Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppffn Structured version   Visualization version   GIF version

Theorem oppffn 49110
Description: oppFunc is a function on (V × V). (Contributed by Zhi Wang, 17-Nov-2025.)
Assertion
Ref Expression
oppffn oppFunc Fn (V × V)

Proof of Theorem oppffn
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-oppf 49109 . 2 oppFunc = (𝑓 ∈ V, 𝑔 ∈ V ↦ if((Rel 𝑔 ∧ Rel dom 𝑔), ⟨𝑓, tpos 𝑔⟩, ∅))
2 opex 5411 . . 3 𝑓, tpos 𝑔⟩ ∈ V
3 0ex 5249 . . 3 ∅ ∈ V
42, 3ifex 4529 . 2 if((Rel 𝑔 ∧ Rel dom 𝑔), ⟨𝑓, tpos 𝑔⟩, ∅) ∈ V
51, 4fnmpoi 8012 1 oppFunc Fn (V × V)
Colors of variables: wff setvar class
Syntax hints:  wa 395  Vcvv 3438  c0 4286  ifcif 4478  cop 4585   × cxp 5621  dom cdm 5623  Rel wrel 5628   Fn wfn 6481  tpos ctpos 8165   oppFunc coppf 49108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-oppf 49109
This theorem is referenced by:  oppfrcl  49114  eloppf  49119  oppff1  49134
  Copyright terms: Public domain W3C validator