| Metamath
Proof Explorer Theorem List (p. 492 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | cofid1a 49101 | Express the object part of (𝐺 ∘func 𝐹) = 𝐼 explicitly. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐷) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝐺 ∈ (𝐸 Func 𝐷)) & ⊢ (𝜑 → (𝐺 ∘func 𝐹) = 𝐼) ⇒ ⊢ (𝜑 → ((1st ‘𝐺)‘((1st ‘𝐹)‘𝑋)) = 𝑋) | ||
| Theorem | cofid2a 49102 | Express the morphism part of (𝐺 ∘func 𝐹) = 𝐼 explicitly. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐷) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝐺 ∈ (𝐸 Func 𝐷)) & ⊢ (𝜑 → (𝐺 ∘func 𝐹) = 𝐼) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ (𝜑 → 𝑅 ∈ (𝑋𝐻𝑌)) ⇒ ⊢ (𝜑 → ((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌))‘((𝑋(2nd ‘𝐹)𝑌)‘𝑅)) = 𝑅) | ||
| Theorem | cofid1 49103 | Express the object part of (𝐺 ∘func 𝐹) = 𝐼 explicitly. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐷) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝐾(𝐸 Func 𝐷)𝐿) & ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 𝐼) ⇒ ⊢ (𝜑 → (𝐾‘(𝐹‘𝑋)) = 𝑋) | ||
| Theorem | cofid2 49104 | Express the morphism part of (𝐺 ∘func 𝐹) = 𝐼 explicitly. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐷) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝐾(𝐸 Func 𝐷)𝐿) & ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 𝐼) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ (𝜑 → 𝑅 ∈ (𝑋𝐻𝑌)) ⇒ ⊢ (𝜑 → (((𝐹‘𝑋)𝐿(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = 𝑅) | ||
| Theorem | cofidvala 49105* | The property "𝐹 is a section of 𝐺 " in a category of small categories (in a universe); expressed explicitly. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐷) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝐺 ∈ (𝐸 Func 𝐷)) & ⊢ (𝜑 → (𝐺 ∘func 𝐹) = 𝐼) & ⊢ 𝐻 = (Hom ‘𝐷) ⇒ ⊢ (𝜑 → (((1st ‘𝐺) ∘ (1st ‘𝐹)) = ( I ↾ 𝐵) ∧ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((((1st ‘𝐹)‘𝑥)(2nd ‘𝐺)((1st ‘𝐹)‘𝑦)) ∘ (𝑥(2nd ‘𝐹)𝑦))) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧))))) | ||
| Theorem | cofidf2a 49106 | If "𝐹 is a section of 𝐺 " in a category of small categories (in a universe), then the morphism part of 𝐹 is injective, and the morphism part of 𝐺 is surjective in the image of 𝐹. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐷) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝐺 ∈ (𝐸 Func 𝐷)) & ⊢ (𝜑 → (𝐺 ∘func 𝐹) = 𝐼) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋(2nd ‘𝐹)𝑌):(𝑋𝐻𝑌)–1-1→(((1st ‘𝐹)‘𝑋)𝐽((1st ‘𝐹)‘𝑌)) ∧ (((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌)):(((1st ‘𝐹)‘𝑋)𝐽((1st ‘𝐹)‘𝑌))–onto→(𝑋𝐻𝑌))) | ||
| Theorem | cofidf1a 49107 | If "𝐹 is a section of 𝐺 " in a category of small categories (in a universe), then the object part of 𝐹 is injective, and the object part of 𝐺 is surjective. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐷) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝐺 ∈ (𝐸 Func 𝐷)) & ⊢ (𝜑 → (𝐺 ∘func 𝐹) = 𝐼) & ⊢ 𝐶 = (Base‘𝐸) ⇒ ⊢ (𝜑 → ((1st ‘𝐹):𝐵–1-1→𝐶 ∧ (1st ‘𝐺):𝐶–onto→𝐵)) | ||
| Theorem | cofidval 49108* | The property "〈𝐹, 𝐺〉 is a section of 〈𝐾, 𝐿〉 " in a category of small categories (in a universe); expressed explicitly. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐷) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝐾(𝐸 Func 𝐷)𝐿) & ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 𝐼) & ⊢ 𝐻 = (Hom ‘𝐷) ⇒ ⊢ (𝜑 → ((𝐾 ∘ 𝐹) = ( I ↾ 𝐵) ∧ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦))) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧))))) | ||
| Theorem | cofidf2 49109 | If "𝐹 is a section of 𝐺 " in a category of small categories (in a universe), then the morphism part of 𝐹 is injective, and the morphism part of 𝐺 is surjective in the image of 𝐹. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐷) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝐾(𝐸 Func 𝐷)𝐿) & ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 𝐼) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ∧ ((𝐹‘𝑋)𝐿(𝐹‘𝑌)):((𝐹‘𝑋)𝐽(𝐹‘𝑌))–onto→(𝑋𝐻𝑌))) | ||
| Theorem | cofidf1 49110 | If "〈𝐹, 𝐺〉 is a section of 〈𝐾, 𝐿〉 " in a category of small categories (in a universe), then 𝐹 is injective, and 𝐾 is surjective. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐷) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝐾(𝐸 Func 𝐷)𝐿) & ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 𝐼) & ⊢ 𝐶 = (Base‘𝐸) ⇒ ⊢ (𝜑 → (𝐹:𝐵–1-1→𝐶 ∧ 𝐾:𝐶–onto→𝐵)) | ||
| Syntax | coppf 49111 | Extend class notation with the operation generating opposite functors. |
| class oppFunc | ||
| Definition | df-oppf 49112* | Definition of the operation generating opposite functors. Definition 3.41 of [Adamek] p. 39. The object part of the functor is unchanged while the morphism part is transposed due to reversed direction of arrows in the opposite category. The opposite functor is a functor on opposite categories (oppfoppc 49130). (Contributed by Zhi Wang, 4-Nov-2025.) Better reverse closure. (Revised by Zhi Wang, 13-Nov-2025.) |
| ⊢ oppFunc = (𝑓 ∈ V, 𝑔 ∈ V ↦ if((Rel 𝑔 ∧ Rel dom 𝑔), 〈𝑓, tpos 𝑔〉, ∅)) | ||
| Theorem | oppffn 49113 | oppFunc is a function on (V × V). (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ oppFunc Fn (V × V) | ||
| Theorem | reldmoppf 49114 | The domain of oppFunc is a relation. (Contributed by Zhi Wang, 13-Nov-2025.) |
| ⊢ Rel dom oppFunc | ||
| Theorem | oppfvalg 49115 | Value of the opposite functor. (Contributed by Zhi Wang, 13-Nov-2025.) |
| ⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹 oppFunc 𝐺) = if((Rel 𝐺 ∧ Rel dom 𝐺), 〈𝐹, tpos 𝐺〉, ∅)) | ||
| Theorem | oppfrcllem 49116 | Lemma for oppfrcl 49117. (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ (𝜑 → 𝐺 ∈ 𝑅) & ⊢ Rel 𝑅 ⇒ ⊢ (𝜑 → 𝐺 ≠ ∅) | ||
| Theorem | oppfrcl 49117 | If an opposite functor of a class is a functor, then the original class must be an ordered pair. (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ (𝜑 → 𝐺 ∈ 𝑅) & ⊢ Rel 𝑅 & ⊢ 𝐺 = ( oppFunc ‘𝐹) ⇒ ⊢ (𝜑 → 𝐹 ∈ (V × V)) | ||
| Theorem | oppfrcl2 49118 | If an opposite functor of a class is a functor, then the two components of the original class must be sets. (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ (𝜑 → 𝐺 ∈ 𝑅) & ⊢ Rel 𝑅 & ⊢ 𝐺 = ( oppFunc ‘𝐹) & ⊢ (𝜑 → 𝐹 = 〈𝐴, 𝐵〉) ⇒ ⊢ (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
| Theorem | oppfrcl3 49119 | If an opposite functor of a class is a functor, then the second component of the original class must be a relation whose domain is a relation as well. (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ (𝜑 → 𝐺 ∈ 𝑅) & ⊢ Rel 𝑅 & ⊢ 𝐺 = ( oppFunc ‘𝐹) & ⊢ (𝜑 → 𝐹 = 〈𝐴, 𝐵〉) ⇒ ⊢ (𝜑 → (Rel 𝐵 ∧ Rel dom 𝐵)) | ||
| Theorem | oppf1st2nd 49120 | Rewrite the opposite functor into its components (eqopi 8004). (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ (𝜑 → 𝐺 ∈ 𝑅) & ⊢ Rel 𝑅 & ⊢ 𝐺 = ( oppFunc ‘𝐹) & ⊢ (𝜑 → 𝐹 = 〈𝐴, 𝐵〉) ⇒ ⊢ (𝜑 → (𝐺 ∈ (V × V) ∧ ((1st ‘𝐺) = 𝐴 ∧ (2nd ‘𝐺) = tpos 𝐵))) | ||
| Theorem | 2oppf 49121 | The double opposite functor is the original functor. Remark 3.42 of [Adamek] p. 39. (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ (𝜑 → 𝐺 ∈ 𝑅) & ⊢ Rel 𝑅 & ⊢ 𝐺 = ( oppFunc ‘𝐹) ⇒ ⊢ (𝜑 → ( oppFunc ‘𝐺) = 𝐹) | ||
| Theorem | eloppf 49122 | The pre-image of a non-empty opposite functor is non-empty; and the second component of the pre-image is a relation on triples. (Contributed by Zhi Wang, 18-Nov-2025.) |
| ⊢ 𝐺 = ( oppFunc ‘𝐹) & ⊢ (𝜑 → 𝑋 ∈ 𝐺) ⇒ ⊢ (𝜑 → (𝐹 ≠ ∅ ∧ (Rel (2nd ‘𝐹) ∧ Rel dom (2nd ‘𝐹)))) | ||
| Theorem | eloppf2 49123 | Both components of a pre-image of a non-empty opposite functor exist; and the second component is a relation on triples. (Contributed by Zhi Wang, 18-Nov-2025.) |
| ⊢ (𝐹 oppFunc 𝐺) = 𝐾 & ⊢ (𝜑 → 𝑋 ∈ 𝐾) ⇒ ⊢ (𝜑 → ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Rel 𝐺 ∧ Rel dom 𝐺))) | ||
| Theorem | oppfvallem 49124 | Lemma for oppfval 49125. (Contributed by Zhi Wang, 13-Nov-2025.) |
| ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → (Rel 𝐺 ∧ Rel dom 𝐺)) | ||
| Theorem | oppfval 49125 | Value of the opposite functor. (Contributed by Zhi Wang, 4-Nov-2025.) |
| ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹 oppFunc 𝐺) = 〈𝐹, tpos 𝐺〉) | ||
| Theorem | oppfval2 49126 | Value of the opposite functor. (Contributed by Zhi Wang, 13-Nov-2025.) |
| ⊢ (𝐹 ∈ (𝐶 Func 𝐷) → ( oppFunc ‘𝐹) = 〈(1st ‘𝐹), tpos (2nd ‘𝐹)〉) | ||
| Theorem | oppfval3 49127 | Value of the opposite functor. (Contributed by Zhi Wang, 19-Nov-2025.) |
| ⊢ (𝜑 → 𝐹 = 〈𝐺, 𝐾〉) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) ⇒ ⊢ (𝜑 → ( oppFunc ‘𝐹) = 〈𝐺, tpos 𝐾〉) | ||
| Theorem | oppf1 49128 | Value of the object part of the opposite functor. (Contributed by Zhi Wang, 19-Nov-2025.) |
| ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) ⇒ ⊢ (𝜑 → (1st ‘( oppFunc ‘𝐹)) = (1st ‘𝐹)) | ||
| Theorem | oppf2 49129 | Value of the morphism part of the opposite functor. (Contributed by Zhi Wang, 19-Nov-2025.) |
| ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) ⇒ ⊢ (𝜑 → (𝑀(2nd ‘( oppFunc ‘𝐹))𝑁) = (𝑁(2nd ‘𝐹)𝑀)) | ||
| Theorem | oppfoppc 49130 | The opposite functor is a functor on opposite categories. (Contributed by Zhi Wang, 4-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) ⇒ ⊢ (𝜑 → (𝐹 oppFunc 𝐺) ∈ (𝑂 Func 𝑃)) | ||
| Theorem | oppfoppc2 49131 | The opposite functor is a functor on opposite categories. (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) ⇒ ⊢ (𝜑 → ( oppFunc ‘𝐹) ∈ (𝑂 Func 𝑃)) | ||
| Theorem | funcoppc2 49132 | A functor on opposite categories yields a functor on the original categories. (Contributed by Zhi Wang, 4-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → 𝐹(𝑂 Func 𝑃)𝐺) ⇒ ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)tpos 𝐺) | ||
| Theorem | funcoppc4 49133 | A functor on opposite categories yields a functor on the original categories. (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → (𝐹 oppFunc 𝐺) ∈ (𝑂 Func 𝑃)) ⇒ ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | ||
| Theorem | funcoppc5 49134 | A functor on opposite categories yields a functor on the original categories. (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → ( oppFunc ‘𝐹) ∈ (𝑂 Func 𝑃)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | ||
| Theorem | 2oppffunc 49135 | The opposite functor of an opposite functor is a functor on the original categories. (Contributed by Zhi Wang, 14-Nov-2025.) The functor in opposite categories does not have to be an opposite functor. (Revised by Zhi Wang, 17-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 ∈ (𝑂 Func 𝑃)) ⇒ ⊢ (𝜑 → ( oppFunc ‘𝐹) ∈ (𝐶 Func 𝐷)) | ||
| Theorem | funcoppc3 49136 | A functor on opposite categories yields a functor on the original categories. (Contributed by Zhi Wang, 4-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → 𝐹(𝑂 Func 𝑃)tpos 𝐺) & ⊢ (𝜑 → 𝐺 Fn (𝐴 × 𝐵)) ⇒ ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | ||
| Theorem | oppff1 49137 | The operation generating opposite functors is injective. (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) ⇒ ⊢ ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃) | ||
| Theorem | oppff1o 49138 | The operation generating opposite functors is bijective. (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) ⇒ ⊢ (𝜑 → ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃)) | ||
| Theorem | cofuoppf 49139 | Composition of opposite functors. (Contributed by Zhi Wang, 26-Nov-2025.) |
| ⊢ (𝜑 → (𝐺 ∘func 𝐹) = 𝐾) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) ⇒ ⊢ (𝜑 → (( oppFunc ‘𝐺) ∘func ( oppFunc ‘𝐹)) = ( oppFunc ‘𝐾)) | ||
| Theorem | imasubc 49140* | An image of a full functor is a full subcategory. Remark 4.2(3) of [Adamek] p. 48. (Contributed by Zhi Wang, 7-Nov-2025.) |
| ⊢ 𝑆 = (𝐹 “ 𝐴) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐾 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐹 “ {𝑦}))((𝐺‘𝑝) “ (𝐻‘𝑝))) & ⊢ (𝜑 → 𝐹(𝐷 Full 𝐸)𝐺) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐽 = (Homf ‘𝐸) ⇒ ⊢ (𝜑 → (𝐾 Fn (𝑆 × 𝑆) ∧ 𝑆 ⊆ 𝐶 ∧ (𝐽 ↾ (𝑆 × 𝑆)) = 𝐾)) | ||
| Theorem | imasubc2 49141* | An image of a full functor is a (full) subcategory. Remark 4.2(3) of [Adamek] p. 48. (Contributed by Zhi Wang, 7-Nov-2025.) |
| ⊢ 𝑆 = (𝐹 “ 𝐴) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐾 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐹 “ {𝑦}))((𝐺‘𝑝) “ (𝐻‘𝑝))) & ⊢ (𝜑 → 𝐹(𝐷 Full 𝐸)𝐺) ⇒ ⊢ (𝜑 → 𝐾 ∈ (Subcat‘𝐸)) | ||
| Theorem | imassc 49142* | An image of a functor satisfies the subcategory subset relation. (Contributed by Zhi Wang, 7-Nov-2025.) |
| ⊢ 𝑆 = (𝐹 “ 𝐴) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐾 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐹 “ {𝑦}))((𝐺‘𝑝) “ (𝐻‘𝑝))) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ 𝐽 = (Homf ‘𝐸) ⇒ ⊢ (𝜑 → 𝐾 ⊆cat 𝐽) | ||
| Theorem | imaid 49143* | An image of a functor preserves the identity morphism. (Contributed by Zhi Wang, 7-Nov-2025.) |
| ⊢ 𝑆 = (𝐹 “ 𝐴) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐾 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐹 “ {𝑦}))((𝐺‘𝑝) “ (𝐻‘𝑝))) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ 𝐼 = (Id‘𝐸) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐼‘𝑋) ∈ (𝑋𝐾𝑋)) | ||
| Theorem | imaf1co 49144* | An image of a functor whose object part is injective preserves the composition. (Contributed by Zhi Wang, 7-Nov-2025.) |
| ⊢ 𝑆 = (𝐹 “ 𝐴) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐾 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐹 “ {𝑦}))((𝐺‘𝑝) “ (𝐻‘𝑝))) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ ∙ = (comp‘𝐸) & ⊢ (𝜑 → 𝐹:𝐵–1-1→𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) & ⊢ (𝜑 → 𝑍 ∈ 𝑆) & ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐾𝑌)) & ⊢ (𝜑 → 𝑁 ∈ (𝑌𝐾𝑍)) ⇒ ⊢ (𝜑 → (𝑁(〈𝑋, 𝑌〉 ∙ 𝑍)𝑀) ∈ (𝑋𝐾𝑍)) | ||
| Theorem | imasubc3 49145* | An image of a functor injective on objects is a subcategory. Remark 4.2(3) of [Adamek] p. 48. (Contributed by Zhi Wang, 7-Nov-2025.) |
| ⊢ 𝑆 = (𝐹 “ 𝐴) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐾 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐹 “ {𝑦}))((𝐺‘𝑝) “ (𝐻‘𝑝))) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → Fun ◡𝐹) ⇒ ⊢ (𝜑 → 𝐾 ∈ (Subcat‘𝐸)) | ||
| Theorem | fthcomf 49146* | Source categories of a faithful functor have the same base, hom-sets and composition operation if the composition is compatible in images of the functor. (Contributed by Zhi Wang, 10-Nov-2025.) |
| ⊢ (𝜑 → 𝐹(𝐴 Faith 𝐶)𝐺) & ⊢ (𝜑 → 𝐹(𝐵 Func 𝐷)𝐺) & ⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (((𝑦𝐺𝑧)‘𝑔)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉(comp‘𝐶)(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉(comp‘𝐷)(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑓))) ⇒ ⊢ (𝜑 → (compf‘𝐴) = (compf‘𝐵)) | ||
| Theorem | idfth 49147 | The inclusion functor is a faithful functor. (Contributed by Zhi Wang, 10-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐶) ⇒ ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → 𝐼 ∈ (𝐷 Faith 𝐸)) | ||
| Theorem | idemb 49148 | The inclusion functor is an embedding. Remark 4.4(1) in [Adamek] p. 49. (Contributed by Zhi Wang, 16-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐶) ⇒ ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → (𝐼 ∈ (𝐷 Faith 𝐸) ∧ Fun ◡(1st ‘𝐼))) | ||
| Theorem | idsubc 49149 | The source category of an inclusion functor is a subcategory of the target category. See also Remark 4.4 in [Adamek] p. 49. (Contributed by Zhi Wang, 10-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐶) & ⊢ 𝐻 = (Homf ‘𝐷) ⇒ ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → 𝐻 ∈ (Subcat‘𝐸)) | ||
| Theorem | idfullsubc 49150 | The source category of an inclusion functor is a full subcategory of the target category if the inclusion functor is full. Remark 4.4(2) in [Adamek] p. 49. See also ressffth 17902. (Contributed by Zhi Wang, 11-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐶) & ⊢ 𝐻 = (Homf ‘𝐷) & ⊢ 𝐽 = (Homf ‘𝐸) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) ⇒ ⊢ (𝐼 ∈ (𝐷 Full 𝐸) → (𝐵 ⊆ 𝐶 ∧ (𝐽 ↾ (𝐵 × 𝐵)) = 𝐻)) | ||
| Theorem | cofidfth 49151 | If "𝐹 is a section of 𝐺 " in a category of small categories (in a universe), then 𝐹 is faithful. Combined with cofidf1 49110, this theorem proves that 𝐹 is an embedding (a faithful functor injective on objects, remark 3.28(1) of [Adamek] p. 34). (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐷) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝐾(𝐸 Func 𝐷)𝐿) & ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 𝐼) ⇒ ⊢ (𝜑 → 𝐹(𝐷 Faith 𝐸)𝐺) | ||
| Theorem | fulloppf 49152 | The opposite functor of a full functor is also full. Proposition 3.43(d) in [Adamek] p. 39. (Contributed by Zhi Wang, 26-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Full 𝐷)) ⇒ ⊢ (𝜑 → ( oppFunc ‘𝐹) ∈ (𝑂 Full 𝑃)) | ||
| Theorem | fthoppf 49153 | The opposite functor of a faithful functor is also faithful. Proposition 3.43(c) in [Adamek] p. 39. (Contributed by Zhi Wang, 26-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Faith 𝐷)) ⇒ ⊢ (𝜑 → ( oppFunc ‘𝐹) ∈ (𝑂 Faith 𝑃)) | ||
| Theorem | ffthoppf 49154 | The opposite functor of a fully faithful functor is also full and faithful. (Contributed by Zhi Wang, 26-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ (𝜑 → 𝐹 ∈ ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))) ⇒ ⊢ (𝜑 → ( oppFunc ‘𝐹) ∈ ((𝑂 Full 𝑃) ∩ (𝑂 Faith 𝑃))) | ||
| Theorem | upciclem1 49155* | Lemma for upcic 49159, upeu 49160, and upeu2 49161. (Contributed by Zhi Wang, 16-Sep-2025.) (Proof shortened by Zhi Wang, 5-Nov-2025.) |
| ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ∀𝑛 ∈ (𝑍𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑛 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑀)) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑁 ∈ (𝑍𝐽(𝐹‘𝑌))) ⇒ ⊢ (𝜑 → ∃!𝑙 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑙)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) | ||
| Theorem | upciclem2 49156 | Lemma for upciclem3 49157 and upeu2 49161. (Contributed by Zhi Wang, 19-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝑂 = (comp‘𝐸) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑊 ∈ 𝐶) & ⊢ (𝜑 → 𝑀 ∈ (𝑊𝐽(𝐹‘𝑋))) & ⊢ · = (comp‘𝐷) & ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (𝑌𝐻𝑍)) & ⊢ (𝜑 → 𝑁 = (((𝑋𝐺𝑌)‘𝐾)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) ⇒ ⊢ (𝜑 → (((𝑋𝐺𝑍)‘(𝐿(〈𝑋, 𝑌〉 · 𝑍)𝐾))(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑍))𝑀) = (((𝑌𝐺𝑍)‘𝐿)(〈𝑊, (𝐹‘𝑌)〉𝑂(𝐹‘𝑍))𝑁)) | ||
| Theorem | upciclem3 49157* | Lemma for upciclem4 49158. (Contributed by Zhi Wang, 17-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝑂 = (comp‘𝐸) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐶) & ⊢ (𝜑 → 𝑀 ∈ (𝑍𝐽(𝐹‘𝑋))) & ⊢ (𝜑 → ∀𝑤 ∈ 𝐵 ∀𝑓 ∈ (𝑍𝐽(𝐹‘𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑤))𝑀)) & ⊢ · = (comp‘𝐷) & ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (𝑌𝐻𝑋)) & ⊢ (𝜑 → 𝑀 = (((𝑌𝐺𝑋)‘𝐿)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑋))𝑁)) & ⊢ (𝜑 → 𝑁 = (((𝑋𝐺𝑌)‘𝐾)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) ⇒ ⊢ (𝜑 → (𝐿(〈𝑋, 𝑌〉 · 𝑋)𝐾) = ((Id‘𝐷)‘𝑋)) | ||
| Theorem | upciclem4 49158* | Lemma for upcic 49159 and upeu 49160. (Contributed by Zhi Wang, 19-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝑂 = (comp‘𝐸) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐶) & ⊢ (𝜑 → 𝑀 ∈ (𝑍𝐽(𝐹‘𝑋))) & ⊢ (𝜑 → ∀𝑤 ∈ 𝐵 ∀𝑓 ∈ (𝑍𝐽(𝐹‘𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑤))𝑀)) & ⊢ (𝜑 → 𝑁 ∈ (𝑍𝐽(𝐹‘𝑌))) & ⊢ (𝜑 → ∀𝑣 ∈ 𝐵 ∀𝑔 ∈ (𝑍𝐽(𝐹‘𝑣))∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑣))𝑁)) ⇒ ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐷)𝑌 ∧ ∃𝑟 ∈ (𝑋(Iso‘𝐷)𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) | ||
| Theorem | upcic 49159* | A universal property defines an object up to isomorphism given its existence. (Contributed by Zhi Wang, 17-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝑂 = (comp‘𝐸) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐶) & ⊢ (𝜑 → 𝑀 ∈ (𝑍𝐽(𝐹‘𝑋))) & ⊢ (𝜑 → ∀𝑤 ∈ 𝐵 ∀𝑓 ∈ (𝑍𝐽(𝐹‘𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑤))𝑀)) & ⊢ (𝜑 → 𝑁 ∈ (𝑍𝐽(𝐹‘𝑌))) & ⊢ (𝜑 → ∀𝑣 ∈ 𝐵 ∀𝑔 ∈ (𝑍𝐽(𝐹‘𝑣))∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑣))𝑁)) ⇒ ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐷)𝑌) | ||
| Theorem | upeu 49160* | A universal property defines an essentially unique (strong form) pair of object 𝑋 and morphism 𝑀 if it exists. (Contributed by Zhi Wang, 19-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝑂 = (comp‘𝐸) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐶) & ⊢ (𝜑 → 𝑀 ∈ (𝑍𝐽(𝐹‘𝑋))) & ⊢ (𝜑 → ∀𝑤 ∈ 𝐵 ∀𝑓 ∈ (𝑍𝐽(𝐹‘𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑤))𝑀)) & ⊢ (𝜑 → 𝑁 ∈ (𝑍𝐽(𝐹‘𝑌))) & ⊢ (𝜑 → ∀𝑣 ∈ 𝐵 ∀𝑔 ∈ (𝑍𝐽(𝐹‘𝑣))∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑣))𝑁)) ⇒ ⊢ (𝜑 → ∃!𝑟 ∈ (𝑋(Iso‘𝐷)𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) | ||
| Theorem | upeu2 49161* | Generate new universal morphism through isomorphism from existing universal object. (Contributed by Zhi Wang, 20-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝑂 = (comp‘𝐸) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐶) & ⊢ (𝜑 → 𝑀 ∈ (𝑍𝐽(𝐹‘𝑋))) & ⊢ (𝜑 → ∀𝑤 ∈ 𝐵 ∀𝑓 ∈ (𝑍𝐽(𝐹‘𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑤))𝑀)) & ⊢ 𝐼 = (Iso‘𝐷) & ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐼𝑌)) & ⊢ (𝜑 → 𝑁 = (((𝑋𝐺𝑌)‘𝐾)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) ⇒ ⊢ (𝜑 → (𝑁 ∈ (𝑍𝐽(𝐹‘𝑌)) ∧ ∀𝑣 ∈ 𝐵 ∀𝑔 ∈ (𝑍𝐽(𝐹‘𝑣))∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑣))𝑁))) | ||
| Syntax | cup 49162 | Extend class notation with the class of universal properties. |
| class UP | ||
| Definition | df-up 49163* |
Definition of the class of universal properties.
Given categories 𝐷 and 𝐸, if 𝐹:𝐷⟶𝐸 is a functor and 𝑊 an object of 𝐸, a universal pair from 𝑊 to 𝐹 is a pair 〈𝑋, 𝑀〉 consisting of an object 𝑋 of 𝐷 and a morphism 𝑀:𝑊⟶𝐹𝑋 of 𝐸, such that to every pair 〈𝑦, 𝑔〉 with 𝑦 an object of 𝐷 and 𝑔:𝑊⟶𝐹𝑦 a morphism of 𝐸, there is a unique morphism 𝑘:𝑋⟶𝑦 of 𝐷 with 𝐹𝑘 ⚬ 𝑀 = 𝑔. Such property is commonly referred to as a universal property. In our definition, it is denoted as 𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑀. Note that the universal pair is termed differently as "universal arrow" in p. 55 of Mac Lane, Saunders, Categories for the Working Mathematician, 2nd Edition, Springer Science+Business Media, New York, (1998) [QA169.M33 1998]; available at https://math.mit.edu/~hrm/palestine/maclane-categories.pdf (retrieved 6 Oct 2025). Interestingly, the "universal arrow" is referring to the morphism 𝑀 instead of the pair near the end of the same piece of the text, causing name collision. The name "universal arrow" is also adopted in papers such as https://arxiv.org/pdf/2212.08981. Alternatively, the universal pair is called the "universal morphism" in Wikipedia (https://en.wikipedia.org/wiki/Universal_property) as well as published works, e.g., https://arxiv.org/pdf/2412.12179. But the pair 〈𝑋, 𝑀〉 should be named differently as the morphism 𝑀, and thus we call 𝑋 the universal object, 𝑀 the universal morphism, and 〈𝑋, 𝑀〉 the universal pair. Given its existence, such universal pair is essentially unique (upeu3 49184), and can be generated from an existing universal pair by isomorphisms (upeu4 49185). See also oppcup 49196 for the dual concept. (Contributed by Zhi Wang, 24-Sep-2025.) |
| ⊢ UP = (𝑑 ∈ V, 𝑒 ∈ V ↦ ⦋(Base‘𝑑) / 𝑏⦌⦋(Base‘𝑒) / 𝑐⦌⦋(Hom ‘𝑑) / ℎ⦌⦋(Hom ‘𝑒) / 𝑗⦌⦋(comp‘𝑒) / 𝑜⦌(𝑓 ∈ (𝑑 Func 𝑒), 𝑤 ∈ 𝑐 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝑏 ∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚))})) | ||
| Theorem | reldmup 49164 | The domain of UP is a relation. (Contributed by Zhi Wang, 25-Sep-2025.) |
| ⊢ Rel dom UP | ||
| Theorem | upfval 49165* | Function value of the class of universal properties. (Contributed by Zhi Wang, 24-Sep-2025.) (Proof shortened by Zhi Wang, 12-Nov-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝑂 = (comp‘𝐸) ⇒ ⊢ (𝐷 UP 𝐸) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤 ∈ 𝐶 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑚 ∈ (𝑤𝐽((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑤𝐽((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑂((1st ‘𝑓)‘𝑦))𝑚))}) | ||
| Theorem | upfval2 49166* | Function value of the class of universal properties. (Contributed by Zhi Wang, 24-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝑂 = (comp‘𝐸) & ⊢ (𝜑 → 𝑊 ∈ 𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) ⇒ ⊢ (𝜑 → (𝐹(𝐷 UP 𝐸)𝑊) = {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑚 ∈ (𝑊𝐽((1st ‘𝐹)‘𝑥))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽((1st ‘𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘𝐹)𝑦)‘𝑘)(〈𝑊, ((1st ‘𝐹)‘𝑥)〉𝑂((1st ‘𝐹)‘𝑦))𝑚))}) | ||
| Theorem | upfval3 49167* | Function value of the class of universal properties. (Contributed by Zhi Wang, 24-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝑂 = (comp‘𝐸) & ⊢ (𝜑 → 𝑊 ∈ 𝐶) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) ⇒ ⊢ (𝜑 → (〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊) = {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑚 ∈ (𝑊𝐽(𝐹‘𝑥))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑥)〉𝑂(𝐹‘𝑦))𝑚))}) | ||
| Theorem | isuplem 49168* | Lemma for isup 49169 and other theorems. (Contributed by Zhi Wang, 25-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝑂 = (comp‘𝐸) & ⊢ (𝜑 → 𝑊 ∈ 𝐶) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) ⇒ ⊢ (𝜑 → (𝑋(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑀 ↔ ((𝑋 ∈ 𝐵 ∧ 𝑀 ∈ (𝑊𝐽(𝐹‘𝑋))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑀)))) | ||
| Theorem | isup 49169* | The predicate "is a universal pair". (Contributed by Zhi Wang, 24-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝑂 = (comp‘𝐸) & ⊢ (𝜑 → 𝑊 ∈ 𝐶) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ (𝑊𝐽(𝐹‘𝑋))) ⇒ ⊢ (𝜑 → (𝑋(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑀 ↔ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑀))) | ||
| Theorem | uppropd 49170 | If two categories have the same set of objects, morphisms, and compositions, then they have the same universal pairs. (Contributed by Zhi Wang, 20-Nov-2025.) |
| ⊢ (𝜑 → (Homf ‘𝐴) = (Homf ‘𝐵)) & ⊢ (𝜑 → (compf‘𝐴) = (compf‘𝐵)) & ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐴 UP 𝐶) = (𝐵 UP 𝐷)) | ||
| Theorem | reldmup2 49171 | The domain of (𝐷 UP 𝐸) is a relation. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ Rel dom (𝐷 UP 𝐸) | ||
| Theorem | relup 49172 | The set of universal pairs is a relation. (Contributed by Zhi Wang, 25-Sep-2025.) |
| ⊢ Rel (𝐹(𝐷 UP 𝐸)𝑊) | ||
| Theorem | uprcl 49173 | Reverse closure for the class of universal property. (Contributed by Zhi Wang, 25-Sep-2025.) |
| ⊢ 𝐶 = (Base‘𝐸) ⇒ ⊢ (𝑋 ∈ (𝐹(𝐷 UP 𝐸)𝑊) → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝑊 ∈ 𝐶)) | ||
| Theorem | up1st2nd 49174 | Rewrite the universal property predicate with separated parts. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ (𝜑 → 𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑀) ⇒ ⊢ (𝜑 → 𝑋(〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐷 UP 𝐸)𝑊)𝑀) | ||
| Theorem | up1st2ndr 49175 | Combine separated parts in the universal property predicate. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝑋(〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐷 UP 𝐸)𝑊)𝑀) ⇒ ⊢ (𝜑 → 𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑀) | ||
| Theorem | up1st2ndb 49176 | Combine/separate parts in the universal property predicate. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) ⇒ ⊢ (𝜑 → (𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑀 ↔ 𝑋(〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐷 UP 𝐸)𝑊)𝑀)) | ||
| Theorem | up1st2nd2 49177 | Rewrite the universal property predicate with separated parts. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ (𝐹(𝐷 UP 𝐸)𝑊)) ⇒ ⊢ (𝜑 → (1st ‘𝑋)(𝐹(𝐷 UP 𝐸)𝑊)(2nd ‘𝑋)) | ||
| Theorem | uprcl2 49178 | Reverse closure for the class of universal property. (Contributed by Zhi Wang, 25-Sep-2025.) |
| ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑀) ⇒ ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | ||
| Theorem | uprcl3 49179 | Reverse closure for the class of universal property. (Contributed by Zhi Wang, 25-Sep-2025.) |
| ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑀) & ⊢ 𝐶 = (Base‘𝐸) ⇒ ⊢ (𝜑 → 𝑊 ∈ 𝐶) | ||
| Theorem | uprcl4 49180 | Reverse closure for the class of universal property. (Contributed by Zhi Wang, 25-Sep-2025.) |
| ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑀) & ⊢ 𝐵 = (Base‘𝐷) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝐵) | ||
| Theorem | uprcl5 49181 | Reverse closure for the class of universal property. (Contributed by Zhi Wang, 25-Sep-2025.) |
| ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑀) & ⊢ 𝐽 = (Hom ‘𝐸) ⇒ ⊢ (𝜑 → 𝑀 ∈ (𝑊𝐽(𝐹‘𝑋))) | ||
| Theorem | uobrcl 49182 | Reverse closure for universal object. (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ (𝑋 ∈ dom (𝐹(𝐷 UP 𝐸)𝑊) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) | ||
| Theorem | isup2 49183* | The universal property of a universal pair. (Contributed by Zhi Wang, 24-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝑂 = (comp‘𝐸) & ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑀) ⇒ ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑀)) | ||
| Theorem | upeu3 49184* | The universal pair 〈𝑋, 𝑀〉 from object 𝑊 to functor 〈𝐹, 𝐺〉 is essentially unique (strong form) if it exists. (Contributed by Zhi Wang, 24-Sep-2025.) |
| ⊢ (𝜑 → 𝐼 = (Iso‘𝐷)) & ⊢ (𝜑 → ⚬ = (〈𝑊, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑌))) & ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑀) & ⊢ (𝜑 → 𝑌(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑁) ⇒ ⊢ (𝜑 → ∃!𝑟 ∈ (𝑋𝐼𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟) ⚬ 𝑀)) | ||
| Theorem | upeu4 49185 | Generate a new universal morphism through an isomorphism from an existing universal object, and pair with the codomain of the isomorphism to form a universal pair. (Contributed by Zhi Wang, 25-Sep-2025.) |
| ⊢ (𝜑 → 𝐼 = (Iso‘𝐷)) & ⊢ (𝜑 → ⚬ = (〈𝑊, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑌))) & ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑀) & ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐼𝑌)) & ⊢ (𝜑 → 𝑁 = (((𝑋𝐺𝑌)‘𝐾) ⚬ 𝑀)) ⇒ ⊢ (𝜑 → 𝑌(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑁) | ||
| Theorem | uptposlem 49186 | Lemma for uptpos 49187. (Contributed by Zhi Wang, 4-Nov-2025.) |
| ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝑂 UP 𝑃)𝑊)𝑀) & ⊢ (𝜑 → tpos 𝐺 = 𝐻) ⇒ ⊢ (𝜑 → tpos 𝐻 = 𝐺) | ||
| Theorem | uptpos 49187 | Rewrite the predicate of universal property in the form of opposite functor. (Contributed by Zhi Wang, 4-Nov-2025.) |
| ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝑂 UP 𝑃)𝑊)𝑀) & ⊢ (𝜑 → tpos 𝐺 = 𝐻) ⇒ ⊢ (𝜑 → 𝑋(〈𝐹, tpos 𝐻〉(𝑂 UP 𝑃)𝑊)𝑀) | ||
| Theorem | oppcuprcl4 49188 | Reverse closure for the class of universal property in opposite categories. (Contributed by Zhi Wang, 4-Nov-2025.) |
| ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝑂 UP 𝑃)𝑊)𝑀) & ⊢ 𝑂 = (oppCat‘𝐷) & ⊢ 𝐵 = (Base‘𝐷) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝐵) | ||
| Theorem | oppcuprcl3 49189 | Reverse closure for the class of universal property in opposite categories. (Contributed by Zhi Wang, 4-Nov-2025.) |
| ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝑂 UP 𝑃)𝑊)𝑀) & ⊢ 𝑃 = (oppCat‘𝐸) & ⊢ 𝐶 = (Base‘𝐸) ⇒ ⊢ (𝜑 → 𝑊 ∈ 𝐶) | ||
| Theorem | oppcuprcl5 49190 | Reverse closure for the class of universal property in opposite categories. (Contributed by Zhi Wang, 4-Nov-2025.) |
| ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝑂 UP 𝑃)𝑊)𝑀) & ⊢ 𝑃 = (oppCat‘𝐸) & ⊢ 𝐽 = (Hom ‘𝐸) ⇒ ⊢ (𝜑 → 𝑀 ∈ ((𝐹‘𝑋)𝐽𝑊)) | ||
| Theorem | oppcuprcl2 49191 | Reverse closure for the class of universal property in opposite categories. (Contributed by Zhi Wang, 4-Nov-2025.) |
| ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝑂 UP 𝑃)𝑊)𝑀) & ⊢ 𝑃 = (oppCat‘𝐸) & ⊢ 𝑂 = (oppCat‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝑉) & ⊢ (𝜑 → tpos 𝐺 = 𝐻) ⇒ ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐻) | ||
| Theorem | uprcl2a 49192 | Reverse closure for the class of universal property. (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ (𝜑 → 𝑋(𝐺(𝑂 UP 𝑃)𝑊)𝑀) ⇒ ⊢ (𝜑 → 𝐺 ∈ (𝑂 Func 𝑃)) | ||
| Theorem | oppfuprcl 49193 | Reverse closure for the class of universal property for opposite functors. (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ (𝜑 → 𝑋(𝐺(𝑂 UP 𝑃)𝑊)𝑀) & ⊢ 𝐺 = ( oppFunc ‘𝐹) & ⊢ 𝑂 = (oppCat‘𝐷) & ⊢ 𝑃 = (oppCat‘𝐸) & ⊢ (𝜑 → 𝐷 ∈ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) | ||
| Theorem | oppfuprcl2 49194 | Reverse closure for the class of universal property for opposite functors. (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ (𝜑 → 𝑋(𝐺(𝑂 UP 𝑃)𝑊)𝑀) & ⊢ 𝐺 = ( oppFunc ‘𝐹) & ⊢ 𝑂 = (oppCat‘𝐷) & ⊢ 𝑃 = (oppCat‘𝐸) & ⊢ (𝜑 → 𝐷 ∈ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 = 〈𝐴, 𝐵〉) ⇒ ⊢ (𝜑 → 𝐴(𝐷 Func 𝐸)𝐵) | ||
| Theorem | oppcup3lem 49195* | Lemma for oppcup3 49198. (Contributed by Zhi Wang, 4-Nov-2025.) |
| ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ∀𝑛 ∈ ((𝐹‘𝑦)𝐽𝑍)∃!𝑘 ∈ (𝑦𝐻𝑋)𝑛 = (𝑀(〈(𝐹‘𝑦), (𝐹‘𝑋)〉𝑂𝑍)((𝑦𝐺𝑋)‘𝑘))) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑁 ∈ ((𝐹‘𝑌)𝐽𝑍)) ⇒ ⊢ (𝜑 → ∃!𝑙 ∈ (𝑌𝐻𝑋)𝑁 = (𝑀(〈(𝐹‘𝑌), (𝐹‘𝑋)〉𝑂𝑍)((𝑌𝐺𝑋)‘𝑙))) | ||
| Theorem | oppcup 49196* | The universal pair 〈𝑋, 𝑀〉 from a functor to an object is universal from an object to a functor in the opposite category. (Contributed by Zhi Wang, 24-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ ∙ = (comp‘𝐸) & ⊢ (𝜑 → 𝑊 ∈ 𝐶) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ ((𝐹‘𝑋)𝐽𝑊)) & ⊢ 𝑂 = (oppCat‘𝐷) & ⊢ 𝑃 = (oppCat‘𝐸) ⇒ ⊢ (𝜑 → (𝑋(〈𝐹, tpos 𝐺〉(𝑂 UP 𝑃)𝑊)𝑀 ↔ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ ((𝐹‘𝑦)𝐽𝑊)∃!𝑘 ∈ (𝑦𝐻𝑋)𝑔 = (𝑀(〈(𝐹‘𝑦), (𝐹‘𝑋)〉 ∙ 𝑊)((𝑦𝐺𝑋)‘𝑘)))) | ||
| Theorem | oppcup2 49197* | The universal property for the universal pair 〈𝑋, 𝑀〉 from a functor to an object, expressed explicitly. (Contributed by Zhi Wang, 4-Nov-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ ∙ = (comp‘𝐸) & ⊢ 𝑂 = (oppCat‘𝐷) & ⊢ 𝑃 = (oppCat‘𝐸) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝑋(〈𝐹, tpos 𝐺〉(𝑂 UP 𝑃)𝑊)𝑀) ⇒ ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ ((𝐹‘𝑦)𝐽𝑊)∃!𝑘 ∈ (𝑦𝐻𝑋)𝑔 = (𝑀(〈(𝐹‘𝑦), (𝐹‘𝑋)〉 ∙ 𝑊)((𝑦𝐺𝑋)‘𝑘))) | ||
| Theorem | oppcup3 49198* | The universal property for the universal pair 〈𝑋, 𝑀〉 from a functor to an object, expressed explicitly. (Contributed by Zhi Wang, 4-Nov-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ ∙ = (comp‘𝐸) & ⊢ 𝑂 = (oppCat‘𝐷) & ⊢ 𝑃 = (oppCat‘𝐸) & ⊢ (𝜑 → 𝑋(〈𝐹, 𝑇〉(𝑂 UP 𝑃)𝑊)𝑀) & ⊢ (𝜑 → tpos 𝑇 = 𝐺) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑁 ∈ ((𝐹‘𝑌)𝐽𝑊)) ⇒ ⊢ (𝜑 → ∃!𝑘 ∈ (𝑌𝐻𝑋)𝑁 = (𝑀(〈(𝐹‘𝑌), (𝐹‘𝑋)〉 ∙ 𝑊)((𝑌𝐺𝑋)‘𝑘))) | ||
| Theorem | uptrlem1 49199* | Lemma for uptr 49202. (Contributed by Zhi Wang, 16-Nov-2025.) |
| ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐼 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ ∙ = (comp‘𝐷) & ⊢ ⚬ = (comp‘𝐸) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐷)) & ⊢ (𝜑 → (𝑀‘𝑋) = 𝑌) & ⊢ (𝜑 → 𝑍 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝑊 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝐴 ∈ (𝑋𝐼(𝐹‘𝑍))) & ⊢ (𝜑 → ((𝑋𝑁(𝐹‘𝑍))‘𝐴) = 𝐵) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝑀((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑁) & ⊢ (𝜑 → (〈𝑀, 𝑁〉 ∘func 〈𝐹, 𝐺〉) = 〈𝐾, 𝐿〉) ⇒ ⊢ (𝜑 → (∀ℎ ∈ (𝑌𝐽(𝐾‘𝑊))∃!𝑘 ∈ (𝑍𝐻𝑊)ℎ = (((𝑍𝐿𝑊)‘𝑘)(〈𝑌, (𝐾‘𝑍)〉 ⚬ (𝐾‘𝑊))𝐵) ↔ ∀𝑔 ∈ (𝑋𝐼(𝐹‘𝑊))∃!𝑘 ∈ (𝑍𝐻𝑊)𝑔 = (((𝑍𝐺𝑊)‘𝑘)(〈𝑋, (𝐹‘𝑍)〉 ∙ (𝐹‘𝑊))𝐴))) | ||
| Theorem | uptrlem2 49200* | Lemma for uptr 49202. (Contributed by Zhi Wang, 16-Nov-2025.) |
| ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐼 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ ∙ = (comp‘𝐷) & ⊢ ⚬ = (comp‘𝐸) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → ((1st ‘𝐾)‘𝑋) = 𝑌) & ⊢ (𝜑 → 𝑍 ∈ 𝐴) & ⊢ (𝜑 → 𝑊 ∈ 𝐴) & ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐼((1st ‘𝐹)‘𝑍))) & ⊢ (𝜑 → ((𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑍))‘𝑀) = 𝑁) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) & ⊢ (𝜑 → (𝐾 ∘func 𝐹) = 𝐺) ⇒ ⊢ (𝜑 → (∀ℎ ∈ (𝑌𝐽((1st ‘𝐺)‘𝑊))∃!𝑘 ∈ (𝑍𝐻𝑊)ℎ = (((𝑍(2nd ‘𝐺)𝑊)‘𝑘)(〈𝑌, ((1st ‘𝐺)‘𝑍)〉 ⚬ ((1st ‘𝐺)‘𝑊))𝑁) ↔ ∀𝑔 ∈ (𝑋𝐼((1st ‘𝐹)‘𝑊))∃!𝑘 ∈ (𝑍𝐻𝑊)𝑔 = (((𝑍(2nd ‘𝐹)𝑊)‘𝑘)(〈𝑋, ((1st ‘𝐹)‘𝑍)〉 ∙ ((1st ‘𝐹)‘𝑊))𝑀))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |