| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppffn | Structured version Visualization version GIF version | ||
| Description: oppFunc is a function on (V × V). (Contributed by Zhi Wang, 17-Nov-2025.) |
| Ref | Expression |
|---|---|
| oppffn | ⊢ oppFunc Fn (V × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-oppf 49248 | . 2 ⊢ oppFunc = (𝑓 ∈ V, 𝑔 ∈ V ↦ if((Rel 𝑔 ∧ Rel dom 𝑔), 〈𝑓, tpos 𝑔〉, ∅)) | |
| 2 | opex 5407 | . . 3 ⊢ 〈𝑓, tpos 𝑔〉 ∈ V | |
| 3 | 0ex 5247 | . . 3 ⊢ ∅ ∈ V | |
| 4 | 2, 3 | ifex 4525 | . 2 ⊢ if((Rel 𝑔 ∧ Rel dom 𝑔), 〈𝑓, tpos 𝑔〉, ∅) ∈ V |
| 5 | 1, 4 | fnmpoi 8008 | 1 ⊢ oppFunc Fn (V × V) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 Vcvv 3437 ∅c0 4282 ifcif 4474 〈cop 4581 × cxp 5617 dom cdm 5619 Rel wrel 5624 Fn wfn 6481 tpos ctpos 8161 oppFunc coppf 49247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-oppf 49248 |
| This theorem is referenced by: oppfrcl 49253 eloppf 49258 oppff1 49273 |
| Copyright terms: Public domain | W3C validator |