Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isopos Structured version   Visualization version   GIF version

Theorem isopos 38038
Description: The predicate "is an orthoposet." (Contributed by NM, 20-Oct-2011.) (Revised by NM, 14-Sep-2018.)
Hypotheses
Ref Expression
isopos.b 𝐡 = (Baseβ€˜πΎ)
isopos.e π‘ˆ = (lubβ€˜πΎ)
isopos.g 𝐺 = (glbβ€˜πΎ)
isopos.l ≀ = (leβ€˜πΎ)
isopos.o βŠ₯ = (ocβ€˜πΎ)
isopos.j ∨ = (joinβ€˜πΎ)
isopos.m ∧ = (meetβ€˜πΎ)
isopos.f 0 = (0.β€˜πΎ)
isopos.u 1 = (1.β€˜πΎ)
Assertion
Ref Expression
isopos (𝐾 ∈ OP ↔ ((𝐾 ∈ Poset ∧ 𝐡 ∈ dom π‘ˆ ∧ 𝐡 ∈ dom 𝐺) ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((( βŠ₯ β€˜π‘₯) ∈ 𝐡 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ ( βŠ₯ β€˜π‘¦) ≀ ( βŠ₯ β€˜π‘₯))) ∧ (π‘₯ ∨ ( βŠ₯ β€˜π‘₯)) = 1 ∧ (π‘₯ ∧ ( βŠ₯ β€˜π‘₯)) = 0 )))
Distinct variable groups:   π‘₯,𝑦,𝐡   π‘₯, βŠ₯ ,𝑦   π‘₯,𝐾,𝑦
Allowed substitution hints:   π‘ˆ(π‘₯,𝑦)   1 (π‘₯,𝑦)   𝐺(π‘₯,𝑦)   ∨ (π‘₯,𝑦)   ≀ (π‘₯,𝑦)   ∧ (π‘₯,𝑦)   0 (π‘₯,𝑦)

Proof of Theorem isopos
Dummy variables 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6888 . . . . . . 7 (𝑝 = 𝐾 β†’ (Baseβ€˜π‘) = (Baseβ€˜πΎ))
2 isopos.b . . . . . . 7 𝐡 = (Baseβ€˜πΎ)
31, 2eqtr4di 2790 . . . . . 6 (𝑝 = 𝐾 β†’ (Baseβ€˜π‘) = 𝐡)
4 fveq2 6888 . . . . . . . 8 (𝑝 = 𝐾 β†’ (lubβ€˜π‘) = (lubβ€˜πΎ))
5 isopos.e . . . . . . . 8 π‘ˆ = (lubβ€˜πΎ)
64, 5eqtr4di 2790 . . . . . . 7 (𝑝 = 𝐾 β†’ (lubβ€˜π‘) = π‘ˆ)
76dmeqd 5903 . . . . . 6 (𝑝 = 𝐾 β†’ dom (lubβ€˜π‘) = dom π‘ˆ)
83, 7eleq12d 2827 . . . . 5 (𝑝 = 𝐾 β†’ ((Baseβ€˜π‘) ∈ dom (lubβ€˜π‘) ↔ 𝐡 ∈ dom π‘ˆ))
9 fveq2 6888 . . . . . . . 8 (𝑝 = 𝐾 β†’ (glbβ€˜π‘) = (glbβ€˜πΎ))
10 isopos.g . . . . . . . 8 𝐺 = (glbβ€˜πΎ)
119, 10eqtr4di 2790 . . . . . . 7 (𝑝 = 𝐾 β†’ (glbβ€˜π‘) = 𝐺)
1211dmeqd 5903 . . . . . 6 (𝑝 = 𝐾 β†’ dom (glbβ€˜π‘) = dom 𝐺)
133, 12eleq12d 2827 . . . . 5 (𝑝 = 𝐾 β†’ ((Baseβ€˜π‘) ∈ dom (glbβ€˜π‘) ↔ 𝐡 ∈ dom 𝐺))
148, 13anbi12d 631 . . . 4 (𝑝 = 𝐾 β†’ (((Baseβ€˜π‘) ∈ dom (lubβ€˜π‘) ∧ (Baseβ€˜π‘) ∈ dom (glbβ€˜π‘)) ↔ (𝐡 ∈ dom π‘ˆ ∧ 𝐡 ∈ dom 𝐺)))
15 fveq2 6888 . . . . . . . 8 (𝑝 = 𝐾 β†’ (ocβ€˜π‘) = (ocβ€˜πΎ))
16 isopos.o . . . . . . . 8 βŠ₯ = (ocβ€˜πΎ)
1715, 16eqtr4di 2790 . . . . . . 7 (𝑝 = 𝐾 β†’ (ocβ€˜π‘) = βŠ₯ )
1817eqeq2d 2743 . . . . . 6 (𝑝 = 𝐾 β†’ (𝑛 = (ocβ€˜π‘) ↔ 𝑛 = βŠ₯ ))
193eleq2d 2819 . . . . . . . . . 10 (𝑝 = 𝐾 β†’ ((π‘›β€˜π‘₯) ∈ (Baseβ€˜π‘) ↔ (π‘›β€˜π‘₯) ∈ 𝐡))
20 fveq2 6888 . . . . . . . . . . . . 13 (𝑝 = 𝐾 β†’ (leβ€˜π‘) = (leβ€˜πΎ))
21 isopos.l . . . . . . . . . . . . 13 ≀ = (leβ€˜πΎ)
2220, 21eqtr4di 2790 . . . . . . . . . . . 12 (𝑝 = 𝐾 β†’ (leβ€˜π‘) = ≀ )
2322breqd 5158 . . . . . . . . . . 11 (𝑝 = 𝐾 β†’ (π‘₯(leβ€˜π‘)𝑦 ↔ π‘₯ ≀ 𝑦))
2422breqd 5158 . . . . . . . . . . 11 (𝑝 = 𝐾 β†’ ((π‘›β€˜π‘¦)(leβ€˜π‘)(π‘›β€˜π‘₯) ↔ (π‘›β€˜π‘¦) ≀ (π‘›β€˜π‘₯)))
2523, 24imbi12d 344 . . . . . . . . . 10 (𝑝 = 𝐾 β†’ ((π‘₯(leβ€˜π‘)𝑦 β†’ (π‘›β€˜π‘¦)(leβ€˜π‘)(π‘›β€˜π‘₯)) ↔ (π‘₯ ≀ 𝑦 β†’ (π‘›β€˜π‘¦) ≀ (π‘›β€˜π‘₯))))
2619, 253anbi13d 1438 . . . . . . . . 9 (𝑝 = 𝐾 β†’ (((π‘›β€˜π‘₯) ∈ (Baseβ€˜π‘) ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯(leβ€˜π‘)𝑦 β†’ (π‘›β€˜π‘¦)(leβ€˜π‘)(π‘›β€˜π‘₯))) ↔ ((π‘›β€˜π‘₯) ∈ 𝐡 ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ (π‘›β€˜π‘¦) ≀ (π‘›β€˜π‘₯)))))
27 fveq2 6888 . . . . . . . . . . . 12 (𝑝 = 𝐾 β†’ (joinβ€˜π‘) = (joinβ€˜πΎ))
28 isopos.j . . . . . . . . . . . 12 ∨ = (joinβ€˜πΎ)
2927, 28eqtr4di 2790 . . . . . . . . . . 11 (𝑝 = 𝐾 β†’ (joinβ€˜π‘) = ∨ )
3029oveqd 7422 . . . . . . . . . 10 (𝑝 = 𝐾 β†’ (π‘₯(joinβ€˜π‘)(π‘›β€˜π‘₯)) = (π‘₯ ∨ (π‘›β€˜π‘₯)))
31 fveq2 6888 . . . . . . . . . . 11 (𝑝 = 𝐾 β†’ (1.β€˜π‘) = (1.β€˜πΎ))
32 isopos.u . . . . . . . . . . 11 1 = (1.β€˜πΎ)
3331, 32eqtr4di 2790 . . . . . . . . . 10 (𝑝 = 𝐾 β†’ (1.β€˜π‘) = 1 )
3430, 33eqeq12d 2748 . . . . . . . . 9 (𝑝 = 𝐾 β†’ ((π‘₯(joinβ€˜π‘)(π‘›β€˜π‘₯)) = (1.β€˜π‘) ↔ (π‘₯ ∨ (π‘›β€˜π‘₯)) = 1 ))
35 fveq2 6888 . . . . . . . . . . . 12 (𝑝 = 𝐾 β†’ (meetβ€˜π‘) = (meetβ€˜πΎ))
36 isopos.m . . . . . . . . . . . 12 ∧ = (meetβ€˜πΎ)
3735, 36eqtr4di 2790 . . . . . . . . . . 11 (𝑝 = 𝐾 β†’ (meetβ€˜π‘) = ∧ )
3837oveqd 7422 . . . . . . . . . 10 (𝑝 = 𝐾 β†’ (π‘₯(meetβ€˜π‘)(π‘›β€˜π‘₯)) = (π‘₯ ∧ (π‘›β€˜π‘₯)))
39 fveq2 6888 . . . . . . . . . . 11 (𝑝 = 𝐾 β†’ (0.β€˜π‘) = (0.β€˜πΎ))
40 isopos.f . . . . . . . . . . 11 0 = (0.β€˜πΎ)
4139, 40eqtr4di 2790 . . . . . . . . . 10 (𝑝 = 𝐾 β†’ (0.β€˜π‘) = 0 )
4238, 41eqeq12d 2748 . . . . . . . . 9 (𝑝 = 𝐾 β†’ ((π‘₯(meetβ€˜π‘)(π‘›β€˜π‘₯)) = (0.β€˜π‘) ↔ (π‘₯ ∧ (π‘›β€˜π‘₯)) = 0 ))
4326, 34, 423anbi123d 1436 . . . . . . . 8 (𝑝 = 𝐾 β†’ ((((π‘›β€˜π‘₯) ∈ (Baseβ€˜π‘) ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯(leβ€˜π‘)𝑦 β†’ (π‘›β€˜π‘¦)(leβ€˜π‘)(π‘›β€˜π‘₯))) ∧ (π‘₯(joinβ€˜π‘)(π‘›β€˜π‘₯)) = (1.β€˜π‘) ∧ (π‘₯(meetβ€˜π‘)(π‘›β€˜π‘₯)) = (0.β€˜π‘)) ↔ (((π‘›β€˜π‘₯) ∈ 𝐡 ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ (π‘›β€˜π‘¦) ≀ (π‘›β€˜π‘₯))) ∧ (π‘₯ ∨ (π‘›β€˜π‘₯)) = 1 ∧ (π‘₯ ∧ (π‘›β€˜π‘₯)) = 0 )))
443, 43raleqbidv 3342 . . . . . . 7 (𝑝 = 𝐾 β†’ (βˆ€π‘¦ ∈ (Baseβ€˜π‘)(((π‘›β€˜π‘₯) ∈ (Baseβ€˜π‘) ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯(leβ€˜π‘)𝑦 β†’ (π‘›β€˜π‘¦)(leβ€˜π‘)(π‘›β€˜π‘₯))) ∧ (π‘₯(joinβ€˜π‘)(π‘›β€˜π‘₯)) = (1.β€˜π‘) ∧ (π‘₯(meetβ€˜π‘)(π‘›β€˜π‘₯)) = (0.β€˜π‘)) ↔ βˆ€π‘¦ ∈ 𝐡 (((π‘›β€˜π‘₯) ∈ 𝐡 ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ (π‘›β€˜π‘¦) ≀ (π‘›β€˜π‘₯))) ∧ (π‘₯ ∨ (π‘›β€˜π‘₯)) = 1 ∧ (π‘₯ ∧ (π‘›β€˜π‘₯)) = 0 )))
453, 44raleqbidv 3342 . . . . . 6 (𝑝 = 𝐾 β†’ (βˆ€π‘₯ ∈ (Baseβ€˜π‘)βˆ€π‘¦ ∈ (Baseβ€˜π‘)(((π‘›β€˜π‘₯) ∈ (Baseβ€˜π‘) ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯(leβ€˜π‘)𝑦 β†’ (π‘›β€˜π‘¦)(leβ€˜π‘)(π‘›β€˜π‘₯))) ∧ (π‘₯(joinβ€˜π‘)(π‘›β€˜π‘₯)) = (1.β€˜π‘) ∧ (π‘₯(meetβ€˜π‘)(π‘›β€˜π‘₯)) = (0.β€˜π‘)) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (((π‘›β€˜π‘₯) ∈ 𝐡 ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ (π‘›β€˜π‘¦) ≀ (π‘›β€˜π‘₯))) ∧ (π‘₯ ∨ (π‘›β€˜π‘₯)) = 1 ∧ (π‘₯ ∧ (π‘›β€˜π‘₯)) = 0 )))
4618, 45anbi12d 631 . . . . 5 (𝑝 = 𝐾 β†’ ((𝑛 = (ocβ€˜π‘) ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘)βˆ€π‘¦ ∈ (Baseβ€˜π‘)(((π‘›β€˜π‘₯) ∈ (Baseβ€˜π‘) ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯(leβ€˜π‘)𝑦 β†’ (π‘›β€˜π‘¦)(leβ€˜π‘)(π‘›β€˜π‘₯))) ∧ (π‘₯(joinβ€˜π‘)(π‘›β€˜π‘₯)) = (1.β€˜π‘) ∧ (π‘₯(meetβ€˜π‘)(π‘›β€˜π‘₯)) = (0.β€˜π‘))) ↔ (𝑛 = βŠ₯ ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (((π‘›β€˜π‘₯) ∈ 𝐡 ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ (π‘›β€˜π‘¦) ≀ (π‘›β€˜π‘₯))) ∧ (π‘₯ ∨ (π‘›β€˜π‘₯)) = 1 ∧ (π‘₯ ∧ (π‘›β€˜π‘₯)) = 0 ))))
4746exbidv 1924 . . . 4 (𝑝 = 𝐾 β†’ (βˆƒπ‘›(𝑛 = (ocβ€˜π‘) ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘)βˆ€π‘¦ ∈ (Baseβ€˜π‘)(((π‘›β€˜π‘₯) ∈ (Baseβ€˜π‘) ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯(leβ€˜π‘)𝑦 β†’ (π‘›β€˜π‘¦)(leβ€˜π‘)(π‘›β€˜π‘₯))) ∧ (π‘₯(joinβ€˜π‘)(π‘›β€˜π‘₯)) = (1.β€˜π‘) ∧ (π‘₯(meetβ€˜π‘)(π‘›β€˜π‘₯)) = (0.β€˜π‘))) ↔ βˆƒπ‘›(𝑛 = βŠ₯ ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (((π‘›β€˜π‘₯) ∈ 𝐡 ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ (π‘›β€˜π‘¦) ≀ (π‘›β€˜π‘₯))) ∧ (π‘₯ ∨ (π‘›β€˜π‘₯)) = 1 ∧ (π‘₯ ∧ (π‘›β€˜π‘₯)) = 0 ))))
4814, 47anbi12d 631 . . 3 (𝑝 = 𝐾 β†’ ((((Baseβ€˜π‘) ∈ dom (lubβ€˜π‘) ∧ (Baseβ€˜π‘) ∈ dom (glbβ€˜π‘)) ∧ βˆƒπ‘›(𝑛 = (ocβ€˜π‘) ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘)βˆ€π‘¦ ∈ (Baseβ€˜π‘)(((π‘›β€˜π‘₯) ∈ (Baseβ€˜π‘) ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯(leβ€˜π‘)𝑦 β†’ (π‘›β€˜π‘¦)(leβ€˜π‘)(π‘›β€˜π‘₯))) ∧ (π‘₯(joinβ€˜π‘)(π‘›β€˜π‘₯)) = (1.β€˜π‘) ∧ (π‘₯(meetβ€˜π‘)(π‘›β€˜π‘₯)) = (0.β€˜π‘)))) ↔ ((𝐡 ∈ dom π‘ˆ ∧ 𝐡 ∈ dom 𝐺) ∧ βˆƒπ‘›(𝑛 = βŠ₯ ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (((π‘›β€˜π‘₯) ∈ 𝐡 ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ (π‘›β€˜π‘¦) ≀ (π‘›β€˜π‘₯))) ∧ (π‘₯ ∨ (π‘›β€˜π‘₯)) = 1 ∧ (π‘₯ ∧ (π‘›β€˜π‘₯)) = 0 )))))
49 df-oposet 38034 . . 3 OP = {𝑝 ∈ Poset ∣ (((Baseβ€˜π‘) ∈ dom (lubβ€˜π‘) ∧ (Baseβ€˜π‘) ∈ dom (glbβ€˜π‘)) ∧ βˆƒπ‘›(𝑛 = (ocβ€˜π‘) ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘)βˆ€π‘¦ ∈ (Baseβ€˜π‘)(((π‘›β€˜π‘₯) ∈ (Baseβ€˜π‘) ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯(leβ€˜π‘)𝑦 β†’ (π‘›β€˜π‘¦)(leβ€˜π‘)(π‘›β€˜π‘₯))) ∧ (π‘₯(joinβ€˜π‘)(π‘›β€˜π‘₯)) = (1.β€˜π‘) ∧ (π‘₯(meetβ€˜π‘)(π‘›β€˜π‘₯)) = (0.β€˜π‘))))}
5048, 49elrab2 3685 . 2 (𝐾 ∈ OP ↔ (𝐾 ∈ Poset ∧ ((𝐡 ∈ dom π‘ˆ ∧ 𝐡 ∈ dom 𝐺) ∧ βˆƒπ‘›(𝑛 = βŠ₯ ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (((π‘›β€˜π‘₯) ∈ 𝐡 ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ (π‘›β€˜π‘¦) ≀ (π‘›β€˜π‘₯))) ∧ (π‘₯ ∨ (π‘›β€˜π‘₯)) = 1 ∧ (π‘₯ ∧ (π‘›β€˜π‘₯)) = 0 )))))
51 anass 469 . 2 (((𝐾 ∈ Poset ∧ (𝐡 ∈ dom π‘ˆ ∧ 𝐡 ∈ dom 𝐺)) ∧ βˆƒπ‘›(𝑛 = βŠ₯ ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (((π‘›β€˜π‘₯) ∈ 𝐡 ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ (π‘›β€˜π‘¦) ≀ (π‘›β€˜π‘₯))) ∧ (π‘₯ ∨ (π‘›β€˜π‘₯)) = 1 ∧ (π‘₯ ∧ (π‘›β€˜π‘₯)) = 0 ))) ↔ (𝐾 ∈ Poset ∧ ((𝐡 ∈ dom π‘ˆ ∧ 𝐡 ∈ dom 𝐺) ∧ βˆƒπ‘›(𝑛 = βŠ₯ ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (((π‘›β€˜π‘₯) ∈ 𝐡 ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ (π‘›β€˜π‘¦) ≀ (π‘›β€˜π‘₯))) ∧ (π‘₯ ∨ (π‘›β€˜π‘₯)) = 1 ∧ (π‘₯ ∧ (π‘›β€˜π‘₯)) = 0 )))))
52 3anass 1095 . . . 4 ((𝐾 ∈ Poset ∧ 𝐡 ∈ dom π‘ˆ ∧ 𝐡 ∈ dom 𝐺) ↔ (𝐾 ∈ Poset ∧ (𝐡 ∈ dom π‘ˆ ∧ 𝐡 ∈ dom 𝐺)))
5352bicomi 223 . . 3 ((𝐾 ∈ Poset ∧ (𝐡 ∈ dom π‘ˆ ∧ 𝐡 ∈ dom 𝐺)) ↔ (𝐾 ∈ Poset ∧ 𝐡 ∈ dom π‘ˆ ∧ 𝐡 ∈ dom 𝐺))
5416fvexi 6902 . . . 4 βŠ₯ ∈ V
55 fveq1 6887 . . . . . . . 8 (𝑛 = βŠ₯ β†’ (π‘›β€˜π‘₯) = ( βŠ₯ β€˜π‘₯))
5655eleq1d 2818 . . . . . . 7 (𝑛 = βŠ₯ β†’ ((π‘›β€˜π‘₯) ∈ 𝐡 ↔ ( βŠ₯ β€˜π‘₯) ∈ 𝐡))
57 id 22 . . . . . . . . 9 (𝑛 = βŠ₯ β†’ 𝑛 = βŠ₯ )
5857, 55fveq12d 6895 . . . . . . . 8 (𝑛 = βŠ₯ β†’ (π‘›β€˜(π‘›β€˜π‘₯)) = ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)))
5958eqeq1d 2734 . . . . . . 7 (𝑛 = βŠ₯ β†’ ((π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ↔ ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = π‘₯))
60 fveq1 6887 . . . . . . . . 9 (𝑛 = βŠ₯ β†’ (π‘›β€˜π‘¦) = ( βŠ₯ β€˜π‘¦))
6160, 55breq12d 5160 . . . . . . . 8 (𝑛 = βŠ₯ β†’ ((π‘›β€˜π‘¦) ≀ (π‘›β€˜π‘₯) ↔ ( βŠ₯ β€˜π‘¦) ≀ ( βŠ₯ β€˜π‘₯)))
6261imbi2d 340 . . . . . . 7 (𝑛 = βŠ₯ β†’ ((π‘₯ ≀ 𝑦 β†’ (π‘›β€˜π‘¦) ≀ (π‘›β€˜π‘₯)) ↔ (π‘₯ ≀ 𝑦 β†’ ( βŠ₯ β€˜π‘¦) ≀ ( βŠ₯ β€˜π‘₯))))
6356, 59, 623anbi123d 1436 . . . . . 6 (𝑛 = βŠ₯ β†’ (((π‘›β€˜π‘₯) ∈ 𝐡 ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ (π‘›β€˜π‘¦) ≀ (π‘›β€˜π‘₯))) ↔ (( βŠ₯ β€˜π‘₯) ∈ 𝐡 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ ( βŠ₯ β€˜π‘¦) ≀ ( βŠ₯ β€˜π‘₯)))))
6455oveq2d 7421 . . . . . . 7 (𝑛 = βŠ₯ β†’ (π‘₯ ∨ (π‘›β€˜π‘₯)) = (π‘₯ ∨ ( βŠ₯ β€˜π‘₯)))
6564eqeq1d 2734 . . . . . 6 (𝑛 = βŠ₯ β†’ ((π‘₯ ∨ (π‘›β€˜π‘₯)) = 1 ↔ (π‘₯ ∨ ( βŠ₯ β€˜π‘₯)) = 1 ))
6655oveq2d 7421 . . . . . . 7 (𝑛 = βŠ₯ β†’ (π‘₯ ∧ (π‘›β€˜π‘₯)) = (π‘₯ ∧ ( βŠ₯ β€˜π‘₯)))
6766eqeq1d 2734 . . . . . 6 (𝑛 = βŠ₯ β†’ ((π‘₯ ∧ (π‘›β€˜π‘₯)) = 0 ↔ (π‘₯ ∧ ( βŠ₯ β€˜π‘₯)) = 0 ))
6863, 65, 673anbi123d 1436 . . . . 5 (𝑛 = βŠ₯ β†’ ((((π‘›β€˜π‘₯) ∈ 𝐡 ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ (π‘›β€˜π‘¦) ≀ (π‘›β€˜π‘₯))) ∧ (π‘₯ ∨ (π‘›β€˜π‘₯)) = 1 ∧ (π‘₯ ∧ (π‘›β€˜π‘₯)) = 0 ) ↔ ((( βŠ₯ β€˜π‘₯) ∈ 𝐡 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ ( βŠ₯ β€˜π‘¦) ≀ ( βŠ₯ β€˜π‘₯))) ∧ (π‘₯ ∨ ( βŠ₯ β€˜π‘₯)) = 1 ∧ (π‘₯ ∧ ( βŠ₯ β€˜π‘₯)) = 0 )))
69682ralbidv 3218 . . . 4 (𝑛 = βŠ₯ β†’ (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (((π‘›β€˜π‘₯) ∈ 𝐡 ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ (π‘›β€˜π‘¦) ≀ (π‘›β€˜π‘₯))) ∧ (π‘₯ ∨ (π‘›β€˜π‘₯)) = 1 ∧ (π‘₯ ∧ (π‘›β€˜π‘₯)) = 0 ) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((( βŠ₯ β€˜π‘₯) ∈ 𝐡 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ ( βŠ₯ β€˜π‘¦) ≀ ( βŠ₯ β€˜π‘₯))) ∧ (π‘₯ ∨ ( βŠ₯ β€˜π‘₯)) = 1 ∧ (π‘₯ ∧ ( βŠ₯ β€˜π‘₯)) = 0 )))
7054, 69ceqsexv 3525 . . 3 (βˆƒπ‘›(𝑛 = βŠ₯ ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (((π‘›β€˜π‘₯) ∈ 𝐡 ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ (π‘›β€˜π‘¦) ≀ (π‘›β€˜π‘₯))) ∧ (π‘₯ ∨ (π‘›β€˜π‘₯)) = 1 ∧ (π‘₯ ∧ (π‘›β€˜π‘₯)) = 0 )) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((( βŠ₯ β€˜π‘₯) ∈ 𝐡 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ ( βŠ₯ β€˜π‘¦) ≀ ( βŠ₯ β€˜π‘₯))) ∧ (π‘₯ ∨ ( βŠ₯ β€˜π‘₯)) = 1 ∧ (π‘₯ ∧ ( βŠ₯ β€˜π‘₯)) = 0 ))
7153, 70anbi12i 627 . 2 (((𝐾 ∈ Poset ∧ (𝐡 ∈ dom π‘ˆ ∧ 𝐡 ∈ dom 𝐺)) ∧ βˆƒπ‘›(𝑛 = βŠ₯ ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (((π‘›β€˜π‘₯) ∈ 𝐡 ∧ (π‘›β€˜(π‘›β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ (π‘›β€˜π‘¦) ≀ (π‘›β€˜π‘₯))) ∧ (π‘₯ ∨ (π‘›β€˜π‘₯)) = 1 ∧ (π‘₯ ∧ (π‘›β€˜π‘₯)) = 0 ))) ↔ ((𝐾 ∈ Poset ∧ 𝐡 ∈ dom π‘ˆ ∧ 𝐡 ∈ dom 𝐺) ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((( βŠ₯ β€˜π‘₯) ∈ 𝐡 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ ( βŠ₯ β€˜π‘¦) ≀ ( βŠ₯ β€˜π‘₯))) ∧ (π‘₯ ∨ ( βŠ₯ β€˜π‘₯)) = 1 ∧ (π‘₯ ∧ ( βŠ₯ β€˜π‘₯)) = 0 )))
7250, 51, 713bitr2i 298 1 (𝐾 ∈ OP ↔ ((𝐾 ∈ Poset ∧ 𝐡 ∈ dom π‘ˆ ∧ 𝐡 ∈ dom 𝐺) ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((( βŠ₯ β€˜π‘₯) ∈ 𝐡 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = π‘₯ ∧ (π‘₯ ≀ 𝑦 β†’ ( βŠ₯ β€˜π‘¦) ≀ ( βŠ₯ β€˜π‘₯))) ∧ (π‘₯ ∨ ( βŠ₯ β€˜π‘₯)) = 1 ∧ (π‘₯ ∧ ( βŠ₯ β€˜π‘₯)) = 0 )))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106  βˆ€wral 3061   class class class wbr 5147  dom cdm 5675  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  lecple 17200  occoc 17201  Posetcpo 18256  lubclub 18258  glbcglb 18259  joincjn 18260  meetcmee 18261  0.cp0 18372  1.cp1 18373  OPcops 38030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-nul 5305
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-dm 5685  df-iota 6492  df-fv 6548  df-ov 7408  df-oposet 38034
This theorem is referenced by:  opposet  38039  oposlem  38040  op01dm  38041
  Copyright terms: Public domain W3C validator