| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-oppf | Structured version Visualization version GIF version | ||
| Description: Definition of the operation generating opposite functors. Definition 3.41 of [Adamek] p. 39. The object part of the functor is unchanged while the morphism part is transposed due to reversed direction of arrows in the opposite category. The opposite functor is a functor on opposite categories (oppfoppc 48953). (Contributed by Zhi Wang, 4-Nov-2025.) |
| Ref | Expression |
|---|---|
| df-oppf | ⊢ oppFunc = (𝑓 ∈ V, 𝑔 ∈ V ↦ 〈𝑓, tpos 𝑔〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coppf 48950 | . 2 class oppFunc | |
| 2 | vf | . . 3 setvar 𝑓 | |
| 3 | vg | . . 3 setvar 𝑔 | |
| 4 | cvv 3457 | . . 3 class V | |
| 5 | 2 | cv 1538 | . . . 4 class 𝑓 |
| 6 | 3 | cv 1538 | . . . . 5 class 𝑔 |
| 7 | 6 | ctpos 8219 | . . . 4 class tpos 𝑔 |
| 8 | 5, 7 | cop 4605 | . . 3 class 〈𝑓, tpos 𝑔〉 |
| 9 | 2, 3, 4, 4, 8 | cmpo 7402 | . 2 class (𝑓 ∈ V, 𝑔 ∈ V ↦ 〈𝑓, tpos 𝑔〉) |
| 10 | 1, 9 | wceq 1539 | 1 wff oppFunc = (𝑓 ∈ V, 𝑔 ∈ V ↦ 〈𝑓, tpos 𝑔〉) |
| Colors of variables: wff setvar class |
| This definition is referenced by: oppfval 48952 |
| Copyright terms: Public domain | W3C validator |