| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppffn | Structured version Visualization version GIF version | ||
| Description: oppFunc is a function on (V × V). (Contributed by Zhi Wang, 17-Nov-2025.) |
| Ref | Expression |
|---|---|
| oppffn | ⊢ oppFunc Fn (V × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-oppf 49112 | . 2 ⊢ oppFunc = (𝑓 ∈ V, 𝑔 ∈ V ↦ if((Rel 𝑔 ∧ Rel dom 𝑔), 〈𝑓, tpos 𝑔〉, ∅)) | |
| 2 | opex 5424 | . . 3 ⊢ 〈𝑓, tpos 𝑔〉 ∈ V | |
| 3 | 0ex 5262 | . . 3 ⊢ ∅ ∈ V | |
| 4 | 2, 3 | ifex 4539 | . 2 ⊢ if((Rel 𝑔 ∧ Rel dom 𝑔), 〈𝑓, tpos 𝑔〉, ∅) ∈ V |
| 5 | 1, 4 | fnmpoi 8049 | 1 ⊢ oppFunc Fn (V × V) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 Vcvv 3447 ∅c0 4296 ifcif 4488 〈cop 4595 × cxp 5636 dom cdm 5638 Rel wrel 5643 Fn wfn 6506 tpos ctpos 8204 oppFunc coppf 49111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-oppf 49112 |
| This theorem is referenced by: oppfrcl 49117 eloppf 49122 oppff1 49137 |
| Copyright terms: Public domain | W3C validator |