| Metamath
Proof Explorer Theorem List (p. 492 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49671) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | isup2 49101* | The universal property of a universal pair. (Contributed by Zhi Wang, 24-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝑂 = (comp‘𝐸) & ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑀) ⇒ ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑀)) | ||
| Theorem | upeu3 49102* | The universal pair 〈𝑋, 𝑀〉 from object 𝑊 to functor 〈𝐹, 𝐺〉 is essentially unique (strong form) if it exists. (Contributed by Zhi Wang, 24-Sep-2025.) |
| ⊢ (𝜑 → 𝐼 = (Iso‘𝐷)) & ⊢ (𝜑 → ⚬ = (〈𝑊, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑌))) & ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑀) & ⊢ (𝜑 → 𝑌(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑁) ⇒ ⊢ (𝜑 → ∃!𝑟 ∈ (𝑋𝐼𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟) ⚬ 𝑀)) | ||
| Theorem | upeu4 49103 | Generate a new universal morphism through an isomorphism from an existing universal object, and pair with the codomain of the isomorphism to form a universal pair. (Contributed by Zhi Wang, 25-Sep-2025.) |
| ⊢ (𝜑 → 𝐼 = (Iso‘𝐷)) & ⊢ (𝜑 → ⚬ = (〈𝑊, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑌))) & ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑀) & ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐼𝑌)) & ⊢ (𝜑 → 𝑁 = (((𝑋𝐺𝑌)‘𝐾) ⚬ 𝑀)) ⇒ ⊢ (𝜑 → 𝑌(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑁) | ||
| Theorem | uptposlem 49104 | Lemma for uptpos 49105. (Contributed by Zhi Wang, 4-Nov-2025.) |
| ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝑂 UP 𝑃)𝑊)𝑀) & ⊢ (𝜑 → tpos 𝐺 = 𝐻) ⇒ ⊢ (𝜑 → tpos 𝐻 = 𝐺) | ||
| Theorem | uptpos 49105 | Rewrite the predicate of universal property in the form of opposite functor. (Contributed by Zhi Wang, 4-Nov-2025.) |
| ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝑂 UP 𝑃)𝑊)𝑀) & ⊢ (𝜑 → tpos 𝐺 = 𝐻) ⇒ ⊢ (𝜑 → 𝑋(〈𝐹, tpos 𝐻〉(𝑂 UP 𝑃)𝑊)𝑀) | ||
| Theorem | oppcuprcl4 49106 | Reverse closure for the class of universal property in opposite categories. (Contributed by Zhi Wang, 4-Nov-2025.) |
| ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝑂 UP 𝑃)𝑊)𝑀) & ⊢ 𝑂 = (oppCat‘𝐷) & ⊢ 𝐵 = (Base‘𝐷) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝐵) | ||
| Theorem | oppcuprcl3 49107 | Reverse closure for the class of universal property in opposite categories. (Contributed by Zhi Wang, 4-Nov-2025.) |
| ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝑂 UP 𝑃)𝑊)𝑀) & ⊢ 𝑃 = (oppCat‘𝐸) & ⊢ 𝐶 = (Base‘𝐸) ⇒ ⊢ (𝜑 → 𝑊 ∈ 𝐶) | ||
| Theorem | oppcuprcl5 49108 | Reverse closure for the class of universal property in opposite categories. (Contributed by Zhi Wang, 4-Nov-2025.) |
| ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝑂 UP 𝑃)𝑊)𝑀) & ⊢ 𝑃 = (oppCat‘𝐸) & ⊢ 𝐽 = (Hom ‘𝐸) ⇒ ⊢ (𝜑 → 𝑀 ∈ ((𝐹‘𝑋)𝐽𝑊)) | ||
| Theorem | oppcuprcl2 49109 | Reverse closure for the class of universal property in opposite categories. (Contributed by Zhi Wang, 4-Nov-2025.) |
| ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝑂 UP 𝑃)𝑊)𝑀) & ⊢ 𝑃 = (oppCat‘𝐸) & ⊢ 𝑂 = (oppCat‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝑉) & ⊢ (𝜑 → tpos 𝐺 = 𝐻) ⇒ ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐻) | ||
| Theorem | uprcl2a 49110 | Reverse closure for the class of universal property. (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ (𝜑 → 𝑋(𝐺(𝑂 UP 𝑃)𝑊)𝑀) ⇒ ⊢ (𝜑 → 𝐺 ∈ (𝑂 Func 𝑃)) | ||
| Theorem | oppfuprcl 49111 | Reverse closure for the class of universal property for opposite functors. (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ (𝜑 → 𝑋(𝐺(𝑂 UP 𝑃)𝑊)𝑀) & ⊢ 𝐺 = (oppFunc‘𝐹) & ⊢ 𝑂 = (oppCat‘𝐷) & ⊢ 𝑃 = (oppCat‘𝐸) & ⊢ (𝜑 → 𝐷 ∈ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) | ||
| Theorem | oppfuprcl2 49112 | Reverse closure for the class of universal property for opposite functors. (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ (𝜑 → 𝑋(𝐺(𝑂 UP 𝑃)𝑊)𝑀) & ⊢ 𝐺 = (oppFunc‘𝐹) & ⊢ 𝑂 = (oppCat‘𝐷) & ⊢ 𝑃 = (oppCat‘𝐸) & ⊢ (𝜑 → 𝐷 ∈ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 = 〈𝐴, 𝐵〉) ⇒ ⊢ (𝜑 → 𝐴(𝐷 Func 𝐸)𝐵) | ||
| Theorem | oppcup3lem 49113* | Lemma for oppcup3 49116. (Contributed by Zhi Wang, 4-Nov-2025.) |
| ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ∀𝑛 ∈ ((𝐹‘𝑦)𝐽𝑍)∃!𝑘 ∈ (𝑦𝐻𝑋)𝑛 = (𝑀(〈(𝐹‘𝑦), (𝐹‘𝑋)〉𝑂𝑍)((𝑦𝐺𝑋)‘𝑘))) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑁 ∈ ((𝐹‘𝑌)𝐽𝑍)) ⇒ ⊢ (𝜑 → ∃!𝑙 ∈ (𝑌𝐻𝑋)𝑁 = (𝑀(〈(𝐹‘𝑌), (𝐹‘𝑋)〉𝑂𝑍)((𝑌𝐺𝑋)‘𝑙))) | ||
| Theorem | oppcup 49114* | The universal pair 〈𝑋, 𝑀〉 from a functor to an object is universal from an object to a functor in the opposite category. (Contributed by Zhi Wang, 24-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ ∙ = (comp‘𝐸) & ⊢ (𝜑 → 𝑊 ∈ 𝐶) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ ((𝐹‘𝑋)𝐽𝑊)) & ⊢ 𝑂 = (oppCat‘𝐷) & ⊢ 𝑃 = (oppCat‘𝐸) ⇒ ⊢ (𝜑 → (𝑋(〈𝐹, tpos 𝐺〉(𝑂 UP 𝑃)𝑊)𝑀 ↔ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ ((𝐹‘𝑦)𝐽𝑊)∃!𝑘 ∈ (𝑦𝐻𝑋)𝑔 = (𝑀(〈(𝐹‘𝑦), (𝐹‘𝑋)〉 ∙ 𝑊)((𝑦𝐺𝑋)‘𝑘)))) | ||
| Theorem | oppcup2 49115* | The universal property for the universal pair 〈𝑋, 𝑀〉 from a functor to an object, expressed explicitly. (Contributed by Zhi Wang, 4-Nov-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ ∙ = (comp‘𝐸) & ⊢ 𝑂 = (oppCat‘𝐷) & ⊢ 𝑃 = (oppCat‘𝐸) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝑋(〈𝐹, tpos 𝐺〉(𝑂 UP 𝑃)𝑊)𝑀) ⇒ ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ ((𝐹‘𝑦)𝐽𝑊)∃!𝑘 ∈ (𝑦𝐻𝑋)𝑔 = (𝑀(〈(𝐹‘𝑦), (𝐹‘𝑋)〉 ∙ 𝑊)((𝑦𝐺𝑋)‘𝑘))) | ||
| Theorem | oppcup3 49116* | The universal property for the universal pair 〈𝑋, 𝑀〉 from a functor to an object, expressed explicitly. (Contributed by Zhi Wang, 4-Nov-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ ∙ = (comp‘𝐸) & ⊢ 𝑂 = (oppCat‘𝐷) & ⊢ 𝑃 = (oppCat‘𝐸) & ⊢ (𝜑 → 𝑋(〈𝐹, 𝑇〉(𝑂 UP 𝑃)𝑊)𝑀) & ⊢ (𝜑 → tpos 𝑇 = 𝐺) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑁 ∈ ((𝐹‘𝑌)𝐽𝑊)) ⇒ ⊢ (𝜑 → ∃!𝑘 ∈ (𝑌𝐻𝑋)𝑁 = (𝑀(〈(𝐹‘𝑌), (𝐹‘𝑋)〉 ∙ 𝑊)((𝑌𝐺𝑋)‘𝑘))) | ||
| Theorem | uptrlem1 49117* | Lemma for uptr 49120. (Contributed by Zhi Wang, 16-Nov-2025.) |
| ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐼 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ ∙ = (comp‘𝐷) & ⊢ ⚬ = (comp‘𝐸) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐷)) & ⊢ (𝜑 → (𝑀‘𝑋) = 𝑌) & ⊢ (𝜑 → 𝑍 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝑊 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝐴 ∈ (𝑋𝐼(𝐹‘𝑍))) & ⊢ (𝜑 → ((𝑋𝑁(𝐹‘𝑍))‘𝐴) = 𝐵) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝑀((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑁) & ⊢ (𝜑 → (〈𝑀, 𝑁〉 ∘func 〈𝐹, 𝐺〉) = 〈𝐾, 𝐿〉) ⇒ ⊢ (𝜑 → (∀ℎ ∈ (𝑌𝐽(𝐾‘𝑊))∃!𝑘 ∈ (𝑍𝐻𝑊)ℎ = (((𝑍𝐿𝑊)‘𝑘)(〈𝑌, (𝐾‘𝑍)〉 ⚬ (𝐾‘𝑊))𝐵) ↔ ∀𝑔 ∈ (𝑋𝐼(𝐹‘𝑊))∃!𝑘 ∈ (𝑍𝐻𝑊)𝑔 = (((𝑍𝐺𝑊)‘𝑘)(〈𝑋, (𝐹‘𝑍)〉 ∙ (𝐹‘𝑊))𝐴))) | ||
| Theorem | uptrlem2 49118* | Lemma for uptr 49120. (Contributed by Zhi Wang, 16-Nov-2025.) |
| ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐼 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ ∙ = (comp‘𝐷) & ⊢ ⚬ = (comp‘𝐸) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → ((1st ‘𝐾)‘𝑋) = 𝑌) & ⊢ (𝜑 → 𝑍 ∈ 𝐴) & ⊢ (𝜑 → 𝑊 ∈ 𝐴) & ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐼((1st ‘𝐹)‘𝑍))) & ⊢ (𝜑 → ((𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑍))‘𝑀) = 𝑁) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) & ⊢ (𝜑 → (𝐾 ∘func 𝐹) = 𝐺) ⇒ ⊢ (𝜑 → (∀ℎ ∈ (𝑌𝐽((1st ‘𝐺)‘𝑊))∃!𝑘 ∈ (𝑍𝐻𝑊)ℎ = (((𝑍(2nd ‘𝐺)𝑊)‘𝑘)(〈𝑌, ((1st ‘𝐺)‘𝑍)〉 ⚬ ((1st ‘𝐺)‘𝑊))𝑁) ↔ ∀𝑔 ∈ (𝑋𝐼((1st ‘𝐹)‘𝑊))∃!𝑘 ∈ (𝑍𝐻𝑊)𝑔 = (((𝑍(2nd ‘𝐹)𝑊)‘𝑘)(〈𝑋, ((1st ‘𝐹)‘𝑍)〉 ∙ ((1st ‘𝐹)‘𝑊))𝑀))) | ||
| Theorem | uptrlem3 49119 | Lemma for uptr 49120. (Contributed by Zhi Wang, 16-Nov-2025.) |
| ⊢ (𝜑 → (𝑅‘𝑋) = 𝑌) & ⊢ (𝜑 → 𝑅((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑆) & ⊢ (𝜑 → (〈𝑅, 𝑆〉 ∘func 〈𝐹, 𝐺〉) = 〈𝐾, 𝐿〉) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → ((𝑋𝑆(𝐹‘𝑍))‘𝑀) = 𝑁) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐽(𝐹‘𝑍))) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝑍 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀 ↔ 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁)) | ||
| Theorem | uptr 49120 | Universal property and fully faithful functor. (Contributed by Zhi Wang, 16-Nov-2025.) |
| ⊢ (𝜑 → (𝑅‘𝑋) = 𝑌) & ⊢ (𝜑 → 𝑅((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑆) & ⊢ (𝜑 → (〈𝑅, 𝑆〉 ∘func 〈𝐹, 𝐺〉) = 〈𝐾, 𝐿〉) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → ((𝑋𝑆(𝐹‘𝑍))‘𝑀) = 𝑁) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐽(𝐹‘𝑍))) ⇒ ⊢ (𝜑 → (𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀 ↔ 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁)) | ||
| Theorem | uptri 49121 | Universal property and fully faithful functor. (Contributed by Zhi Wang, 16-Nov-2025.) |
| ⊢ (𝜑 → (𝑅‘𝑋) = 𝑌) & ⊢ (𝜑 → 𝑅((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑆) & ⊢ (𝜑 → (〈𝑅, 𝑆〉 ∘func 〈𝐹, 𝐺〉) = 〈𝐾, 𝐿〉) & ⊢ (𝜑 → ((𝑋𝑆(𝐹‘𝑍))‘𝑀) = 𝑁) & ⊢ (𝜑 → 𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀) ⇒ ⊢ (𝜑 → 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁) | ||
| Theorem | uptra 49122 | Universal property and fully faithful functor. (Contributed by Zhi Wang, 16-Nov-2025.) |
| ⊢ (𝜑 → ((1st ‘𝐾)‘𝑋) = 𝑌) & ⊢ (𝜑 → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) & ⊢ (𝜑 → (𝐾 ∘func 𝐹) = 𝐺) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → ((𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑍))‘𝑀) = 𝑁) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐽((1st ‘𝐹)‘𝑍))) ⇒ ⊢ (𝜑 → (𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀 ↔ 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁)) | ||
| Theorem | uptrar 49123 | Universal property and fully faithful functor. (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ (𝜑 → ((1st ‘𝐾)‘𝑋) = 𝑌) & ⊢ (𝜑 → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) & ⊢ (𝜑 → (𝐾 ∘func 𝐹) = 𝐺) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → (◡(𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑍))‘𝑁) = 𝑀) & ⊢ (𝜑 → 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) ⇒ ⊢ (𝜑 → 𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) | ||
| Theorem | uptrai 49124 | Universal property and fully faithful functor. (Contributed by Zhi Wang, 16-Nov-2025.) |
| ⊢ (𝜑 → ((1st ‘𝐾)‘𝑋) = 𝑌) & ⊢ (𝜑 → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) & ⊢ (𝜑 → (𝐾 ∘func 𝐹) = 𝐺) & ⊢ (𝜑 → ((𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑍))‘𝑀) = 𝑁) & ⊢ (𝜑 → 𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) ⇒ ⊢ (𝜑 → 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) | ||
| Theorem | uobeqw 49125 | If a full functor (in fact, a full embedding) is a section of a fully faithful functor (surjective on objects), then the sets of universal objects are equal. (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐼 = (idfunc‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐾 ∈ (𝐷 Full 𝐸)) & ⊢ (𝜑 → (𝐾 ∘func 𝐹) = 𝐺) & ⊢ (𝜑 → ((1st ‘𝐾)‘𝑋) = 𝑌) & ⊢ (𝜑 → (𝐿 ∘func 𝐾) = 𝐼) & ⊢ (𝜑 → 𝐿 ∈ ((𝐸 Full 𝐷) ∩ (𝐸 Faith 𝐷))) ⇒ ⊢ (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌)) | ||
| Theorem | uobeq 49126 | If a full functor (in fact, a full embedding) is a section of a functor (surjective on objects), then the sets of universal objects are equal. (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐼 = (idfunc‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐾 ∈ (𝐷 Full 𝐸)) & ⊢ (𝜑 → (𝐾 ∘func 𝐹) = 𝐺) & ⊢ (𝜑 → ((1st ‘𝐾)‘𝑋) = 𝑌) & ⊢ (𝜑 → (𝐿 ∘func 𝐾) = 𝐼) & ⊢ (𝜑 → 𝐿 ∈ (𝐸 Func 𝐷)) ⇒ ⊢ (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌)) | ||
| Theorem | isnatd 49127* | Property of being a natural transformation; deduction form. (Contributed by Zhi Wang, 29-Sep-2025.) |
| ⊢ 𝑁 = (𝐶 Nat 𝐷) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ · = (comp‘𝐷) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐶 Func 𝐷)𝐿) & ⊢ (𝜑 → 𝐴 Fn 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐴‘𝑥) ∈ ((𝐹‘𝑥)𝐽(𝐾‘𝑥))) & ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ ℎ ∈ (𝑥𝐻𝑦)) → ((𝐴‘𝑦)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉 · (𝐾‘𝑦))((𝑥𝐺𝑦)‘ℎ)) = (((𝑥𝐿𝑦)‘ℎ)(〈(𝐹‘𝑥), (𝐾‘𝑥)〉 · (𝐾‘𝑦))(𝐴‘𝑥))) ⇒ ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) | ||
| Theorem | natrcl2 49128 | Reverse closure for a natural transformation. (Contributed by Zhi Wang, 1-Oct-2025.) |
| ⊢ 𝑁 = (𝐶 Nat 𝐷) & ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) ⇒ ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | ||
| Theorem | natrcl3 49129 | Reverse closure for a natural transformation. (Contributed by Zhi Wang, 1-Oct-2025.) |
| ⊢ 𝑁 = (𝐶 Nat 𝐷) & ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) ⇒ ⊢ (𝜑 → 𝐾(𝐶 Func 𝐷)𝐿) | ||
| Theorem | catbas 49130 | The base of the category structure. (Contributed by Zhi Wang, 5-Nov-2025.) |
| ⊢ 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉} & ⊢ 𝐵 ∈ V ⇒ ⊢ 𝐵 = (Base‘𝐶) | ||
| Theorem | cathomfval 49131 | The hom-sets of the category structure. (Contributed by Zhi Wang, 5-Nov-2025.) |
| ⊢ 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉} & ⊢ 𝐻 ∈ V ⇒ ⊢ 𝐻 = (Hom ‘𝐶) | ||
| Theorem | catcofval 49132 | Composition of the category structure. (Contributed by Zhi Wang, 5-Nov-2025.) |
| ⊢ 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉} & ⊢ · ∈ V ⇒ ⊢ · = (comp‘𝐶) | ||
| Theorem | initoo2 49133 | An initial object is an object in the base set. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝑂 ∈ (InitO‘𝐶) → 𝑂 ∈ 𝐵) | ||
| Theorem | termoo2 49134 | A terminal object is an object in the base set. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝑂 ∈ (TermO‘𝐶) → 𝑂 ∈ 𝐵) | ||
| Theorem | zeroo2 49135 | A zero object is an object in the base set. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝑂 ∈ (ZeroO‘𝐶) → 𝑂 ∈ 𝐵) | ||
| Theorem | oppcinito 49136 | Initial objects are terminal in the opposite category. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼 ∈ (TermO‘(oppCat‘𝐶))) | ||
| Theorem | oppctermo 49137 | Terminal objects are initial in the opposite category. Comments before Definition 7.4 in [Adamek] p. 102. (Contributed by Zhi Wang, 26-Oct-2025.) |
| ⊢ (𝐼 ∈ (TermO‘𝐶) ↔ 𝐼 ∈ (InitO‘(oppCat‘𝐶))) | ||
| Theorem | oppczeroo 49138 | Zero objects are zero in the opposite category. Remark 7.8 of [Adamek] p. 103. (Contributed by Zhi Wang, 27-Oct-2025.) |
| ⊢ (𝐼 ∈ (ZeroO‘𝐶) ↔ 𝐼 ∈ (ZeroO‘(oppCat‘𝐶))) | ||
| Theorem | termoeu2 49139 | Terminal objects are essentially unique; if 𝐴 is a terminal object, then so is every object that is isomorphic to 𝐴. (Contributed by Zhi Wang, 26-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐴 ∈ (TermO‘𝐶)) & ⊢ (𝜑 → 𝐴( ≃𝑐 ‘𝐶)𝐵) ⇒ ⊢ (𝜑 → 𝐵 ∈ (TermO‘𝐶)) | ||
| Theorem | initopropdlemlem 49140 | Lemma for initopropdlem 49141, termopropdlem 49142, and zeroopropdlem 49143. (Contributed by Zhi Wang, 26-Oct-2025.) |
| ⊢ 𝐹 Fn 𝑋 & ⊢ (𝜑 → ¬ 𝐴 ∈ 𝑌) & ⊢ 𝑋 ⊆ 𝑌 & ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑋) → (𝐹‘𝐵) = ∅) ⇒ ⊢ (𝜑 → (𝐹‘𝐴) = (𝐹‘𝐵)) | ||
| Theorem | initopropdlem 49141 | Lemma for initopropd 49144. (Contributed by Zhi Wang, 26-Oct-2025.) |
| ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → ¬ 𝐶 ∈ V) ⇒ ⊢ (𝜑 → (InitO‘𝐶) = (InitO‘𝐷)) | ||
| Theorem | termopropdlem 49142 | Lemma for termopropd 49145. (Contributed by Zhi Wang, 26-Oct-2025.) |
| ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → ¬ 𝐶 ∈ V) ⇒ ⊢ (𝜑 → (TermO‘𝐶) = (TermO‘𝐷)) | ||
| Theorem | zeroopropdlem 49143 | Lemma for zeroopropd 49146. (Contributed by Zhi Wang, 26-Oct-2025.) |
| ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → ¬ 𝐶 ∈ V) ⇒ ⊢ (𝜑 → (ZeroO‘𝐶) = (ZeroO‘𝐷)) | ||
| Theorem | initopropd 49144 | Two structures with the same base, hom-sets and composition operation have the same initial objects. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) ⇒ ⊢ (𝜑 → (InitO‘𝐶) = (InitO‘𝐷)) | ||
| Theorem | termopropd 49145 | Two structures with the same base, hom-sets and composition operation have the same terminal objects. (Contributed by Zhi Wang, 26-Oct-2025.) |
| ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) ⇒ ⊢ (𝜑 → (TermO‘𝐶) = (TermO‘𝐷)) | ||
| Theorem | zeroopropd 49146 | Two structures with the same base, hom-sets and composition operation have the same zero objects. (Contributed by Zhi Wang, 26-Oct-2025.) |
| ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) ⇒ ⊢ (𝜑 → (ZeroO‘𝐶) = (ZeroO‘𝐷)) | ||
| Theorem | reldmxpc 49147 | The binary product of categories is a proper operator, so it can be used with ovprc1 7433, elbasov 17192, strov2rcl 17193, and so on. See reldmxpcALT 49148 for an alternate proof with less "essential steps" but more "bytes". (Proposed by SN, 15-Oct-2025.) (Contributed by Zhi Wang, 15-Oct-2025.) |
| ⊢ Rel dom ×c | ||
| Theorem | reldmxpcALT 49148 | Alternate proof of reldmxpc 49147. (Contributed by Zhi Wang, 15-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ Rel dom ×c | ||
| Theorem | elxpcbasex1 49149 | A non-empty base set of the product category indicates the existence of the first factor of the product category. (Contributed by Zhi Wang, 8-Oct-2025.) (Proof shortened by SN, 15-Oct-2025.) |
| ⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝐶 ∈ V) | ||
| Theorem | elxpcbasex1ALT 49150 | Alternate proof of elxpcbasex1 49149. (Contributed by Zhi Wang, 8-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝐶 ∈ V) | ||
| Theorem | elxpcbasex2 49151 | A non-empty base set of the product category indicates the existence of the second factor of the product category. (Contributed by Zhi Wang, 8-Oct-2025.) (Proof shortened by SN, 15-Oct-2025.) |
| ⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝐷 ∈ V) | ||
| Theorem | elxpcbasex2ALT 49152 | Alternate proof of elxpcbasex2 49151. (Contributed by Zhi Wang, 8-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝐷 ∈ V) | ||
| Theorem | xpcfucbas 49153 | The base set of the product of two categories of functors. (Contributed by Zhi Wang, 1-Oct-2025.) |
| ⊢ 𝑇 = ((𝐵 FuncCat 𝐶) ×c (𝐷 FuncCat 𝐸)) ⇒ ⊢ ((𝐵 Func 𝐶) × (𝐷 Func 𝐸)) = (Base‘𝑇) | ||
| Theorem | xpcfuchomfval 49154* | Set of morphisms of the binary product of categories of functors. (Contributed by Zhi Wang, 1-Oct-2025.) |
| ⊢ 𝑇 = ((𝐵 FuncCat 𝐶) ×c (𝐷 FuncCat 𝐸)) & ⊢ 𝐴 = (Base‘𝑇) & ⊢ 𝐾 = (Hom ‘𝑇) ⇒ ⊢ 𝐾 = (𝑢 ∈ 𝐴, 𝑣 ∈ 𝐴 ↦ (((1st ‘𝑢)(𝐵 Nat 𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(𝐷 Nat 𝐸)(2nd ‘𝑣)))) | ||
| Theorem | xpcfuchom 49155 | Set of morphisms of the binary product of categories of functors. (Contributed by Zhi Wang, 1-Oct-2025.) |
| ⊢ 𝑇 = ((𝐵 FuncCat 𝐶) ×c (𝐷 FuncCat 𝐸)) & ⊢ 𝐴 = (Base‘𝑇) & ⊢ 𝐾 = (Hom ‘𝑇) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑋𝐾𝑌) = (((1st ‘𝑋)(𝐵 Nat 𝐶)(1st ‘𝑌)) × ((2nd ‘𝑋)(𝐷 Nat 𝐸)(2nd ‘𝑌)))) | ||
| Theorem | xpcfuchom2 49156 | Value of the set of morphisms in the binary product of categories of functors. (Contributed by Zhi Wang, 1-Oct-2025.) |
| ⊢ 𝑇 = ((𝐵 FuncCat 𝐶) ×c (𝐷 FuncCat 𝐸)) & ⊢ (𝜑 → 𝑀 ∈ (𝐵 Func 𝐶)) & ⊢ (𝜑 → 𝑁 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝑃 ∈ (𝐵 Func 𝐶)) & ⊢ (𝜑 → 𝑄 ∈ (𝐷 Func 𝐸)) & ⊢ 𝐾 = (Hom ‘𝑇) ⇒ ⊢ (𝜑 → (〈𝑀, 𝑁〉𝐾〈𝑃, 𝑄〉) = ((𝑀(𝐵 Nat 𝐶)𝑃) × (𝑁(𝐷 Nat 𝐸)𝑄))) | ||
| Theorem | xpcfucco2 49157 | Value of composition in the binary product of categories of functors. (Contributed by Zhi Wang, 1-Oct-2025.) |
| ⊢ 𝑇 = ((𝐵 FuncCat 𝐶) ×c (𝐷 FuncCat 𝐸)) & ⊢ 𝑂 = (comp‘𝑇) & ⊢ (𝜑 → 𝐹 ∈ (𝑀(𝐵 Nat 𝐶)𝑃)) & ⊢ (𝜑 → 𝐺 ∈ (𝑁(𝐷 Nat 𝐸)𝑄)) & ⊢ (𝜑 → 𝐾 ∈ (𝑃(𝐵 Nat 𝐶)𝑅)) & ⊢ (𝜑 → 𝐿 ∈ (𝑄(𝐷 Nat 𝐸)𝑆)) ⇒ ⊢ (𝜑 → (〈𝐾, 𝐿〉(〈〈𝑀, 𝑁〉, 〈𝑃, 𝑄〉〉𝑂〈𝑅, 𝑆〉)〈𝐹, 𝐺〉) = 〈(𝐾(〈𝑀, 𝑃〉(comp‘(𝐵 FuncCat 𝐶))𝑅)𝐹), (𝐿(〈𝑁, 𝑄〉(comp‘(𝐷 FuncCat 𝐸))𝑆)𝐺)〉) | ||
| Theorem | xpcfuccocl 49158 | The composition of two natural transformations is a natural transformation. (Contributed by Zhi Wang, 1-Oct-2025.) |
| ⊢ 𝑇 = ((𝐵 FuncCat 𝐶) ×c (𝐷 FuncCat 𝐸)) & ⊢ 𝑂 = (comp‘𝑇) & ⊢ (𝜑 → 𝐹 ∈ (𝑀(𝐵 Nat 𝐶)𝑃)) & ⊢ (𝜑 → 𝐺 ∈ (𝑁(𝐷 Nat 𝐸)𝑄)) & ⊢ (𝜑 → 𝐾 ∈ (𝑃(𝐵 Nat 𝐶)𝑅)) & ⊢ (𝜑 → 𝐿 ∈ (𝑄(𝐷 Nat 𝐸)𝑆)) ⇒ ⊢ (𝜑 → (〈𝐾, 𝐿〉(〈〈𝑀, 𝑁〉, 〈𝑃, 𝑄〉〉𝑂〈𝑅, 𝑆〉)〈𝐹, 𝐺〉) ∈ ((𝑀(𝐵 Nat 𝐶)𝑅) × (𝑁(𝐷 Nat 𝐸)𝑆))) | ||
| Theorem | xpcfucco3 49159* | Value of composition in the binary product of categories of functors; expressed explicitly. (Contributed by Zhi Wang, 1-Oct-2025.) |
| ⊢ 𝑇 = ((𝐵 FuncCat 𝐶) ×c (𝐷 FuncCat 𝐸)) & ⊢ 𝑂 = (comp‘𝑇) & ⊢ (𝜑 → 𝐹 ∈ (𝑀(𝐵 Nat 𝐶)𝑃)) & ⊢ (𝜑 → 𝐺 ∈ (𝑁(𝐷 Nat 𝐸)𝑄)) & ⊢ (𝜑 → 𝐾 ∈ (𝑃(𝐵 Nat 𝐶)𝑅)) & ⊢ (𝜑 → 𝐿 ∈ (𝑄(𝐷 Nat 𝐸)𝑆)) & ⊢ 𝑋 = (Base‘𝐵) & ⊢ 𝑌 = (Base‘𝐷) & ⊢ · = (comp‘𝐶) & ⊢ ∙ = (comp‘𝐸) ⇒ ⊢ (𝜑 → (〈𝐾, 𝐿〉(〈〈𝑀, 𝑁〉, 〈𝑃, 𝑄〉〉𝑂〈𝑅, 𝑆〉)〈𝐹, 𝐺〉) = 〈(𝑥 ∈ 𝑋 ↦ ((𝐾‘𝑥)(〈((1st ‘𝑀)‘𝑥), ((1st ‘𝑃)‘𝑥)〉 · ((1st ‘𝑅)‘𝑥))(𝐹‘𝑥))), (𝑦 ∈ 𝑌 ↦ ((𝐿‘𝑦)(〈((1st ‘𝑁)‘𝑦), ((1st ‘𝑄)‘𝑦)〉 ∙ ((1st ‘𝑆)‘𝑦))(𝐺‘𝑦)))〉) | ||
| Syntax | cswapf 49160 | Extend class notation with the class of swap functors. |
| class swapF | ||
| Definition | df-swapf 49161* |
Define the swap functor from (𝐶 ×c 𝐷) to (𝐷
×c 𝐶) by
swapping all objects (swapf1 49173) and morphisms (swapf2 49175) .
Such functor is called a "swap functor" in https://arxiv.org/pdf/2302.07810 49175 or a "twist functor" in https://arxiv.org/pdf/2508.01886 49175, the latter of which finds its counterpart as "twisting map" in https://arxiv.org/pdf/2411.04102 49175 for tensor product of algebras. The "swap functor" or "twisting map" is often denoted as a small tau 𝜏 in literature. However, the term "twist functor" is defined differently in https://arxiv.org/pdf/1208.4046 49175 and thus not adopted here. tpos I depends on more mathbox theorems, and thus are not adopted here. See dfswapf2 49162 for an alternate definition. (Contributed by Zhi Wang, 7-Oct-2025.) |
| ⊢ swapF = (𝑐 ∈ V, 𝑑 ∈ V ↦ ⦋(𝑐 ×c 𝑑) / 𝑠⦌⦋(Base‘𝑠) / 𝑏⦌⦋(Hom ‘𝑠) / ℎ⦌〈(𝑥 ∈ 𝑏 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}))〉) | ||
| Theorem | dfswapf2 49162* | Alternate definition of swapF (df-swapf 49161). (Contributed by Zhi Wang, 9-Oct-2025.) |
| ⊢ swapF = (𝑐 ∈ V, 𝑑 ∈ V ↦ ⦋(𝑐 ×c 𝑑) / 𝑠⦌⦋(Base‘𝑠) / 𝑏⦌⦋(Hom ‘𝑠) / ℎ⦌〈(tpos I ↾ 𝑏), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (tpos I ↾ (𝑢ℎ𝑣)))〉) | ||
| Theorem | swapfval 49163* | Value of the swap functor. (Contributed by Zhi Wang, 7-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ 𝑈) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ 𝑆 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝑆)) ⇒ ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈(𝑥 ∈ 𝐵 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ ∪ ◡{𝑓}))〉) | ||
| Theorem | swapfelvv 49164 | A swap functor is an ordered pair. (Contributed by Zhi Wang, 7-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ 𝑈) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐶 swapF 𝐷) ∈ (V × V)) | ||
| Theorem | swapf2fvala 49165* | The morphism part of the swap functor. See also swapf2fval 49166. (Contributed by Zhi Wang, 7-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ 𝑈) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ 𝑆 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝑆)) ⇒ ⊢ (𝜑 → (2nd ‘(𝐶 swapF 𝐷)) = (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ ∪ ◡{𝑓}))) | ||
| Theorem | swapf2fval 49166* | The morphism part of the swap functor. See also swapf2fvala 49165. (Contributed by Zhi Wang, 7-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ 𝑈) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ 𝑆 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝑆)) & ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈𝑂, 𝑃〉) ⇒ ⊢ (𝜑 → 𝑃 = (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ ∪ ◡{𝑓}))) | ||
| Theorem | swapf1vala 49167* | The object part of the swap functor. See also swapf1val 49168. (Contributed by Zhi Wang, 7-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ 𝑈) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ 𝑆 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ (𝜑 → (1st ‘(𝐶 swapF 𝐷)) = (𝑥 ∈ 𝐵 ↦ ∪ ◡{𝑥})) | ||
| Theorem | swapf1val 49168* | The object part of the swap functor. See also swapf1vala 49167. (Contributed by Zhi Wang, 7-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ 𝑈) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ 𝑆 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈𝑂, 𝑃〉) ⇒ ⊢ (𝜑 → 𝑂 = (𝑥 ∈ 𝐵 ↦ ∪ ◡{𝑥})) | ||
| Theorem | swapf2fn 49169 | The morphism part of the swap functor is a function on the Cartesian square of the base set. (Contributed by Zhi Wang, 7-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ 𝑈) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ 𝑆 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈𝑂, 𝑃〉) ⇒ ⊢ (𝜑 → 𝑃 Fn (𝐵 × 𝐵)) | ||
| Theorem | swapf1a 49170 | The object part of the swap functor swaps the objects. (Contributed by Zhi Wang, 7-Oct-2025.) |
| ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈𝑂, 𝑃〉) & ⊢ 𝑆 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑂‘𝑋) = 〈(2nd ‘𝑋), (1st ‘𝑋)〉) | ||
| Theorem | swapf2vala 49171* | The morphism part of the swap functor swaps the morphisms. (Contributed by Zhi Wang, 7-Oct-2025.) |
| ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈𝑂, 𝑃〉) & ⊢ 𝑆 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝑆)) ⇒ ⊢ (𝜑 → (𝑋𝑃𝑌) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ ∪ ◡{𝑓})) | ||
| Theorem | swapf2a 49172 | The morphism part of the swap functor swaps the morphisms. (Contributed by Zhi Wang, 7-Oct-2025.) |
| ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈𝑂, 𝑃〉) & ⊢ 𝑆 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝑆)) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) ⇒ ⊢ (𝜑 → ((𝑋𝑃𝑌)‘𝐹) = 〈(2nd ‘𝐹), (1st ‘𝐹)〉) | ||
| Theorem | swapf1 49173 | The object part of the swap functor swaps the objects. (Contributed by Zhi Wang, 7-Oct-2025.) |
| ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐷)) ⇒ ⊢ (𝜑 → (𝑋𝑂𝑌) = 〈𝑌, 𝑋〉) | ||
| Theorem | swapf2val 49174* | The morphism part of the swap functor swaps the morphisms. (Contributed by Zhi Wang, 7-Oct-2025.) |
| ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐷)) & ⊢ (𝜑 → 𝑍 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝑊 ∈ (Base‘𝐷)) & ⊢ 𝑆 = (𝐶 ×c 𝐷) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝑆)) ⇒ ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑃〈𝑍, 𝑊〉) = (𝑓 ∈ (〈𝑋, 𝑌〉𝐻〈𝑍, 𝑊〉) ↦ ∪ ◡{𝑓})) | ||
| Theorem | swapf2 49175 | The morphism part of the swap functor swaps the morphisms. (Contributed by Zhi Wang, 7-Oct-2025.) |
| ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐷)) & ⊢ (𝜑 → 𝑍 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝑊 ∈ (Base‘𝐷)) & ⊢ (𝜑 → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑍)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌(Hom ‘𝐷)𝑊)) ⇒ ⊢ (𝜑 → (𝐹(〈𝑋, 𝑌〉𝑃〈𝑍, 𝑊〉)𝐺) = 〈𝐺, 𝐹〉) | ||
| Theorem | swapf1f1o 49176 | The object part of the swap functor is a bijection between base sets. (Contributed by Zhi Wang, 8-Oct-2025.) |
| ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈𝑂, 𝑃〉) & ⊢ 𝑆 = (𝐶 ×c 𝐷) & ⊢ 𝑇 = (𝐷 ×c 𝐶) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐴 = (Base‘𝑇) ⇒ ⊢ (𝜑 → 𝑂:𝐵–1-1-onto→𝐴) | ||
| Theorem | swapf2f1o 49177 | The morphism part of the swap functor is a bijection between hom-sets. (Contributed by Zhi Wang, 8-Oct-2025.) |
| ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈𝑂, 𝑃〉) & ⊢ 𝑆 = (𝐶 ×c 𝐷) & ⊢ 𝑇 = (𝐷 ×c 𝐶) & ⊢ 𝐻 = (Hom ‘𝑆) & ⊢ 𝐽 = (Hom ‘𝑇) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐷)) & ⊢ (𝜑 → 𝑍 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝑊 ∈ (Base‘𝐷)) ⇒ ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑃〈𝑍, 𝑊〉):(〈𝑋, 𝑌〉𝐻〈𝑍, 𝑊〉)–1-1-onto→(〈𝑌, 𝑋〉𝐽〈𝑊, 𝑍〉)) | ||
| Theorem | swapf2f1oa 49178 | The morphism part of the swap functor is a bijection between hom-sets. (Contributed by Zhi Wang, 9-Oct-2025.) |
| ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈𝑂, 𝑃〉) & ⊢ 𝑆 = (𝐶 ×c 𝐷) & ⊢ 𝑇 = (𝐷 ×c 𝐶) & ⊢ 𝐻 = (Hom ‘𝑆) & ⊢ 𝐽 = (Hom ‘𝑇) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂‘𝑋)𝐽(𝑂‘𝑌))) | ||
| Theorem | swapf2f1oaALT 49179 | Alternate proof of swapf2f1oa 49178. (Contributed by Zhi Wang, 8-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈𝑂, 𝑃〉) & ⊢ 𝑆 = (𝐶 ×c 𝐷) & ⊢ 𝑇 = (𝐷 ×c 𝐶) & ⊢ 𝐻 = (Hom ‘𝑆) & ⊢ 𝐽 = (Hom ‘𝑇) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂‘𝑋)𝐽(𝑂‘𝑌))) | ||
| Theorem | swapfid 49180 | Each identity morphism in the source category is mapped to the corresponding identity morphism in the target category. See also swapfida 49181. (Contributed by Zhi Wang, 8-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑆 = (𝐶 ×c 𝐷) & ⊢ 𝑇 = (𝐷 ×c 𝐶) & ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐷)) & ⊢ 1 = (Id‘𝑆) & ⊢ 𝐼 = (Id‘𝑇) ⇒ ⊢ (𝜑 → ((〈𝑋, 𝑌〉𝑃〈𝑋, 𝑌〉)‘( 1 ‘〈𝑋, 𝑌〉)) = (𝐼‘(𝑂‘〈𝑋, 𝑌〉))) | ||
| Theorem | swapfida 49181 | Each identity morphism in the source category is mapped to the corresponding identity morphism in the target category. See also swapfid 49180. (Contributed by Zhi Wang, 8-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑆 = (𝐶 ×c 𝐷) & ⊢ 𝑇 = (𝐷 ×c 𝐶) & ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈𝑂, 𝑃〉) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 1 = (Id‘𝑆) & ⊢ 𝐼 = (Id‘𝑇) ⇒ ⊢ (𝜑 → ((𝑋𝑃𝑋)‘( 1 ‘𝑋)) = (𝐼‘(𝑂‘𝑋))) | ||
| Theorem | swapfcoa 49182 | Composition in the source category is mapped to composition in the target. (𝜑 → 𝐶 ∈ Cat) and (𝜑 → 𝐷 ∈ Cat) can be replaced by a weaker hypothesis (𝜑 → 𝑆 ∈ Cat). (Contributed by Zhi Wang, 8-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑆 = (𝐶 ×c 𝐷) & ⊢ 𝑇 = (𝐷 ×c 𝐶) & ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈𝑂, 𝑃〉) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝑆) & ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝑁 ∈ (𝑌𝐻𝑍)) & ⊢ · = (comp‘𝑆) & ⊢ ∙ = (comp‘𝑇) ⇒ ⊢ (𝜑 → ((𝑋𝑃𝑍)‘(𝑁(〈𝑋, 𝑌〉 · 𝑍)𝑀)) = (((𝑌𝑃𝑍)‘𝑁)(〈(𝑂‘𝑋), (𝑂‘𝑌)〉 ∙ (𝑂‘𝑍))((𝑋𝑃𝑌)‘𝑀))) | ||
| Theorem | swapffunc 49183 | The swap functor is a functor. (Contributed by Zhi Wang, 8-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑆 = (𝐶 ×c 𝐷) & ⊢ 𝑇 = (𝐷 ×c 𝐶) & ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈𝑂, 𝑃〉) ⇒ ⊢ (𝜑 → 𝑂(𝑆 Func 𝑇)𝑃) | ||
| Theorem | swapfffth 49184 | The swap functor is a fully faithful functor. (Contributed by Zhi Wang, 8-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑆 = (𝐶 ×c 𝐷) & ⊢ 𝑇 = (𝐷 ×c 𝐶) & ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈𝑂, 𝑃〉) ⇒ ⊢ (𝜑 → 𝑂((𝑆 Full 𝑇) ∩ (𝑆 Faith 𝑇))𝑃) | ||
| Theorem | swapffunca 49185 | The swap functor is a functor. (Contributed by Zhi Wang, 9-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑆 = (𝐶 ×c 𝐷) & ⊢ 𝑇 = (𝐷 ×c 𝐶) ⇒ ⊢ (𝜑 → (𝐶 swapF 𝐷) ∈ (𝑆 Func 𝑇)) | ||
| Theorem | swapfiso 49186 | The swap functor is an isomorphism between product categories. (Contributed by Zhi Wang, 8-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑆 = (𝐶 ×c 𝐷) & ⊢ 𝑇 = (𝐷 ×c 𝐶) & ⊢ 𝐸 = (CatCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑈) & ⊢ (𝜑 → 𝑇 ∈ 𝑈) & ⊢ 𝐼 = (Iso‘𝐸) ⇒ ⊢ (𝜑 → (𝐶 swapF 𝐷) ∈ (𝑆𝐼𝑇)) | ||
| Theorem | swapciso 49187 | The product category is categorically isomorphic to the swapped product category. (Contributed by Zhi Wang, 8-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑆 = (𝐶 ×c 𝐷) & ⊢ 𝑇 = (𝐷 ×c 𝐶) & ⊢ 𝐸 = (CatCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑈) & ⊢ (𝜑 → 𝑇 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝑆( ≃𝑐 ‘𝐸)𝑇) | ||
| Theorem | cofuswapfcl 49188 | The bifunctor pre-composed with a swap functor is a bifunctor. (Contributed by Zhi Wang, 10-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸)) & ⊢ (𝜑 → 𝐺 = (𝐹 ∘func (𝐶 swapF 𝐷))) ⇒ ⊢ (𝜑 → 𝐺 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) | ||
| Theorem | cofuswapf1 49189 | The object part of a bifunctor pre-composed with a swap functor. (Contributed by Zhi Wang, 9-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸)) & ⊢ (𝜑 → 𝐺 = (𝐹 ∘func (𝐶 swapF 𝐷))) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋(1st ‘𝐺)𝑌) = (𝑌(1st ‘𝐹)𝑋)) | ||
| Theorem | cofuswapf2 49190 | The morphism part of a bifunctor pre-composed with a swap functor. (Contributed by Zhi Wang, 9-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸)) & ⊢ (𝜑 → 𝐺 = (𝐹 ∘func (𝐶 swapF 𝐷))) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐴) & ⊢ (𝜑 → 𝑊 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐻𝑍)) & ⊢ (𝜑 → 𝑁 ∈ (𝑌𝐽𝑊)) ⇒ ⊢ (𝜑 → (𝑀(〈𝑋, 𝑌〉(2nd ‘𝐺)〈𝑍, 𝑊〉)𝑁) = (𝑁(〈𝑌, 𝑋〉(2nd ‘𝐹)〈𝑊, 𝑍〉)𝑀)) | ||
| Theorem | tposcurf1cl 49191 | The partially evaluated transposed curry functor is a functor. (Contributed by Zhi Wang, 9-Oct-2025.) |
| ⊢ (𝜑 → 𝐺 = (〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷)))) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸)) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝐾 = ((1st ‘𝐺)‘𝑋)) ⇒ ⊢ (𝜑 → 𝐾 ∈ (𝐷 Func 𝐸)) | ||
| Theorem | tposcurf11 49192 | Value of the double evaluated transposed curry functor. (Contributed by Zhi Wang, 9-Oct-2025.) |
| ⊢ (𝜑 → 𝐺 = (〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷)))) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸)) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝐾 = ((1st ‘𝐺)‘𝑋)) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((1st ‘𝐾)‘𝑌) = (𝑌(1st ‘𝐹)𝑋)) | ||
| Theorem | tposcurf12 49193 | The partially evaluated transposed curry functor at a morphism. (Contributed by Zhi Wang, 9-Oct-2025.) |
| ⊢ (𝜑 → 𝐺 = (〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷)))) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸)) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝐾 = ((1st ‘𝐺)‘𝑋)) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐻 ∈ (𝑌𝐽𝑍)) ⇒ ⊢ (𝜑 → ((𝑌(2nd ‘𝐾)𝑍)‘𝐻) = (𝐻(〈𝑌, 𝑋〉(2nd ‘𝐹)〈𝑍, 𝑋〉)( 1 ‘𝑋))) | ||
| Theorem | tposcurf1 49194* | Value of the object part of the transposed curry functor. (Contributed by Zhi Wang, 9-Oct-2025.) |
| ⊢ (𝜑 → 𝐺 = (〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷)))) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸)) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝐾 = ((1st ‘𝐺)‘𝑋)) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ 1 = (Id‘𝐶) ⇒ ⊢ (𝜑 → 𝐾 = 〈(𝑦 ∈ 𝐵 ↦ (𝑦(1st ‘𝐹)𝑋)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (𝑔(〈𝑦, 𝑋〉(2nd ‘𝐹)〈𝑧, 𝑋〉)( 1 ‘𝑋))))〉) | ||
| Theorem | tposcurf2 49195* | Value of the transposed curry functor at a morphism. (Contributed by Zhi Wang, 10-Oct-2025.) |
| ⊢ (𝜑 → 𝐺 = (〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷)))) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸)) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐼 = (Id‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐿 = ((𝑋(2nd ‘𝐺)𝑌)‘𝐾)) ⇒ ⊢ (𝜑 → 𝐿 = (𝑧 ∈ 𝐵 ↦ ((𝐼‘𝑧)(〈𝑧, 𝑋〉(2nd ‘𝐹)〈𝑧, 𝑌〉)𝐾))) | ||
| Theorem | tposcurf2val 49196 | Value of a component of the transposed curry functor natural transformation. (Contributed by Zhi Wang, 10-Oct-2025.) |
| ⊢ (𝜑 → 𝐺 = (〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷)))) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸)) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐼 = (Id‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐿 = ((𝑋(2nd ‘𝐺)𝑌)‘𝐾)) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐿‘𝑍) = ((𝐼‘𝑍)(〈𝑍, 𝑋〉(2nd ‘𝐹)〈𝑍, 𝑌〉)𝐾)) | ||
| Theorem | tposcurf2cl 49197 | The transposed curry functor at a morphism is a natural transformation. (Contributed by Zhi Wang, 10-Oct-2025.) |
| ⊢ (𝜑 → 𝐺 = (〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷)))) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸)) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐼 = (Id‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐿 = ((𝑋(2nd ‘𝐺)𝑌)‘𝐾)) & ⊢ 𝑁 = (𝐷 Nat 𝐸) ⇒ ⊢ (𝜑 → 𝐿 ∈ (((1st ‘𝐺)‘𝑋)𝑁((1st ‘𝐺)‘𝑌))) | ||
| Theorem | tposcurfcl 49198 | The transposed curry functor of a functor 𝐹:𝐷 × 𝐶⟶𝐸 is a functor tposcurry (𝐹):𝐶⟶(𝐷⟶𝐸). (Contributed by Zhi Wang, 9-Oct-2025.) |
| ⊢ (𝜑 → 𝐺 = (〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷)))) & ⊢ 𝑄 = (𝐷 FuncCat 𝐸) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸)) ⇒ ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝑄)) | ||
| Theorem | diag1 49199* | The constant functor of 𝑋. Example 3.20(2) of [Adamek] p. 30. (Contributed by Zhi Wang, 17-Oct-2025.) |
| ⊢ 𝐿 = (𝐶Δfunc𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ 1 = (Id‘𝐶) ⇒ ⊢ (𝜑 → 𝐾 = 〈(𝑦 ∈ 𝐵 ↦ 𝑋), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑓 ∈ (𝑦𝐽𝑧) ↦ ( 1 ‘𝑋)))〉) | ||
| Theorem | diag1a 49200* | The constant functor of 𝑋. (Contributed by Zhi Wang, 19-Oct-2025.) |
| ⊢ 𝐿 = (𝐶Δfunc𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ 1 = (Id‘𝐶) ⇒ ⊢ (𝜑 → 𝐾 = 〈(𝐵 × {𝑋}), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦𝐽𝑧) × {( 1 ‘𝑋)}))〉) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |