| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppffn | Structured version Visualization version GIF version | ||
| Description: oppFunc is a function on (V × V). (Contributed by Zhi Wang, 17-Nov-2025.) |
| Ref | Expression |
|---|---|
| oppffn | ⊢ oppFunc Fn (V × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-oppf 49040 | . 2 ⊢ oppFunc = (𝑓 ∈ V, 𝑔 ∈ V ↦ if((Rel 𝑔 ∧ Rel dom 𝑔), 〈𝑓, tpos 𝑔〉, ∅)) | |
| 2 | opex 5432 | . . 3 ⊢ 〈𝑓, tpos 𝑔〉 ∈ V | |
| 3 | 0ex 5270 | . . 3 ⊢ ∅ ∈ V | |
| 4 | 2, 3 | ifex 4547 | . 2 ⊢ if((Rel 𝑔 ∧ Rel dom 𝑔), 〈𝑓, tpos 𝑔〉, ∅) ∈ V |
| 5 | 1, 4 | fnmpoi 8058 | 1 ⊢ oppFunc Fn (V × V) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 Vcvv 3455 ∅c0 4304 ifcif 4496 〈cop 4603 × cxp 5644 dom cdm 5646 Rel wrel 5651 Fn wfn 6514 tpos ctpos 8213 oppFunccoppf 49039 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-fv 6527 df-oprab 7398 df-mpo 7399 df-1st 7977 df-2nd 7978 df-oppf 49040 |
| This theorem is referenced by: oppff1 49060 |
| Copyright terms: Public domain | W3C validator |