Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-oppf Structured version   Visualization version   GIF version

Definition df-oppf 49102
Description: Definition of the operation generating opposite functors. Definition 3.41 of [Adamek] p. 39. The object part of the functor is unchanged while the morphism part is transposed due to reversed direction of arrows in the opposite category. The opposite functor is a functor on opposite categories (oppfoppc 49120). (Contributed by Zhi Wang, 4-Nov-2025.) Better reverse closure. (Revised by Zhi Wang, 13-Nov-2025.)
Assertion
Ref Expression
df-oppf oppFunc = (𝑓 ∈ V, 𝑔 ∈ V ↦ if((Rel 𝑔 ∧ Rel dom 𝑔), ⟨𝑓, tpos 𝑔⟩, ∅))
Distinct variable group:   𝑓,𝑔

Detailed syntax breakdown of Definition df-oppf
StepHypRef Expression
1 coppf 49101 . 2 class oppFunc
2 vf . . 3 setvar 𝑓
3 vg . . 3 setvar 𝑔
4 cvv 3450 . . 3 class V
53cv 1539 . . . . . 6 class 𝑔
65wrel 5645 . . . . 5 wff Rel 𝑔
75cdm 5640 . . . . . 6 class dom 𝑔
87wrel 5645 . . . . 5 wff Rel dom 𝑔
96, 8wa 395 . . . 4 wff (Rel 𝑔 ∧ Rel dom 𝑔)
102cv 1539 . . . . 5 class 𝑓
115ctpos 8206 . . . . 5 class tpos 𝑔
1210, 11cop 4597 . . . 4 class 𝑓, tpos 𝑔
13 c0 4298 . . . 4 class
149, 12, 13cif 4490 . . 3 class if((Rel 𝑔 ∧ Rel dom 𝑔), ⟨𝑓, tpos 𝑔⟩, ∅)
152, 3, 4, 4, 14cmpo 7391 . 2 class (𝑓 ∈ V, 𝑔 ∈ V ↦ if((Rel 𝑔 ∧ Rel dom 𝑔), ⟨𝑓, tpos 𝑔⟩, ∅))
161, 15wceq 1540 1 wff oppFunc = (𝑓 ∈ V, 𝑔 ∈ V ↦ if((Rel 𝑔 ∧ Rel dom 𝑔), ⟨𝑓, tpos 𝑔⟩, ∅))
Colors of variables: wff setvar class
This definition is referenced by:  oppffn  49103  reldmoppf  49104  oppfvalg  49105  eloppf2  49113
  Copyright terms: Public domain W3C validator