Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppffn Structured version   Visualization version   GIF version

Theorem oppffn 49041
Description: oppFunc is a function on (V × V). (Contributed by Zhi Wang, 17-Nov-2025.)
Assertion
Ref Expression
oppffn oppFunc Fn (V × V)

Proof of Theorem oppffn
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-oppf 49040 . 2 oppFunc = (𝑓 ∈ V, 𝑔 ∈ V ↦ if((Rel 𝑔 ∧ Rel dom 𝑔), ⟨𝑓, tpos 𝑔⟩, ∅))
2 opex 5432 . . 3 𝑓, tpos 𝑔⟩ ∈ V
3 0ex 5270 . . 3 ∅ ∈ V
42, 3ifex 4547 . 2 if((Rel 𝑔 ∧ Rel dom 𝑔), ⟨𝑓, tpos 𝑔⟩, ∅) ∈ V
51, 4fnmpoi 8058 1 oppFunc Fn (V × V)
Colors of variables: wff setvar class
Syntax hints:  wa 395  Vcvv 3455  c0 4304  ifcif 4496  cop 4603   × cxp 5644  dom cdm 5646  Rel wrel 5651   Fn wfn 6514  tpos ctpos 8213  oppFunccoppf 49039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-fv 6527  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-oppf 49040
This theorem is referenced by:  oppff1  49060
  Copyright terms: Public domain W3C validator