| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppffn | Structured version Visualization version GIF version | ||
| Description: oppFunc is a function on (V × V). (Contributed by Zhi Wang, 17-Nov-2025.) |
| Ref | Expression |
|---|---|
| oppffn | ⊢ oppFunc Fn (V × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-oppf 49154 | . 2 ⊢ oppFunc = (𝑓 ∈ V, 𝑔 ∈ V ↦ if((Rel 𝑔 ∧ Rel dom 𝑔), 〈𝑓, tpos 𝑔〉, ∅)) | |
| 2 | opex 5404 | . . 3 ⊢ 〈𝑓, tpos 𝑔〉 ∈ V | |
| 3 | 0ex 5245 | . . 3 ⊢ ∅ ∈ V | |
| 4 | 2, 3 | ifex 4526 | . 2 ⊢ if((Rel 𝑔 ∧ Rel dom 𝑔), 〈𝑓, tpos 𝑔〉, ∅) ∈ V |
| 5 | 1, 4 | fnmpoi 8002 | 1 ⊢ oppFunc Fn (V × V) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 Vcvv 3436 ∅c0 4283 ifcif 4475 〈cop 4582 × cxp 5614 dom cdm 5616 Rel wrel 5621 Fn wfn 6476 tpos ctpos 8155 oppFunc coppf 49153 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-oppf 49154 |
| This theorem is referenced by: oppfrcl 49159 eloppf 49164 oppff1 49179 |
| Copyright terms: Public domain | W3C validator |