| Metamath
Proof Explorer Theorem List (p. 492 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30909) |
(30910-32432) |
(32433-49920) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | ipolubdm 49101* | The domain of the LUB of the inclusion poset. (Contributed by Zhi Wang, 28-Sep-2024.) |
| ⊢ 𝐼 = (toInc‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐹) & ⊢ (𝜑 → 𝑈 = (lub‘𝐼)) & ⊢ (𝜑 → 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) ⇒ ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ 𝑇 ∈ 𝐹)) | ||
| Theorem | ipolub 49102* | The LUB of the inclusion poset. (hypotheses "ipolub.s" and "ipolub.t" could be eliminated with 𝑆 ∈ dom 𝑈.) Could be significantly shortened if poslubdg 18328 is in quantified form. mrelatlub 18478 could potentially be shortened using this. See mrelatlubALT 49109. (Contributed by Zhi Wang, 28-Sep-2024.) |
| ⊢ 𝐼 = (toInc‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐹) & ⊢ (𝜑 → 𝑈 = (lub‘𝐼)) & ⊢ (𝜑 → 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) & ⊢ (𝜑 → 𝑇 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝑈‘𝑆) = 𝑇) | ||
| Theorem | ipoglblem 49103* | Lemma for ipoglbdm 49104 and ipoglb 49105. (Contributed by Zhi Wang, 29-Sep-2024.) |
| ⊢ 𝐼 = (toInc‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐹) & ⊢ ≤ = (le‘𝐼) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐹) → ((𝑋 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑋)) ↔ (∀𝑦 ∈ 𝑆 𝑋 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑋)))) | ||
| Theorem | ipoglbdm 49104* | The domain of the GLB of the inclusion poset. (Contributed by Zhi Wang, 29-Sep-2024.) |
| ⊢ 𝐼 = (toInc‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐹) & ⊢ (𝜑 → 𝐺 = (glb‘𝐼)) & ⊢ (𝜑 → 𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆}) ⇒ ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ 𝑇 ∈ 𝐹)) | ||
| Theorem | ipoglb 49105* | The GLB of the inclusion poset. (hypotheses "ipolub.s" and "ipoglb.t" could be eliminated with 𝑆 ∈ dom 𝐺.) Could be significantly shortened if posglbdg 18329 is in quantified form. mrelatglb 18476 could potentially be shortened using this. See mrelatglbALT 49110. (Contributed by Zhi Wang, 29-Sep-2024.) |
| ⊢ 𝐼 = (toInc‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐹) & ⊢ (𝜑 → 𝐺 = (glb‘𝐼)) & ⊢ (𝜑 → 𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆}) & ⊢ (𝜑 → 𝑇 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺‘𝑆) = 𝑇) | ||
| Theorem | ipolub0 49106 | The LUB of the empty set is the intersection of the base. (Contributed by Zhi Wang, 30-Sep-2024.) |
| ⊢ 𝐼 = (toInc‘𝐹) & ⊢ (𝜑 → 𝑈 = (lub‘𝐼)) & ⊢ (𝜑 → ∩ 𝐹 ∈ 𝐹) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑈‘∅) = ∩ 𝐹) | ||
| Theorem | ipolub00 49107 | The LUB of the empty set is the empty set if it is contained. (Contributed by Zhi Wang, 30-Sep-2024.) |
| ⊢ 𝐼 = (toInc‘𝐹) & ⊢ (𝜑 → 𝑈 = (lub‘𝐼)) & ⊢ (𝜑 → ∅ ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝑈‘∅) = ∅) | ||
| Theorem | ipoglb0 49108 | The GLB of the empty set is the union of the base. (Contributed by Zhi Wang, 30-Sep-2024.) |
| ⊢ 𝐼 = (toInc‘𝐹) & ⊢ (𝜑 → 𝐺 = (glb‘𝐼)) & ⊢ (𝜑 → ∪ 𝐹 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺‘∅) = ∪ 𝐹) | ||
| Theorem | mrelatlubALT 49109 | Least upper bounds in a Moore space are realized by the closure of the union. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Proof shortened by Zhi Wang, 29-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐼 = (toInc‘𝐶) & ⊢ 𝐹 = (mrCls‘𝐶) & ⊢ 𝐿 = (lub‘𝐼) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) → (𝐿‘𝑈) = (𝐹‘∪ 𝑈)) | ||
| Theorem | mrelatglbALT 49110 | Greatest lower bounds in a Moore space are realized by intersections. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Proof shortened by Zhi Wang, 29-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐼 = (toInc‘𝐶) & ⊢ 𝐺 = (glb‘𝐼) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → (𝐺‘𝑈) = ∩ 𝑈) | ||
| Theorem | mreclat 49111 | A Moore space is a complete lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024.) |
| ⊢ 𝐼 = (toInc‘𝐶) ⇒ ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐼 ∈ CLat) | ||
| Theorem | topclat 49112 | A topology is a complete lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024.) |
| ⊢ 𝐼 = (toInc‘𝐽) ⇒ ⊢ (𝐽 ∈ Top → 𝐼 ∈ CLat) | ||
| Theorem | toplatglb0 49113 | The empty intersection in a topology is realized by the base set. (Contributed by Zhi Wang, 30-Sep-2024.) |
| ⊢ 𝐼 = (toInc‘𝐽) & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ 𝐺 = (glb‘𝐼) ⇒ ⊢ (𝜑 → (𝐺‘∅) = ∪ 𝐽) | ||
| Theorem | toplatlub 49114 | Least upper bounds in a topology are realized by unions. (Contributed by Zhi Wang, 30-Sep-2024.) |
| ⊢ 𝐼 = (toInc‘𝐽) & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑆 ⊆ 𝐽) & ⊢ 𝑈 = (lub‘𝐼) ⇒ ⊢ (𝜑 → (𝑈‘𝑆) = ∪ 𝑆) | ||
| Theorem | toplatglb 49115 | Greatest lower bounds in a topology are realized by the interior of the intersection. (Contributed by Zhi Wang, 30-Sep-2024.) |
| ⊢ 𝐼 = (toInc‘𝐽) & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑆 ⊆ 𝐽) & ⊢ 𝐺 = (glb‘𝐼) & ⊢ (𝜑 → 𝑆 ≠ ∅) ⇒ ⊢ (𝜑 → (𝐺‘𝑆) = ((int‘𝐽)‘∩ 𝑆)) | ||
| Theorem | toplatjoin 49116 | Joins in a topology are realized by unions. (Contributed by Zhi Wang, 30-Sep-2024.) |
| ⊢ 𝐼 = (toInc‘𝐽) & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝐴 ∈ 𝐽) & ⊢ (𝜑 → 𝐵 ∈ 𝐽) & ⊢ ∨ = (join‘𝐼) ⇒ ⊢ (𝜑 → (𝐴 ∨ 𝐵) = (𝐴 ∪ 𝐵)) | ||
| Theorem | toplatmeet 49117 | Meets in a topology are realized by intersections. (Contributed by Zhi Wang, 30-Sep-2024.) |
| ⊢ 𝐼 = (toInc‘𝐽) & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝐴 ∈ 𝐽) & ⊢ (𝜑 → 𝐵 ∈ 𝐽) & ⊢ ∧ = (meet‘𝐼) ⇒ ⊢ (𝜑 → (𝐴 ∧ 𝐵) = (𝐴 ∩ 𝐵)) | ||
| Theorem | topdlat 49118 | A topology is a distributive lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024.) |
| ⊢ 𝐼 = (toInc‘𝐽) ⇒ ⊢ (𝐽 ∈ Top → 𝐼 ∈ DLat) | ||
| Theorem | elmgpcntrd 49119* | The center of a ring. (Contributed by Zhi Wang, 11-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑍 = (Cntr‘𝑀) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑋(.r‘𝑅)𝑦) = (𝑦(.r‘𝑅)𝑋)) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝑍) | ||
| Theorem | asclelbas 49120 | Lifted scalars are in the base set of the algebra. (Contributed by Zhi Wang, 11-Sep-2025.) (Proof shortened by Thierry Arnoux, 22-Sep-2025.) |
| ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ AssAlg) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐴‘𝐶) ∈ (Base‘𝑊)) | ||
| Theorem | asclelbasALT 49121 | Alternate proof of asclelbas 49120. (Contributed by Zhi Wang, 11-Sep-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ AssAlg) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐴‘𝐶) ∈ (Base‘𝑊)) | ||
| Theorem | asclcntr 49122 | The algebra scalar lifting function maps into the center of the algebra. Equivalently, a lifted scalar is a center of the algebra. (Contributed by Zhi Wang, 11-Sep-2025.) |
| ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ AssAlg) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ 𝑀 = (mulGrp‘𝑊) ⇒ ⊢ (𝜑 → (𝐴‘𝐶) ∈ (Cntr‘𝑀)) | ||
| Theorem | asclcom 49123 |
Scalars are commutative after being lifted.
However, the scalars themselves are not necessarily commutative if the algebra is not a faithful module. For example, Let 𝐹 be the 2 by 2 upper triangular matrix algebra over a commutative ring 𝑊. It is provable that 𝐹 is in general non-commutative. Define scalar multiplication 𝐶 · 𝑋 as multipying the top-left entry, which is a "vector" element of 𝑊, of the "scalar" 𝐶, which is now an upper triangular matrix, with the "vector" 𝑋 ∈ (Base‘𝑊). Equivalently, the algebra scalar lifting function is not necessarily injective unless the algebra is faithful. Therefore, all "scalar injection" was renamed. Alternate proof involves assa2ass 21810, assa2ass2 21811, and asclval 21827, by setting 𝑋 and 𝑌 the multiplicative identity of the algebra. (Contributed by Zhi Wang, 11-Sep-2025.) |
| ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ AssAlg) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ ∗ = (.r‘𝐹) & ⊢ (𝜑 → 𝐷 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐴‘(𝐶 ∗ 𝐷)) = (𝐴‘(𝐷 ∗ 𝐶))) | ||
| Theorem | homf0 49124 | The base is empty iff the functionalized Hom-set operation is empty. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ ((Base‘𝐶) = ∅ ↔ (Homf ‘𝐶) = ∅) | ||
| Theorem | catprslem 49125* | Lemma for catprs 49126. (Contributed by Zhi Wang, 18-Sep-2024.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ≤ 𝑌 ↔ (𝑋𝐻𝑌) ≠ ∅)) | ||
| Theorem | catprs 49126* | A preorder can be extracted from a category. See catprs2 49127 for more details. (Contributed by Zhi Wang, 18-Sep-2024.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ Cat) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍))) | ||
| Theorem | catprs2 49127* | A category equipped with the induced preorder, where an object 𝑥 is defined to be "less than or equal to" 𝑦 iff there is a morphism from 𝑥 to 𝑦, is a preordered set, or a proset. The category might not be thin. See catprsc 49128 and catprsc2 49129 for constructions satisfying the hypothesis "catprs.1". See catprs 49126 for a more primitive version. See prsthinc 49579 for constructing a thin category from a proset. (Contributed by Zhi Wang, 18-Sep-2024.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → ≤ = (le‘𝐶)) ⇒ ⊢ (𝜑 → 𝐶 ∈ Proset ) | ||
| Theorem | catprsc 49128* | A construction of the preorder induced by a category. See catprs2 49127 for details. See also catprsc2 49129 for an alternate construction. (Contributed by Zhi Wang, 18-Sep-2024.) |
| ⊢ (𝜑 → ≤ = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)}) ⇒ ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧 ≤ 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅)) | ||
| Theorem | catprsc2 49129* | An alternate construction of the preorder induced by a category. See catprs2 49127 for details. See also catprsc 49128 for a different construction. The two constructions are different because df-cat 17584 does not require the domain of 𝐻 to be 𝐵 × 𝐵. (Contributed by Zhi Wang, 23-Sep-2024.) |
| ⊢ (𝜑 → ≤ = {〈𝑥, 𝑦〉 ∣ (𝑥𝐻𝑦) ≠ ∅}) ⇒ ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧 ≤ 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅)) | ||
| Theorem | endmndlem 49130 | A diagonal hom-set in a category equipped with the restriction of the composition has a structure of monoid. See also df-mndtc 49693 for converting a monoid to a category. Lemma for bj-endmnd 37373. (Contributed by Zhi Wang, 25-Sep-2024.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → (𝑋𝐻𝑋) = (Base‘𝑀)) & ⊢ (𝜑 → (〈𝑋, 𝑋〉 · 𝑋) = (+g‘𝑀)) ⇒ ⊢ (𝜑 → 𝑀 ∈ Mnd) | ||
| Theorem | oppccatb 49131 | An opposite category is a category. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐶 ∈ Cat ↔ 𝑂 ∈ Cat)) | ||
| Theorem | oppcmndclem 49132 | Lemma for oppcmndc 49134. Everything is true for two distinct elements in a singleton or an empty set (since it is impossible). Note that if this theorem and oppcendc 49133 are in ¬ 𝑥 = 𝑦 form, then both proofs should be one step shorter. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ (𝜑 → 𝐵 = {𝐴}) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ≠ 𝑌 → 𝜓)) | ||
| Theorem | oppcendc 49133* | The opposite category of a category whose morphisms are all endomorphisms has the same base and hom-sets as the original category. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 ≠ 𝑦 → (𝑥𝐻𝑦) = ∅)) ⇒ ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝑂)) | ||
| Theorem | oppcmndc 49134 | The opposite category of a category whose base set is a singleton or an empty set has the same base and hom-sets as the original category. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝐵 = {𝑋}) ⇒ ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝑂)) | ||
| Theorem | idmon 49135 | An identity arrow, or an identity morphism, is a monomorphism. (Contributed by Zhi Wang, 21-Sep-2024.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝑀 = (Mono‘𝐶) ⇒ ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝑀𝑋)) | ||
| Theorem | idepi 49136 | An identity arrow, or an identity morphism, is an epimorphism. (Contributed by Zhi Wang, 21-Sep-2024.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝐸 = (Epi‘𝐶) ⇒ ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐸𝑋)) | ||
| Theorem | sectrcl 49137 | Reverse closure for section relations. (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ 𝑆 = (Sect‘𝐶) & ⊢ (𝜑 → 𝐹(𝑋𝑆𝑌)𝐺) ⇒ ⊢ (𝜑 → 𝐶 ∈ Cat) | ||
| Theorem | sectrcl2 49138 | Reverse closure for section relations. (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ 𝑆 = (Sect‘𝐶) & ⊢ (𝜑 → 𝐹(𝑋𝑆𝑌)𝐺) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) | ||
| Theorem | invrcl 49139 | Reverse closure for inverse relations. (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ 𝑁 = (Inv‘𝐶) & ⊢ (𝜑 → 𝐹(𝑋𝑁𝑌)𝐺) ⇒ ⊢ (𝜑 → 𝐶 ∈ Cat) | ||
| Theorem | invrcl2 49140 | Reverse closure for inverse relations. (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ 𝑁 = (Inv‘𝐶) & ⊢ (𝜑 → 𝐹(𝑋𝑁𝑌)𝐺) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) | ||
| Theorem | isinv2 49141 | The property "𝐹 is an inverse of 𝐺". (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ 𝑁 = (Inv‘𝐶) & ⊢ 𝑆 = (Sect‘𝐶) ⇒ ⊢ (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺 ∧ 𝐺(𝑌𝑆𝑋)𝐹)) | ||
| Theorem | isisod 49142 | The predicate "is an isomorphism" (deduction form). (Contributed by Zhi Wang, 16-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ 𝐼 = (Iso‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑋)) & ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋)) & ⊢ (𝜑 → (𝐹(〈𝑌, 𝑋〉 · 𝑌)𝐺) = ( 1 ‘𝑌)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) | ||
| Theorem | upeu2lem 49143* | Lemma for upeu2 49287. There exists a unique morphism from 𝑌 to 𝑍 that commutes if 𝐹:𝑋⟶𝑌 is an isomorphism. (Contributed by Zhi Wang, 20-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ 𝐼 = (Iso‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑋𝐻𝑍)) ⇒ ⊢ (𝜑 → ∃!𝑘 ∈ (𝑌𝐻𝑍)𝐺 = (𝑘(〈𝑋, 𝑌〉 · 𝑍)𝐹)) | ||
| Theorem | sectfn 49144 | The function value of the function returning the sections of a category is a function over the Cartesian square of the base set of the category. (Contributed by Zhi Wang, 27-Oct-2025.) |
| ⊢ (𝐶 ∈ Cat → (Sect‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) | ||
| Theorem | invfn 49145 | The function value of the function returning the inverses of a category is a function over the Cartesian square of the base set of the category. Simplifies isofn 17692 (see isofnALT 49146). (Contributed by Zhi Wang, 27-Oct-2025.) |
| ⊢ (𝐶 ∈ Cat → (Inv‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) | ||
| Theorem | isofnALT 49146 | The function value of the function returning the isomorphisms of a category is a function over the Cartesian square of the base set of the category. (Contributed by AV, 5-Apr-2020.) (Proof shortened by Zhi Wang, 3-Nov-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) | ||
| Theorem | isofval2 49147* | Function value of the function returning the isomorphisms of a category. (Contributed by Zhi Wang, 27-Oct-2025.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑁 = (Inv‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝐼 = (Iso‘𝐶) ⇒ ⊢ (𝜑 → 𝐼 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ dom (𝑥𝑁𝑦))) | ||
| Theorem | isorcl 49148 | Reverse closure for isomorphism relations. (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ 𝐼 = (Iso‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) ⇒ ⊢ (𝜑 → 𝐶 ∈ Cat) | ||
| Theorem | isorcl2 49149 | Reverse closure for isomorphism relations. (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ 𝐼 = (Iso‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) | ||
| Theorem | isoval2 49150 | The isomorphisms are the domain of the inverse relation. (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ 𝑁 = (Inv‘𝐶) & ⊢ 𝐼 = (Iso‘𝐶) ⇒ ⊢ (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌) | ||
| Theorem | sectpropdlem 49151 | Lemma for sectpropd 49152. (Contributed by Zhi Wang, 27-Oct-2025.) |
| ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) ⇒ ⊢ ((𝜑 ∧ 𝑃 ∈ (Sect‘𝐶)) → 𝑃 ∈ (Sect‘𝐷)) | ||
| Theorem | sectpropd 49152 | Two structures with the same base, hom-sets and composition operation have the same sections. (Contributed by Zhi Wang, 27-Oct-2025.) |
| ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) ⇒ ⊢ (𝜑 → (Sect‘𝐶) = (Sect‘𝐷)) | ||
| Theorem | invpropdlem 49153 | Lemma for invpropd 49154. (Contributed by Zhi Wang, 27-Oct-2025.) |
| ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) ⇒ ⊢ ((𝜑 ∧ 𝑃 ∈ (Inv‘𝐶)) → 𝑃 ∈ (Inv‘𝐷)) | ||
| Theorem | invpropd 49154 | Two structures with the same base, hom-sets and composition operation have the same inverses. (Contributed by Zhi Wang, 27-Oct-2025.) |
| ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) ⇒ ⊢ (𝜑 → (Inv‘𝐶) = (Inv‘𝐷)) | ||
| Theorem | isopropdlem 49155 | Lemma for isopropd 49156. (Contributed by Zhi Wang, 27-Oct-2025.) |
| ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) ⇒ ⊢ ((𝜑 ∧ 𝑃 ∈ (Iso‘𝐶)) → 𝑃 ∈ (Iso‘𝐷)) | ||
| Theorem | isopropd 49156 | Two structures with the same base, hom-sets and composition operation have the same isomorphisms. (Contributed by Zhi Wang, 27-Oct-2025.) |
| ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) ⇒ ⊢ (𝜑 → (Iso‘𝐶) = (Iso‘𝐷)) | ||
| Theorem | cicfn 49157 | ≃𝑐 is a function on Cat. (Contributed by Zhi Wang, 26-Oct-2025.) |
| ⊢ ≃𝑐 Fn Cat | ||
| Theorem | cicrcl2 49158 | Isomorphism implies the structure being a category. (Contributed by Zhi Wang, 26-Oct-2025.) |
| ⊢ (𝑅( ≃𝑐 ‘𝐶)𝑆 → 𝐶 ∈ Cat) | ||
| Theorem | oppccic 49159 | Isomorphic objects are isomorphic in the opposite category. (Contributed by Zhi Wang, 26-Oct-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝑅( ≃𝑐 ‘𝐶)𝑆) ⇒ ⊢ (𝜑 → 𝑅( ≃𝑐 ‘𝑂)𝑆) | ||
| Theorem | relcic 49160 | The set of isomorphic objects is a relation. Simplifies cicer 17723 (see cicerALT 49161). (Contributed by Zhi Wang, 27-Oct-2025.) |
| ⊢ (𝐶 ∈ Cat → Rel ( ≃𝑐 ‘𝐶)) | ||
| Theorem | cicerALT 49161 | Isomorphism is an equivalence relation on objects of a category. Remark 3.16 in [Adamek] p. 29. (Contributed by AV, 5-Apr-2020.) (Proof shortened by Zhi Wang, 3-Nov-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐶 ∈ Cat → ( ≃𝑐 ‘𝐶) Er (Base‘𝐶)) | ||
| Theorem | cic1st2nd 49162 | Reconstruction of a pair of isomorphic objects in terms of its ordered pair components. (Contributed by Zhi Wang, 27-Oct-2025.) |
| ⊢ (𝑃 ∈ ( ≃𝑐 ‘𝐶) → 𝑃 = 〈(1st ‘𝑃), (2nd ‘𝑃)〉) | ||
| Theorem | cic1st2ndbr 49163 | Rewrite the predicate of isomorphic objects with separated parts. (Contributed by Zhi Wang, 27-Oct-2025.) |
| ⊢ (𝑃 ∈ ( ≃𝑐 ‘𝐶) → (1st ‘𝑃)( ≃𝑐 ‘𝐶)(2nd ‘𝑃)) | ||
| Theorem | cicpropdlem 49164 | Lemma for cicpropd 49165. (Contributed by Zhi Wang, 27-Oct-2025.) |
| ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) ⇒ ⊢ ((𝜑 ∧ 𝑃 ∈ ( ≃𝑐 ‘𝐶)) → 𝑃 ∈ ( ≃𝑐 ‘𝐷)) | ||
| Theorem | cicpropd 49165 | Two structures with the same base, hom-sets and composition operation have the same isomorphic objects. (Contributed by Zhi Wang, 27-Oct-2025.) |
| ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) ⇒ ⊢ (𝜑 → ( ≃𝑐 ‘𝐶) = ( ≃𝑐 ‘𝐷)) | ||
| Theorem | oppccicb 49166 | Isomorphic objects are isomorphic in the opposite category. (Contributed by Zhi Wang, 27-Oct-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) ⇒ ⊢ (𝑅( ≃𝑐 ‘𝐶)𝑆 ↔ 𝑅( ≃𝑐 ‘𝑂)𝑆) | ||
| Theorem | oppcciceq 49167 | The opposite category has the same isomorphic objects as the original category. (Contributed by Zhi Wang, 27-Oct-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) ⇒ ⊢ ( ≃𝑐 ‘𝐶) = ( ≃𝑐 ‘𝑂) | ||
| Theorem | dmdm 49168 | The double domain of a function on a Cartesian square. (Contributed by Zhi Wang, 1-Nov-2025.) |
| ⊢ (𝐴 Fn (𝐵 × 𝐵) → 𝐵 = dom dom 𝐴) | ||
| Theorem | iinfssclem1 49169* | Lemma for iinfssc 49172. (Contributed by Zhi Wang, 31-Oct-2025.) |
| ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐻 ⊆cat 𝐽) & ⊢ (𝜑 → 𝐾 = (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 dom 𝐻 ↦ ∩ 𝑥 ∈ 𝐴 (𝐻‘𝑦))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 = dom dom 𝐻) & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (𝜑 → 𝐾 = (𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝑆, 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 𝑆 ↦ ∩ 𝑥 ∈ 𝐴 (𝑧𝐻𝑤))) | ||
| Theorem | iinfssclem2 49170* | Lemma for iinfssc 49172. (Contributed by Zhi Wang, 31-Oct-2025.) |
| ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐻 ⊆cat 𝐽) & ⊢ (𝜑 → 𝐾 = (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 dom 𝐻 ↦ ∩ 𝑥 ∈ 𝐴 (𝐻‘𝑦))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 = dom dom 𝐻) & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (𝜑 → 𝐾 Fn (∩ 𝑥 ∈ 𝐴 𝑆 × ∩ 𝑥 ∈ 𝐴 𝑆)) | ||
| Theorem | iinfssclem3 49171* | Lemma for iinfssc 49172. (Contributed by Zhi Wang, 31-Oct-2025.) |
| ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐻 ⊆cat 𝐽) & ⊢ (𝜑 → 𝐾 = (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 dom 𝐻 ↦ ∩ 𝑥 ∈ 𝐴 (𝐻‘𝑦))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 = dom dom 𝐻) & ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑋 ∈ ∩ 𝑥 ∈ 𝐴 𝑆) & ⊢ (𝜑 → 𝑌 ∈ ∩ 𝑥 ∈ 𝐴 𝑆) ⇒ ⊢ (𝜑 → (𝑋𝐾𝑌) = ∩ 𝑥 ∈ 𝐴 (𝑋𝐻𝑌)) | ||
| Theorem | iinfssc 49172* | Indexed intersection of subcategories is a subcategory (the category-agnostic version). (Contributed by Zhi Wang, 31-Oct-2025.) |
| ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐻 ⊆cat 𝐽) & ⊢ (𝜑 → 𝐾 = (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 dom 𝐻 ↦ ∩ 𝑥 ∈ 𝐴 (𝐻‘𝑦))) ⇒ ⊢ (𝜑 → 𝐾 ⊆cat 𝐽) | ||
| Theorem | iinfsubc 49173* | Indexed intersection of subcategories is a subcategory. (Contributed by Zhi Wang, 31-Oct-2025.) |
| ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐻 ∈ (Subcat‘𝐶)) & ⊢ (𝜑 → 𝐾 = (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 dom 𝐻 ↦ ∩ 𝑥 ∈ 𝐴 (𝐻‘𝑦))) ⇒ ⊢ (𝜑 → 𝐾 ∈ (Subcat‘𝐶)) | ||
| Theorem | iinfprg 49174* | Indexed intersection of functions with an unordered pair index. (Contributed by Zhi Wang, 31-Oct-2025.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴‘𝑥) ∩ (𝐵‘𝑥))) = (𝑥 ∈ ∩ 𝑦 ∈ {𝐴, 𝐵}dom 𝑦 ↦ ∩ 𝑦 ∈ {𝐴, 𝐵} (𝑦‘𝑥))) | ||
| Theorem | infsubc 49175* | The intersection of two subcategories is a subcategory. (Contributed by Zhi Wang, 31-Oct-2025.) |
| ⊢ ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↦ ((𝐴‘𝑥) ∩ (𝐵‘𝑥))) ∈ (Subcat‘𝐶)) | ||
| Theorem | infsubc2 49176* | The intersection of two subcategories is a subcategory. (Contributed by Zhi Wang, 31-Oct-2025.) |
| ⊢ ((𝐴 ∈ (Subcat‘𝐶) ∧ 𝐵 ∈ (Subcat‘𝐶)) → (𝑥 ∈ (dom dom 𝐴 ∩ dom dom 𝐵), 𝑦 ∈ (dom dom 𝐴 ∩ dom dom 𝐵) ↦ ((𝑥𝐴𝑦) ∩ (𝑥𝐵𝑦))) ∈ (Subcat‘𝐶)) | ||
| Theorem | infsubc2d 49177* | The intersection of two subcategories is a subcategory. (Contributed by Zhi Wang, 31-Oct-2025.) |
| ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) & ⊢ (𝜑 → 𝐽 Fn (𝑇 × 𝑇)) & ⊢ (𝜑 → 𝐻 ∈ (Subcat‘𝐶)) & ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) ⇒ ⊢ (𝜑 → (𝑥 ∈ (𝑆 ∩ 𝑇), 𝑦 ∈ (𝑆 ∩ 𝑇) ↦ ((𝑥𝐻𝑦) ∩ (𝑥𝐽𝑦))) ∈ (Subcat‘𝐶)) | ||
| Theorem | discsubclem 49178* | Lemma for discsubc 49179. (Contributed by Zhi Wang, 1-Nov-2025.) |
| ⊢ 𝐽 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅)) ⇒ ⊢ 𝐽 Fn (𝑆 × 𝑆) | ||
| Theorem | discsubc 49179* | A discrete category, whose only morphisms are the identity morphisms, is a subcategory. (Contributed by Zhi Wang, 1-Nov-2025.) |
| ⊢ 𝐽 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅)) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐼 = (Id‘𝐶) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ Cat) ⇒ ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) | ||
| Theorem | iinfconstbaslem 49180* | Lemma for iinfconstbas 49181. (Contributed by Zhi Wang, 1-Nov-2025.) |
| ⊢ 𝐽 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅)) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐼 = (Id‘𝐶) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐴 = ((Subcat‘𝐶) ∩ {𝑗 ∣ 𝑗 Fn (𝑆 × 𝑆)})) ⇒ ⊢ (𝜑 → 𝐽 ∈ 𝐴) | ||
| Theorem | iinfconstbas 49181* | The discrete category is the indexed intersection of all subcategories with the same base. (Contributed by Zhi Wang, 1-Nov-2025.) |
| ⊢ 𝐽 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅)) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐼 = (Id‘𝐶) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐴 = ((Subcat‘𝐶) ∩ {𝑗 ∣ 𝑗 Fn (𝑆 × 𝑆)})) ⇒ ⊢ (𝜑 → 𝐽 = (𝑧 ∈ ∩ ℎ ∈ 𝐴 dom ℎ ↦ ∩ ℎ ∈ 𝐴 (ℎ‘𝑧))) | ||
| Theorem | nelsubclem 49182* | Lemma for nelsubc 49183. (Contributed by Zhi Wang, 5-Nov-2025.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ (𝜑 → 𝑆 ≠ ∅) & ⊢ (𝜑 → 𝐽 = ((𝑆 × 𝑆) × {∅})) & ⊢ 𝐻 = (Homf ‘𝐶) ⇒ ⊢ (𝜑 → (𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽 ⊆cat 𝐻 ∧ (¬ ∀𝑥 ∈ 𝑆 𝐼 ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)𝜓)))) | ||
| Theorem | nelsubc 49183* | An empty "hom-set" for non-empty base satisfies all conditions for a subcategory but the existence of identity morphisms. (Contributed by Zhi Wang, 5-Nov-2025.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ (𝜑 → 𝑆 ≠ ∅) & ⊢ (𝜑 → 𝐽 = ((𝑆 × 𝑆) × {∅})) & ⊢ 𝐻 = (Homf ‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ · = (comp‘𝐶) ⇒ ⊢ (𝜑 → (𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽 ⊆cat 𝐻 ∧ (¬ ∀𝑥 ∈ 𝑆 ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) | ||
| Theorem | nelsubc2 49184 | An empty "hom-set" for non-empty base is not a subcategory. (Contributed by Zhi Wang, 5-Nov-2025.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ (𝜑 → 𝑆 ≠ ∅) & ⊢ (𝜑 → 𝐽 = ((𝑆 × 𝑆) × {∅})) & ⊢ (𝜑 → 𝐶 ∈ Cat) ⇒ ⊢ (𝜑 → ¬ 𝐽 ∈ (Subcat‘𝐶)) | ||
| Theorem | nelsubc3lem 49185* | Lemma for nelsubc3 49186. (Contributed by Zhi Wang, 5-Nov-2025.) |
| ⊢ 𝐶 ∈ Cat & ⊢ 𝐽 ∈ V & ⊢ 𝑆 ∈ V & ⊢ (𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽 ⊆cat (Homf ‘𝐶) ∧ (¬ ∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))) ⇒ ⊢ ∃𝑐 ∈ Cat ∃𝑗∃𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat (Homf ‘𝑐) ∧ (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))) | ||
| Theorem | nelsubc3 49186* |
Remark 4.2(2) of [Adamek] p. 48. There exists
a set satisfying all
conditions for a subcategory but the existence of identity morphisms.
Therefore such condition in df-subc 17729 is necessary.
Note that this theorem cheated a little bit because (𝐶 ↾cat 𝐽) is not a category. In fact (𝐶 ↾cat 𝐽) ∈ Cat is a stronger statement than the condition (d) of Definition 4.1(1) of [Adamek] p. 48, as stated here (see the proof of issubc3 17766). To construct such a category, see setc1onsubc 49717 and cnelsubc 49719. (Contributed by Zhi Wang, 5-Nov-2025.) |
| ⊢ ∃𝑐 ∈ Cat ∃𝑗∃𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat (Homf ‘𝑐) ∧ (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))) | ||
| Theorem | ssccatid 49187* | A category 𝐶 restricted by 𝐽 is a category if all of the following are satisfied: a) the base is a subset of base of 𝐶, b) all hom-sets are subsets of hom-sets of 𝐶, c) it has identity morphisms for all objects, d) the composition under 𝐶 is closed in 𝐽. But 𝐽 might not be a subcategory of 𝐶 (see cnelsubc 49719). (Contributed by Zhi Wang, 6-Nov-2025.) |
| ⊢ 𝐻 = (Homf ‘𝐶) & ⊢ 𝐷 = (𝐶 ↾cat 𝐽) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝐽 ⊆cat 𝐻) & ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 1 ∈ (𝑦𝐽𝑦)) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ∧ 𝑚 ∈ (𝑎𝐽𝑏))) → ( 1 (〈𝑎, 𝑏〉 · 𝑏)𝑚) = 𝑚) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ∧ 𝑚 ∈ (𝑎𝐽𝑏))) → (𝑚(〈𝑎, 𝑎〉 · 𝑏) 1 ) = 𝑚) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧)) ⇒ ⊢ (𝜑 → (𝐷 ∈ Cat ∧ (Id‘𝐷) = (𝑦 ∈ 𝑆 ↦ 1 ))) | ||
| Theorem | resccatlem 49188* | Lemma for resccat 49189. (Contributed by Zhi Wang, 6-Nov-2025.) |
| ⊢ 𝐷 = (𝐶 ↾cat 𝐽) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑆 = (Base‘𝐸) & ⊢ 𝐽 = (Homf ‘𝐸) & ⊢ · = (comp‘𝐶) & ⊢ ∙ = (comp‘𝐸) & ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉 ∙ 𝑧)𝑓)) & ⊢ (𝜑 → 𝐸 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐷 ∈ Cat ↔ 𝐸 ∈ Cat)) | ||
| Theorem | resccat 49189* | A class 𝐶 restricted by the hom-sets of another set 𝐸, whose base is a subset of the base of 𝐶 and whose composition is compatible with 𝐶, is a category iff 𝐸 is a category. Note that the compatibility condition "resccat.1" can be weakened by removing 𝑥 ∈ 𝑆 because 𝑓 ∈ (𝑥𝐽𝑦) implies these. (Contributed by Zhi Wang, 6-Nov-2025.) |
| ⊢ 𝐷 = (𝐶 ↾cat 𝐽) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑆 = (Base‘𝐸) & ⊢ 𝐽 = (Homf ‘𝐸) & ⊢ · = (comp‘𝐶) & ⊢ ∙ = (comp‘𝐸) & ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉 ∙ 𝑧)𝑓)) & ⊢ (𝜑 → 𝐸 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐷 ∈ Cat ↔ 𝐸 ∈ Cat)) | ||
| Theorem | reldmfunc 49190 | The domain of Func is a relation. (Contributed by Zhi Wang, 12-Nov-2025.) |
| ⊢ Rel dom Func | ||
| Theorem | func1st2nd 49191 | Rewrite the functor predicate with separated parts. (Contributed by Zhi Wang, 19-Oct-2025.) |
| ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) ⇒ ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) | ||
| Theorem | func1st 49192 | Extract the first member of a functor. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) ⇒ ⊢ (𝜑 → (1st ‘〈𝐹, 𝐺〉) = 𝐹) | ||
| Theorem | func2nd 49193 | Extract the second member of a functor. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) ⇒ ⊢ (𝜑 → (2nd ‘〈𝐹, 𝐺〉) = 𝐺) | ||
| Theorem | funcrcl2 49194 | Reverse closure for a functor. (Contributed by Zhi Wang, 17-Sep-2025.) |
| ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) ⇒ ⊢ (𝜑 → 𝐷 ∈ Cat) | ||
| Theorem | funcrcl3 49195 | Reverse closure for a functor. (Contributed by Zhi Wang, 17-Sep-2025.) |
| ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) ⇒ ⊢ (𝜑 → 𝐸 ∈ Cat) | ||
| Theorem | funcf2lem 49196* | A utility theorem for proving equivalence of "is a functor". (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ (𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ↔ (𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) | ||
| Theorem | funcf2lem2 49197* | A utility theorem for proving equivalence of "is a functor". (Contributed by Zhi Wang, 25-Sep-2025.) |
| ⊢ 𝐵 = (𝐸‘𝐶) ⇒ ⊢ (𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ↔ (𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) | ||
| Theorem | 0funcglem 49198 | Lemma for 0funcg 49200. (Contributed by Zhi Wang, 17-Oct-2025.) |
| ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) & ⊢ (𝜑 → (𝜒 ↔ 𝜂)) & ⊢ (𝜑 → (𝜃 ↔ 𝜁)) & ⊢ (𝜑 → 𝜏) ⇒ ⊢ (𝜑 → (𝜓 ↔ (𝜂 ∧ 𝜁))) | ||
| Theorem | 0funcg2 49199 | The functor from the empty category. (Contributed by Zhi Wang, 17-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → ∅ = (Base‘𝐶)) & ⊢ (𝜑 → 𝐷 ∈ Cat) ⇒ ⊢ (𝜑 → (𝐹(𝐶 Func 𝐷)𝐺 ↔ (𝐹 = ∅ ∧ 𝐺 = ∅))) | ||
| Theorem | 0funcg 49200 | The functor from the empty category. Corollary of Definition 3.47 of [Adamek] p. 40, Definition 7.1 of [Adamek] p. 101, Example 3.3(4.c) of [Adamek] p. 24, and Example 7.2(3) of [Adamek] p. 101. (Contributed by Zhi Wang, 17-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → ∅ = (Base‘𝐶)) & ⊢ (𝜑 → 𝐷 ∈ Cat) ⇒ ⊢ (𝜑 → (𝐶 Func 𝐷) = {〈∅, ∅〉}) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |