((((Baseβ€˜π‘) ∈ dom (lubβ€˜π‘) ∧ (Baseβ€˜π‘) ∈ dom (glbβ€˜π‘)) ∧ βˆƒπ‘›(𝑛 = (ocβ€˜π‘) ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘)βˆ€π‘¦ ∈ (Baseβ€˜π‘)(((π‘›β€˜π‘₯) ∈ (Baseβ€˜π‘) ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯(leβ€˜π‘)𝑦 β†’ (π‘›β€˜π‘¦)(leβ€˜π‘)(π‘›β€˜π‘₯))) ∧ (π‘₯(joinβ€˜π‘)(π‘›β€˜π‘₯)) = (1.β€˜π‘) ∧ (π‘₯(meetβ€˜π‘)(π‘›β€˜π‘₯)) = (0.β€˜π‘)))) ↔ ((𝐡 ∈ dom π‘ˆ ∧ 𝐡 ∈ dom 𝐺) ∧ βˆƒπ‘›(𝑛 = βŠ₯ ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (((π‘›β€˜π‘₯) ∈ 𝐡 ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ (π‘›β€˜π‘¦) ≀ (π‘›β€˜π‘₯))) ∧ (π‘₯ ∨ (π‘›β€˜π‘₯)) = 1 ∧ (π‘₯ ∧ (π‘›β€˜π‘₯)) = 0 )))))
49 df-oposet 38094 . . 3 OP = {𝑝 ∈ Poset ∣ (((Baseβ€˜π‘) ∈ dom (lubβ€˜π‘) ∧ (Baseβ€˜π‘) ∈ dom (glbβ€˜π‘)) ∧ βˆƒπ‘›(𝑛 = (ocβ€˜π‘) ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘)βˆ€π‘¦ ∈ (Baseβ€˜π‘)(((π‘›β€˜π‘₯) ∈ (Baseβ€˜π‘) ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯(leβ€˜π‘)𝑦 β†’ (π‘›β€˜π‘¦)(leβ€˜π‘)(π‘›β€˜π‘₯))) ∧ (π‘₯(joinβ€˜π‘)(π‘›β€˜π‘₯)) = (1.β€˜π‘) ∧ (π‘₯(meetβ€˜π‘)(π‘›β€˜π‘₯)) = (0.β€˜π‘))))}
5048, 49elrab2 3687 . 2 (𝐾 ∈ OP ↔ (𝐾 ∈ Poset ∧ ((𝐡 ∈ dom π‘ˆ ∧ 𝐡 ∈ dom 𝐺) ∧ βˆƒπ‘›(𝑛 = βŠ₯ ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (((π‘›β€˜π‘₯) ∈ 𝐡 ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ (π‘›β€˜π‘¦) ≀ (π‘›β€˜π‘₯))) ∧ (π‘₯ ∨ (π‘›β€˜π‘₯)) = 1 ∧ (π‘₯ ∧ (π‘›β€˜π‘₯)) = 0 )))))
51 anass 470 . 2 (((𝐾 ∈ Poset ∧ (𝐡 ∈ dom π‘ˆ ∧ 𝐡 ∈ dom 𝐺)) ∧ βˆƒπ‘›(𝑛 = βŠ₯ ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (((π‘›β€˜π‘₯) ∈ 𝐡 ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ (π‘›β€˜π‘¦) ≀ (π‘›β€˜π‘₯))) ∧ (π‘₯ ∨ (π‘›β€˜π‘₯)) = 1 ∧ (π‘₯ ∧ (π‘›β€˜π‘₯)) = 0 ))) ↔ (𝐾 ∈ Poset ∧ ((𝐡 ∈ dom π‘ˆ ∧ 𝐡 ∈ dom 𝐺) ∧ βˆƒπ‘›(𝑛 = βŠ₯ ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (((π‘›β€˜π‘₯) ∈ 𝐡 ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ (π‘›β€˜π‘¦) ≀ (π‘›β€˜π‘₯))) ∧ (π‘₯ ∨ (π‘›β€˜π‘₯)) = 1 ∧ (π‘₯ ∧ (π‘›β€˜π‘₯)) = 0 )))))
52 3anass 1096 . . . 4 ((𝐾 ∈ Poset ∧ 𝐡 ∈ dom π‘ˆ ∧ 𝐡 ∈ dom 𝐺) ↔ (𝐾 ∈ Poset ∧ (𝐡 ∈ dom π‘ˆ ∧ 𝐡 ∈ dom 𝐺)))
5352bicomi 223 . . 3 ((𝐾 ∈ Poset ∧ (𝐡 ∈ dom π‘ˆ ∧ 𝐡 ∈ dom 𝐺)) ↔ (𝐾 ∈ Poset ∧ 𝐡 ∈ dom π‘ˆ ∧ 𝐡 ∈ dom 𝐺))
5416fvexi 6906 . . . 4 βŠ₯ ∈ V
55 fveq1 6891 . . . . . . . 8 (𝑛 = βŠ₯ β†’ (π‘›β€˜π‘₯) = ( βŠ₯ β€˜π‘₯))
5655eleq1d 2819 . . . . . . 7 (𝑛 = βŠ₯ β†’ ((π‘›β€˜π‘₯) ∈ 𝐡 ↔ ( βŠ₯ β€˜π‘₯) ∈ 𝐡))
57 id 22 . . . . . . . . 9 (𝑛 = βŠ₯ β†’ 𝑛 = βŠ₯ )
5857, 55fveq12d 6899 . . . . . . . 8 (𝑛 = βŠ₯ β†’ (π‘›β€˜(π‘›β€˜π‘₯)) = ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)))
5958eqeq1d 2735 . . . . . . 7 (𝑛 = βŠ₯ β†’ ((π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ↔ ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = π‘₯))
60 fveq1 6891 . . . . . . . . 9 (𝑛 = βŠ₯ β†’ (π‘›β€˜π‘¦) = ( βŠ₯ β€˜π‘¦))
6160, 55breq12d 5162 . . . . . . . 8 (𝑛 = βŠ₯ β†’ ((π‘›β€˜π‘¦) ≀ (π‘›β€˜π‘₯) ↔ ( βŠ₯ β€˜π‘¦) ≀ ( βŠ₯ β€˜π‘₯)))
6261imbi2d 341 . . . . . . 7 (𝑛 = βŠ₯ β†’ ((π‘₯ ≀ 𝑦 β†’ (π‘›β€˜π‘¦) ≀ (π‘›β€˜π‘₯)) ↔ (π‘₯ ≀ 𝑦 β†’ ( βŠ₯ β€˜π‘¦) ≀ ( βŠ₯ β€˜π‘₯))))
6356, 59, 623anbi123d 1437 . . . . . 6 (𝑛 = βŠ₯ β†’ (((π‘›β€˜π‘₯) ∈ 𝐡 ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ (π‘›β€˜π‘¦) ≀ (π‘›β€˜π‘₯))) ↔ (( βŠ₯ β€˜π‘₯) ∈ 𝐡 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ ( βŠ₯ β€˜π‘¦) ≀ ( βŠ₯ β€˜π‘₯)))))
6455oveq2d 7425 . . . . . . 7 (𝑛 = βŠ₯ β†’ (π‘₯ ∨ (π‘›β€˜π‘₯)) = (π‘₯ ∨ ( βŠ₯ β€˜π‘₯)))
6564eqeq1d 2735 . . . . . 6 (𝑛 = βŠ₯ β†’ ((π‘₯ ∨ (π‘›β€˜π‘₯)) = 1 ↔ (π‘₯ ∨ ( βŠ₯ β€˜π‘₯)) = 1 ))
6655oveq2d 7425 . . . . . . 7 (𝑛 = βŠ₯ β†’ (π‘₯ ∧ (π‘›β€˜π‘₯)) = (π‘₯ ∧ ( βŠ₯ β€˜π‘₯)))
6766eqeq1d 2735 . . . . . 6 (𝑛 = βŠ₯ β†’ ((π‘₯ ∧ (π‘›β€˜π‘₯)) = 0 ↔ (π‘₯ ∧ ( βŠ₯ β€˜π‘₯)) = 0 ))
6863, 65, 673anbi123d 1437 . . . . 5 (𝑛 = βŠ₯ β†’ ((((π‘›β€˜π‘₯) ∈ 𝐡 ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ (π‘›β€˜π‘¦) ≀ (π‘›β€˜π‘₯))) ∧ (π‘₯ ∨ (π‘›β€˜π‘₯)) = 1 ∧ (π‘₯ ∧ (π‘›β€˜π‘₯)) = 0 ) ↔ ((( βŠ₯ β€˜π‘₯) ∈ 𝐡 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ ( βŠ₯ β€˜π‘¦) ≀ ( βŠ₯ β€˜π‘₯))) ∧ (π‘₯ ∨ ( βŠ₯ β€˜π‘₯)) = 1 ∧ (π‘₯ ∧ ( βŠ₯ β€˜π‘₯)) = 0 )))
69682ralbidv 3219 . . . 4 (𝑛 = βŠ₯ β†’ (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (((π‘›β€˜π‘₯) ∈ 𝐡 ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ (π‘›β€˜π‘¦) ≀ (π‘›β€˜π‘₯))) ∧ (π‘₯ ∨ (π‘›β€˜π‘₯)) = 1 ∧ (π‘₯ ∧ (π‘›β€˜π‘₯)) = 0 ) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((( βŠ₯ β€˜π‘₯) ∈ 𝐡 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ ( βŠ₯ β€˜π‘¦) ≀ ( βŠ₯ β€˜π‘₯))) ∧ (π‘₯ ∨ ( βŠ₯ β€˜π‘₯)) = 1 ∧ (π‘₯ ∧ ( βŠ₯ β€˜π‘₯)) = 0 )))
7054, 69ceqsexv 3526 . . 3 (βˆƒπ‘›(𝑛 = βŠ₯ ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (((π‘›β€˜π‘₯) ∈ 𝐡 ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ (π‘›β€˜π‘¦) ≀ (π‘›β€˜π‘₯))) ∧ (π‘₯ ∨ (π‘›β€˜π‘₯)) = 1 ∧ (π‘₯ ∧ (π‘›β€˜π‘₯)) = 0 )) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((( βŠ₯ β€˜π‘₯) ∈ 𝐡 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ ( βŠ₯ β€˜π‘¦) ≀ ( βŠ₯ β€˜π‘₯))) ∧ (π‘₯ ∨ ( βŠ₯ β€˜π‘₯)) = 1 ∧ (π‘₯ ∧ ( βŠ₯ β€˜π‘₯)) = 0 ))
7153, 70anbi12i 628 . 2 (((𝐾 ∈ Poset ∧ (𝐡 ∈ dom π‘ˆ ∧ 𝐡 ∈ dom 𝐺)) ∧ βˆƒπ‘›(𝑛 = βŠ₯ ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (((π‘›β€˜π‘₯) ∈ 𝐡 ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ (π‘›β€˜π‘¦) ≀ (π‘›β€˜π‘₯))) ∧ (π‘₯ ∨ (π‘›β€˜π‘₯)) = 1 ∧ (π‘₯ ∧ (π‘›β€˜π‘₯)) = 0 ))) ↔ ((𝐾 ∈ Poset ∧ 𝐡 ∈ dom π‘ˆ ∧ 𝐡 ∈ dom 𝐺) ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((( βŠ₯ β€˜π‘₯) ∈ 𝐡 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ ( βŠ₯ β€˜π‘¦) ≀ ( βŠ₯ β€˜π‘₯))) ∧ (π‘₯ ∨ ( βŠ₯ β€˜π‘₯)) = 1 ∧ (π‘₯ ∧ ( βŠ₯ β€˜π‘₯)) = 0 )))
7250, 51, 713bitr2i 299 1 (𝐾 ∈ OP ↔ ((𝐾 ∈ Poset ∧ 𝐡 ∈ dom π‘ˆ ∧ 𝐡 ∈ dom 𝐺) ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((( βŠ₯ β€˜π‘₯) ∈ 𝐡 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ ( βŠ₯ β€˜π‘¦) ≀ ( βŠ₯ β€˜π‘₯))) ∧ (π‘₯ ∨ ( βŠ₯ β€˜π‘₯)) = 1 ∧ (π‘₯ ∧ ( βŠ₯ β€˜π‘₯)) = 0 )))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542  βˆƒwex 1782   ∈ wcel 2107  βˆ€wral 3062   class class class wbr 5149  dom cdm 5677  β€˜cfv 6544  (class class class)co 7409  Basecbs 17144  lecple 17204  occoc 17205  Posetcpo 18260  lubclub 18262  glbcglb 18263  joincjn 18264  meetcmee 18265  0.cp0 18376  1.cp1 18377  OPcops 38090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-nul 5307
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-dm 5687  df-iota 6496  df-fv 6552  df-ov 7412  df-oposet 38094
This theorem is referenced by:  opposet  38099  oposlem  38100  op01dm  38101
  Copyright terms: Public domain W3C validator