Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-oppf Structured version   Visualization version   GIF version

Definition df-oppf 48951
Description: Definition of the operation generating opposite functors. Definition 3.41 of [Adamek] p. 39. The object part of the functor is unchanged while the morphism part is transposed due to reversed direction of arrows in the opposite category. The opposite functor is a functor on opposite categories (oppfoppc 48953). (Contributed by Zhi Wang, 4-Nov-2025.)
Assertion
Ref Expression
df-oppf oppFunc = (𝑓 ∈ V, 𝑔 ∈ V ↦ ⟨𝑓, tpos 𝑔⟩)
Distinct variable group:   𝑓,𝑔

Detailed syntax breakdown of Definition df-oppf
StepHypRef Expression
1 coppf 48950 . 2 class oppFunc
2 vf . . 3 setvar 𝑓
3 vg . . 3 setvar 𝑔
4 cvv 3457 . . 3 class V
52cv 1538 . . . 4 class 𝑓
63cv 1538 . . . . 5 class 𝑔
76ctpos 8219 . . . 4 class tpos 𝑔
85, 7cop 4605 . . 3 class 𝑓, tpos 𝑔
92, 3, 4, 4, 8cmpo 7402 . 2 class (𝑓 ∈ V, 𝑔 ∈ V ↦ ⟨𝑓, tpos 𝑔⟩)
101, 9wceq 1539 1 wff oppFunc = (𝑓 ∈ V, 𝑔 ∈ V ↦ ⟨𝑓, tpos 𝑔⟩)
Colors of variables: wff setvar class
This definition is referenced by:  oppfval  48952
  Copyright terms: Public domain W3C validator