| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-oppf | Structured version Visualization version GIF version | ||
| Description: Definition of the operation generating opposite functors. Definition 3.41 of [Adamek] p. 39. The object part of the functor is unchanged while the morphism part is transposed due to reversed direction of arrows in the opposite category. The opposite functor is a functor on opposite categories (oppfoppc 49120). (Contributed by Zhi Wang, 4-Nov-2025.) Better reverse closure. (Revised by Zhi Wang, 13-Nov-2025.) |
| Ref | Expression |
|---|---|
| df-oppf | ⊢ oppFunc = (𝑓 ∈ V, 𝑔 ∈ V ↦ if((Rel 𝑔 ∧ Rel dom 𝑔), 〈𝑓, tpos 𝑔〉, ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coppf 49101 | . 2 class oppFunc | |
| 2 | vf | . . 3 setvar 𝑓 | |
| 3 | vg | . . 3 setvar 𝑔 | |
| 4 | cvv 3450 | . . 3 class V | |
| 5 | 3 | cv 1539 | . . . . . 6 class 𝑔 |
| 6 | 5 | wrel 5645 | . . . . 5 wff Rel 𝑔 |
| 7 | 5 | cdm 5640 | . . . . . 6 class dom 𝑔 |
| 8 | 7 | wrel 5645 | . . . . 5 wff Rel dom 𝑔 |
| 9 | 6, 8 | wa 395 | . . . 4 wff (Rel 𝑔 ∧ Rel dom 𝑔) |
| 10 | 2 | cv 1539 | . . . . 5 class 𝑓 |
| 11 | 5 | ctpos 8206 | . . . . 5 class tpos 𝑔 |
| 12 | 10, 11 | cop 4597 | . . . 4 class 〈𝑓, tpos 𝑔〉 |
| 13 | c0 4298 | . . . 4 class ∅ | |
| 14 | 9, 12, 13 | cif 4490 | . . 3 class if((Rel 𝑔 ∧ Rel dom 𝑔), 〈𝑓, tpos 𝑔〉, ∅) |
| 15 | 2, 3, 4, 4, 14 | cmpo 7391 | . 2 class (𝑓 ∈ V, 𝑔 ∈ V ↦ if((Rel 𝑔 ∧ Rel dom 𝑔), 〈𝑓, tpos 𝑔〉, ∅)) |
| 16 | 1, 15 | wceq 1540 | 1 wff oppFunc = (𝑓 ∈ V, 𝑔 ∈ V ↦ if((Rel 𝑔 ∧ Rel dom 𝑔), 〈𝑓, tpos 𝑔〉, ∅)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: oppffn 49103 reldmoppf 49104 oppfvalg 49105 eloppf2 49113 |
| Copyright terms: Public domain | W3C validator |