| Metamath
Proof Explorer Theorem List (p. 492 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | func0g2 49101 | The source category of a functor to the empty category must be empty as well. (Contributed by Zhi Wang, 19-Oct-2025.) |
| ⊢ 𝐴 = (Base‘𝐶) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝐵 = ∅) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) ⇒ ⊢ (𝜑 → 𝐴 = ∅) | ||
| Theorem | initc 49102* | Sets with empty base are the only initial objects in the category of small categories. Example 7.2(3) of [Adamek] p. 101. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ ((𝐶 ∈ V ∧ ∅ = (Base‘𝐶)) ↔ ∀𝑑 ∈ Cat ∃!𝑓 𝑓 ∈ (𝐶 Func 𝑑)) | ||
| Theorem | cofu1st2nd 49103 | Rewrite the functor composition with separated functor parts. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) ⇒ ⊢ (𝜑 → (𝐺 ∘func 𝐹) = (〈(1st ‘𝐺), (2nd ‘𝐺)〉 ∘func 〈(1st ‘𝐹), (2nd ‘𝐹)〉)) | ||
| Theorem | rescofuf 49104 | The restriction of functor composition is a function from product functor space to functor space. (Contributed by Zhi Wang, 25-Sep-2025.) |
| ⊢ ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))):((𝐷 Func 𝐸) × (𝐶 Func 𝐷))⟶(𝐶 Func 𝐸) | ||
| Theorem | cofu1a 49105 | Value of the object part of the functor composition. (Contributed by Zhi Wang, 16-Nov-2025.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 〈𝑀, 𝑁〉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐾‘(𝐹‘𝑋)) = (𝑀‘𝑋)) | ||
| Theorem | cofu2a 49106 | Value of the morphism part of the functor composition. (Contributed by Zhi Wang, 16-Nov-2025.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 〈𝑀, 𝑁〉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑅 ∈ (𝑋𝐻𝑌)) ⇒ ⊢ (𝜑 → (((𝐹‘𝑋)𝐿(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑋𝑁𝑌)‘𝑅)) | ||
| Theorem | cofucla 49107 | The composition of two functors is a functor. Proposition 3.23 of [Adamek] p. 33. (Contributed by Zhi Wang, 16-Nov-2025.) |
| ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) ⇒ ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) ∈ (𝐶 Func 𝐸)) | ||
| Theorem | funchomf 49108 | Source categories of a functor have the same set of objects and morphisms. (Contributed by Zhi Wang, 10-Nov-2025.) |
| ⊢ (𝜑 → 𝐹(𝐴 Func 𝐶)𝐺) & ⊢ (𝜑 → 𝐹(𝐵 Func 𝐷)𝐺) ⇒ ⊢ (𝜑 → (Homf ‘𝐴) = (Homf ‘𝐵)) | ||
| Theorem | idfurcl 49109 | Reverse closure for an identity functor. (Contributed by Zhi Wang, 10-Nov-2025.) |
| ⊢ ((idfunc‘𝐶) ∈ (𝐷 Func 𝐸) → 𝐶 ∈ Cat) | ||
| Theorem | idfu1stf1o 49110 | The identity functor/inclusion functor is bijective on objects. (Contributed by Zhi Wang, 16-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝐶 ∈ Cat → (1st ‘𝐼):𝐵–1-1-onto→𝐵) | ||
| Theorem | idfu1stalem 49111 | Lemma for idfu1sta 49112. (Contributed by Zhi Wang, 10-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐶) & ⊢ (𝜑 → 𝐼 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | ||
| Theorem | idfu1sta 49112 | Value of the object part of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐶) & ⊢ (𝜑 → 𝐼 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) ⇒ ⊢ (𝜑 → (1st ‘𝐼) = ( I ↾ 𝐵)) | ||
| Theorem | idfu1a 49113 | Value of the object part of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐶) & ⊢ (𝜑 → 𝐼 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((1st ‘𝐼)‘𝑋) = 𝑋) | ||
| Theorem | idfu2nda 49114 | Value of the morphism part of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐶) & ⊢ (𝜑 → 𝐼 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐻 = (𝑋(Hom ‘𝐷)𝑌)) ⇒ ⊢ (𝜑 → (𝑋(2nd ‘𝐼)𝑌) = ( I ↾ 𝐻)) | ||
| Theorem | imasubclem1 49115* | Lemma for imasubc 49162. (Contributed by Zhi Wang, 6-Nov-2025.) |
| ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ ((◡𝐹 “ 𝐴) × (◡𝐺 “ 𝐵))((𝐻‘𝐶) “ 𝐷) ∈ V) | ||
| Theorem | imasubclem2 49116* | Lemma for imasubc 49162. (Contributed by Zhi Wang, 7-Nov-2025.) |
| ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ 𝐾 = (𝑦 ∈ 𝑋, 𝑧 ∈ 𝑌 ↦ ∪ 𝑥 ∈ ((◡𝐹 “ 𝐴) × (◡𝐺 “ 𝐵))((𝐻‘𝐶) “ 𝐷)) ⇒ ⊢ (𝜑 → 𝐾 Fn (𝑋 × 𝑌)) | ||
| Theorem | imasubclem3 49117* | Lemma for imasubc 49162. (Contributed by Zhi Wang, 7-Nov-2025.) |
| ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐾 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ∪ 𝑧 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐺 “ {𝑦}))((𝐻‘𝐶) “ 𝐷)) ⇒ ⊢ (𝜑 → (𝑋𝐾𝑌) = ∪ 𝑧 ∈ ((◡𝐹 “ {𝑋}) × (◡𝐺 “ {𝑌}))((𝐻‘𝐶) “ 𝐷)) | ||
| Theorem | imaf1homlem 49118 | Lemma for imaf1hom 49119 and other theorems. (Contributed by Zhi Wang, 7-Nov-2025.) |
| ⊢ 𝑆 = (𝐹 “ 𝐴) & ⊢ (𝜑 → 𝐹:𝐵–1-1→𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) ⇒ ⊢ (𝜑 → ({(◡𝐹‘𝑋)} = (◡𝐹 “ {𝑋}) ∧ (𝐹‘(◡𝐹‘𝑋)) = 𝑋 ∧ (◡𝐹‘𝑋) ∈ 𝐵)) | ||
| Theorem | imaf1hom 49119* | The hom-set of an image of a functor injective on objects. (Contributed by Zhi Wang, 7-Nov-2025.) |
| ⊢ 𝑆 = (𝐹 “ 𝐴) & ⊢ (𝜑 → 𝐹:𝐵–1-1→𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ 𝐾 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐹 “ {𝑦}))((𝐺‘𝑝) “ (𝐻‘𝑝))) ⇒ ⊢ (𝜑 → (𝑋𝐾𝑌) = (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌)) “ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌)))) | ||
| Theorem | imaidfu2lem 49120 | Lemma for imaidfu2 49122. (Contributed by Zhi Wang, 10-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐶) & ⊢ (𝜑 → 𝐼 ∈ (𝐷 Func 𝐸)) ⇒ ⊢ (𝜑 → ((1st ‘𝐼) “ (Base‘𝐷)) = (Base‘𝐷)) | ||
| Theorem | imaidfu 49121* | The image of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐶) & ⊢ (𝜑 → 𝐼 ∈ (𝐷 Func 𝐸)) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Homf ‘𝐷) & ⊢ 𝐾 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ((◡(1st ‘𝐼) “ {𝑥}) × (◡(1st ‘𝐼) “ {𝑦}))(((2nd ‘𝐼)‘𝑝) “ (𝐻‘𝑝))) & ⊢ 𝑆 = ((1st ‘𝐼) “ 𝐴) ⇒ ⊢ (𝜑 → (𝐽 ↾ (𝑆 × 𝑆)) = 𝐾) | ||
| Theorem | imaidfu2 49122* | The image of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐶) & ⊢ (𝜑 → 𝐼 ∈ (𝐷 Func 𝐸)) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Homf ‘𝐷) & ⊢ 𝐾 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ((◡(1st ‘𝐼) “ {𝑥}) × (◡(1st ‘𝐼) “ {𝑦}))(((2nd ‘𝐼)‘𝑝) “ (𝐻‘𝑝))) & ⊢ (𝜑 → 𝑆 = (Base‘𝐷)) ⇒ ⊢ (𝜑 → 𝐽 = 𝐾) | ||
| Theorem | cofid1a 49123 | Express the object part of (𝐺 ∘func 𝐹) = 𝐼 explicitly. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐷) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝐺 ∈ (𝐸 Func 𝐷)) & ⊢ (𝜑 → (𝐺 ∘func 𝐹) = 𝐼) ⇒ ⊢ (𝜑 → ((1st ‘𝐺)‘((1st ‘𝐹)‘𝑋)) = 𝑋) | ||
| Theorem | cofid2a 49124 | Express the morphism part of (𝐺 ∘func 𝐹) = 𝐼 explicitly. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐷) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝐺 ∈ (𝐸 Func 𝐷)) & ⊢ (𝜑 → (𝐺 ∘func 𝐹) = 𝐼) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ (𝜑 → 𝑅 ∈ (𝑋𝐻𝑌)) ⇒ ⊢ (𝜑 → ((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌))‘((𝑋(2nd ‘𝐹)𝑌)‘𝑅)) = 𝑅) | ||
| Theorem | cofid1 49125 | Express the object part of (𝐺 ∘func 𝐹) = 𝐼 explicitly. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐷) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝐾(𝐸 Func 𝐷)𝐿) & ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 𝐼) ⇒ ⊢ (𝜑 → (𝐾‘(𝐹‘𝑋)) = 𝑋) | ||
| Theorem | cofid2 49126 | Express the morphism part of (𝐺 ∘func 𝐹) = 𝐼 explicitly. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐷) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝐾(𝐸 Func 𝐷)𝐿) & ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 𝐼) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ (𝜑 → 𝑅 ∈ (𝑋𝐻𝑌)) ⇒ ⊢ (𝜑 → (((𝐹‘𝑋)𝐿(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = 𝑅) | ||
| Theorem | cofidvala 49127* | The property "𝐹 is a section of 𝐺 " in a category of small categories (in a universe); expressed explicitly. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐷) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝐺 ∈ (𝐸 Func 𝐷)) & ⊢ (𝜑 → (𝐺 ∘func 𝐹) = 𝐼) & ⊢ 𝐻 = (Hom ‘𝐷) ⇒ ⊢ (𝜑 → (((1st ‘𝐺) ∘ (1st ‘𝐹)) = ( I ↾ 𝐵) ∧ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((((1st ‘𝐹)‘𝑥)(2nd ‘𝐺)((1st ‘𝐹)‘𝑦)) ∘ (𝑥(2nd ‘𝐹)𝑦))) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧))))) | ||
| Theorem | cofidf2a 49128 | If "𝐹 is a section of 𝐺 " in a category of small categories (in a universe), then the morphism part of 𝐹 is injective, and the morphism part of 𝐺 is surjective in the image of 𝐹. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐷) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝐺 ∈ (𝐸 Func 𝐷)) & ⊢ (𝜑 → (𝐺 ∘func 𝐹) = 𝐼) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋(2nd ‘𝐹)𝑌):(𝑋𝐻𝑌)–1-1→(((1st ‘𝐹)‘𝑋)𝐽((1st ‘𝐹)‘𝑌)) ∧ (((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌)):(((1st ‘𝐹)‘𝑋)𝐽((1st ‘𝐹)‘𝑌))–onto→(𝑋𝐻𝑌))) | ||
| Theorem | cofidf1a 49129 | If "𝐹 is a section of 𝐺 " in a category of small categories (in a universe), then the object part of 𝐹 is injective, and the object part of 𝐺 is surjective. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐷) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝐺 ∈ (𝐸 Func 𝐷)) & ⊢ (𝜑 → (𝐺 ∘func 𝐹) = 𝐼) & ⊢ 𝐶 = (Base‘𝐸) ⇒ ⊢ (𝜑 → ((1st ‘𝐹):𝐵–1-1→𝐶 ∧ (1st ‘𝐺):𝐶–onto→𝐵)) | ||
| Theorem | cofidval 49130* | The property "〈𝐹, 𝐺〉 is a section of 〈𝐾, 𝐿〉 " in a category of small categories (in a universe); expressed explicitly. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐷) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝐾(𝐸 Func 𝐷)𝐿) & ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 𝐼) & ⊢ 𝐻 = (Hom ‘𝐷) ⇒ ⊢ (𝜑 → ((𝐾 ∘ 𝐹) = ( I ↾ 𝐵) ∧ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦))) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧))))) | ||
| Theorem | cofidf2 49131 | If "𝐹 is a section of 𝐺 " in a category of small categories (in a universe), then the morphism part of 𝐹 is injective, and the morphism part of 𝐺 is surjective in the image of 𝐹. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐷) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝐾(𝐸 Func 𝐷)𝐿) & ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 𝐼) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ∧ ((𝐹‘𝑋)𝐿(𝐹‘𝑌)):((𝐹‘𝑋)𝐽(𝐹‘𝑌))–onto→(𝑋𝐻𝑌))) | ||
| Theorem | cofidf1 49132 | If "〈𝐹, 𝐺〉 is a section of 〈𝐾, 𝐿〉 " in a category of small categories (in a universe), then 𝐹 is injective, and 𝐾 is surjective. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐷) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝐾(𝐸 Func 𝐷)𝐿) & ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 𝐼) & ⊢ 𝐶 = (Base‘𝐸) ⇒ ⊢ (𝜑 → (𝐹:𝐵–1-1→𝐶 ∧ 𝐾:𝐶–onto→𝐵)) | ||
| Syntax | coppf 49133 | Extend class notation with the operation generating opposite functors. |
| class oppFunc | ||
| Definition | df-oppf 49134* | Definition of the operation generating opposite functors. Definition 3.41 of [Adamek] p. 39. The object part of the functor is unchanged while the morphism part is transposed due to reversed direction of arrows in the opposite category. The opposite functor is a functor on opposite categories (oppfoppc 49152). (Contributed by Zhi Wang, 4-Nov-2025.) Better reverse closure. (Revised by Zhi Wang, 13-Nov-2025.) |
| ⊢ oppFunc = (𝑓 ∈ V, 𝑔 ∈ V ↦ if((Rel 𝑔 ∧ Rel dom 𝑔), 〈𝑓, tpos 𝑔〉, ∅)) | ||
| Theorem | oppffn 49135 | oppFunc is a function on (V × V). (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ oppFunc Fn (V × V) | ||
| Theorem | reldmoppf 49136 | The domain of oppFunc is a relation. (Contributed by Zhi Wang, 13-Nov-2025.) |
| ⊢ Rel dom oppFunc | ||
| Theorem | oppfvalg 49137 | Value of the opposite functor. (Contributed by Zhi Wang, 13-Nov-2025.) |
| ⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹 oppFunc 𝐺) = if((Rel 𝐺 ∧ Rel dom 𝐺), 〈𝐹, tpos 𝐺〉, ∅)) | ||
| Theorem | oppfrcllem 49138 | Lemma for oppfrcl 49139. (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ (𝜑 → 𝐺 ∈ 𝑅) & ⊢ Rel 𝑅 ⇒ ⊢ (𝜑 → 𝐺 ≠ ∅) | ||
| Theorem | oppfrcl 49139 | If an opposite functor of a class is a functor, then the original class must be an ordered pair. (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ (𝜑 → 𝐺 ∈ 𝑅) & ⊢ Rel 𝑅 & ⊢ 𝐺 = ( oppFunc ‘𝐹) ⇒ ⊢ (𝜑 → 𝐹 ∈ (V × V)) | ||
| Theorem | oppfrcl2 49140 | If an opposite functor of a class is a functor, then the two components of the original class must be sets. (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ (𝜑 → 𝐺 ∈ 𝑅) & ⊢ Rel 𝑅 & ⊢ 𝐺 = ( oppFunc ‘𝐹) & ⊢ (𝜑 → 𝐹 = 〈𝐴, 𝐵〉) ⇒ ⊢ (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
| Theorem | oppfrcl3 49141 | If an opposite functor of a class is a functor, then the second component of the original class must be a relation whose domain is a relation as well. (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ (𝜑 → 𝐺 ∈ 𝑅) & ⊢ Rel 𝑅 & ⊢ 𝐺 = ( oppFunc ‘𝐹) & ⊢ (𝜑 → 𝐹 = 〈𝐴, 𝐵〉) ⇒ ⊢ (𝜑 → (Rel 𝐵 ∧ Rel dom 𝐵)) | ||
| Theorem | oppf1st2nd 49142 | Rewrite the opposite functor into its components (eqopi 7952). (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ (𝜑 → 𝐺 ∈ 𝑅) & ⊢ Rel 𝑅 & ⊢ 𝐺 = ( oppFunc ‘𝐹) & ⊢ (𝜑 → 𝐹 = 〈𝐴, 𝐵〉) ⇒ ⊢ (𝜑 → (𝐺 ∈ (V × V) ∧ ((1st ‘𝐺) = 𝐴 ∧ (2nd ‘𝐺) = tpos 𝐵))) | ||
| Theorem | 2oppf 49143 | The double opposite functor is the original functor. Remark 3.42 of [Adamek] p. 39. (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ (𝜑 → 𝐺 ∈ 𝑅) & ⊢ Rel 𝑅 & ⊢ 𝐺 = ( oppFunc ‘𝐹) ⇒ ⊢ (𝜑 → ( oppFunc ‘𝐺) = 𝐹) | ||
| Theorem | eloppf 49144 | The pre-image of a non-empty opposite functor is non-empty; and the second component of the pre-image is a relation on triples. (Contributed by Zhi Wang, 18-Nov-2025.) |
| ⊢ 𝐺 = ( oppFunc ‘𝐹) & ⊢ (𝜑 → 𝑋 ∈ 𝐺) ⇒ ⊢ (𝜑 → (𝐹 ≠ ∅ ∧ (Rel (2nd ‘𝐹) ∧ Rel dom (2nd ‘𝐹)))) | ||
| Theorem | eloppf2 49145 | Both components of a pre-image of a non-empty opposite functor exist; and the second component is a relation on triples. (Contributed by Zhi Wang, 18-Nov-2025.) |
| ⊢ (𝐹 oppFunc 𝐺) = 𝐾 & ⊢ (𝜑 → 𝑋 ∈ 𝐾) ⇒ ⊢ (𝜑 → ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Rel 𝐺 ∧ Rel dom 𝐺))) | ||
| Theorem | oppfvallem 49146 | Lemma for oppfval 49147. (Contributed by Zhi Wang, 13-Nov-2025.) |
| ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → (Rel 𝐺 ∧ Rel dom 𝐺)) | ||
| Theorem | oppfval 49147 | Value of the opposite functor. (Contributed by Zhi Wang, 4-Nov-2025.) |
| ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹 oppFunc 𝐺) = 〈𝐹, tpos 𝐺〉) | ||
| Theorem | oppfval2 49148 | Value of the opposite functor. (Contributed by Zhi Wang, 13-Nov-2025.) |
| ⊢ (𝐹 ∈ (𝐶 Func 𝐷) → ( oppFunc ‘𝐹) = 〈(1st ‘𝐹), tpos (2nd ‘𝐹)〉) | ||
| Theorem | oppfval3 49149 | Value of the opposite functor. (Contributed by Zhi Wang, 19-Nov-2025.) |
| ⊢ (𝜑 → 𝐹 = 〈𝐺, 𝐾〉) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) ⇒ ⊢ (𝜑 → ( oppFunc ‘𝐹) = 〈𝐺, tpos 𝐾〉) | ||
| Theorem | oppf1 49150 | Value of the object part of the opposite functor. (Contributed by Zhi Wang, 19-Nov-2025.) |
| ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) ⇒ ⊢ (𝜑 → (1st ‘( oppFunc ‘𝐹)) = (1st ‘𝐹)) | ||
| Theorem | oppf2 49151 | Value of the morphism part of the opposite functor. (Contributed by Zhi Wang, 19-Nov-2025.) |
| ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) ⇒ ⊢ (𝜑 → (𝑀(2nd ‘( oppFunc ‘𝐹))𝑁) = (𝑁(2nd ‘𝐹)𝑀)) | ||
| Theorem | oppfoppc 49152 | The opposite functor is a functor on opposite categories. (Contributed by Zhi Wang, 4-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) ⇒ ⊢ (𝜑 → (𝐹 oppFunc 𝐺) ∈ (𝑂 Func 𝑃)) | ||
| Theorem | oppfoppc2 49153 | The opposite functor is a functor on opposite categories. (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) ⇒ ⊢ (𝜑 → ( oppFunc ‘𝐹) ∈ (𝑂 Func 𝑃)) | ||
| Theorem | funcoppc2 49154 | A functor on opposite categories yields a functor on the original categories. (Contributed by Zhi Wang, 4-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → 𝐹(𝑂 Func 𝑃)𝐺) ⇒ ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)tpos 𝐺) | ||
| Theorem | funcoppc4 49155 | A functor on opposite categories yields a functor on the original categories. (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → (𝐹 oppFunc 𝐺) ∈ (𝑂 Func 𝑃)) ⇒ ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | ||
| Theorem | funcoppc5 49156 | A functor on opposite categories yields a functor on the original categories. (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → ( oppFunc ‘𝐹) ∈ (𝑂 Func 𝑃)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | ||
| Theorem | 2oppffunc 49157 | The opposite functor of an opposite functor is a functor on the original categories. (Contributed by Zhi Wang, 14-Nov-2025.) The functor in opposite categories does not have to be an opposite functor. (Revised by Zhi Wang, 17-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 ∈ (𝑂 Func 𝑃)) ⇒ ⊢ (𝜑 → ( oppFunc ‘𝐹) ∈ (𝐶 Func 𝐷)) | ||
| Theorem | funcoppc3 49158 | A functor on opposite categories yields a functor on the original categories. (Contributed by Zhi Wang, 4-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → 𝐹(𝑂 Func 𝑃)tpos 𝐺) & ⊢ (𝜑 → 𝐺 Fn (𝐴 × 𝐵)) ⇒ ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | ||
| Theorem | oppff1 49159 | The operation generating opposite functors is injective. (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) ⇒ ⊢ ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃) | ||
| Theorem | oppff1o 49160 | The operation generating opposite functors is bijective. (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) ⇒ ⊢ (𝜑 → ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃)) | ||
| Theorem | cofuoppf 49161 | Composition of opposite functors. (Contributed by Zhi Wang, 26-Nov-2025.) |
| ⊢ (𝜑 → (𝐺 ∘func 𝐹) = 𝐾) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) ⇒ ⊢ (𝜑 → (( oppFunc ‘𝐺) ∘func ( oppFunc ‘𝐹)) = ( oppFunc ‘𝐾)) | ||
| Theorem | imasubc 49162* | An image of a full functor is a full subcategory. Remark 4.2(3) of [Adamek] p. 48. (Contributed by Zhi Wang, 7-Nov-2025.) |
| ⊢ 𝑆 = (𝐹 “ 𝐴) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐾 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐹 “ {𝑦}))((𝐺‘𝑝) “ (𝐻‘𝑝))) & ⊢ (𝜑 → 𝐹(𝐷 Full 𝐸)𝐺) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐽 = (Homf ‘𝐸) ⇒ ⊢ (𝜑 → (𝐾 Fn (𝑆 × 𝑆) ∧ 𝑆 ⊆ 𝐶 ∧ (𝐽 ↾ (𝑆 × 𝑆)) = 𝐾)) | ||
| Theorem | imasubc2 49163* | An image of a full functor is a (full) subcategory. Remark 4.2(3) of [Adamek] p. 48. (Contributed by Zhi Wang, 7-Nov-2025.) |
| ⊢ 𝑆 = (𝐹 “ 𝐴) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐾 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐹 “ {𝑦}))((𝐺‘𝑝) “ (𝐻‘𝑝))) & ⊢ (𝜑 → 𝐹(𝐷 Full 𝐸)𝐺) ⇒ ⊢ (𝜑 → 𝐾 ∈ (Subcat‘𝐸)) | ||
| Theorem | imassc 49164* | An image of a functor satisfies the subcategory subset relation. (Contributed by Zhi Wang, 7-Nov-2025.) |
| ⊢ 𝑆 = (𝐹 “ 𝐴) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐾 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐹 “ {𝑦}))((𝐺‘𝑝) “ (𝐻‘𝑝))) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ 𝐽 = (Homf ‘𝐸) ⇒ ⊢ (𝜑 → 𝐾 ⊆cat 𝐽) | ||
| Theorem | imaid 49165* | An image of a functor preserves the identity morphism. (Contributed by Zhi Wang, 7-Nov-2025.) |
| ⊢ 𝑆 = (𝐹 “ 𝐴) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐾 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐹 “ {𝑦}))((𝐺‘𝑝) “ (𝐻‘𝑝))) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ 𝐼 = (Id‘𝐸) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐼‘𝑋) ∈ (𝑋𝐾𝑋)) | ||
| Theorem | imaf1co 49166* | An image of a functor whose object part is injective preserves the composition. (Contributed by Zhi Wang, 7-Nov-2025.) |
| ⊢ 𝑆 = (𝐹 “ 𝐴) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐾 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐹 “ {𝑦}))((𝐺‘𝑝) “ (𝐻‘𝑝))) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ ∙ = (comp‘𝐸) & ⊢ (𝜑 → 𝐹:𝐵–1-1→𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) & ⊢ (𝜑 → 𝑍 ∈ 𝑆) & ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐾𝑌)) & ⊢ (𝜑 → 𝑁 ∈ (𝑌𝐾𝑍)) ⇒ ⊢ (𝜑 → (𝑁(〈𝑋, 𝑌〉 ∙ 𝑍)𝑀) ∈ (𝑋𝐾𝑍)) | ||
| Theorem | imasubc3 49167* | An image of a functor injective on objects is a subcategory. Remark 4.2(3) of [Adamek] p. 48. (Contributed by Zhi Wang, 7-Nov-2025.) |
| ⊢ 𝑆 = (𝐹 “ 𝐴) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐾 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐹 “ {𝑦}))((𝐺‘𝑝) “ (𝐻‘𝑝))) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → Fun ◡𝐹) ⇒ ⊢ (𝜑 → 𝐾 ∈ (Subcat‘𝐸)) | ||
| Theorem | fthcomf 49168* | Source categories of a faithful functor have the same base, hom-sets and composition operation if the composition is compatible in images of the functor. (Contributed by Zhi Wang, 10-Nov-2025.) |
| ⊢ (𝜑 → 𝐹(𝐴 Faith 𝐶)𝐺) & ⊢ (𝜑 → 𝐹(𝐵 Func 𝐷)𝐺) & ⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (((𝑦𝐺𝑧)‘𝑔)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉(comp‘𝐶)(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉(comp‘𝐷)(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑓))) ⇒ ⊢ (𝜑 → (compf‘𝐴) = (compf‘𝐵)) | ||
| Theorem | idfth 49169 | The inclusion functor is a faithful functor. (Contributed by Zhi Wang, 10-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐶) ⇒ ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → 𝐼 ∈ (𝐷 Faith 𝐸)) | ||
| Theorem | idemb 49170 | The inclusion functor is an embedding. Remark 4.4(1) in [Adamek] p. 49. (Contributed by Zhi Wang, 16-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐶) ⇒ ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → (𝐼 ∈ (𝐷 Faith 𝐸) ∧ Fun ◡(1st ‘𝐼))) | ||
| Theorem | idsubc 49171 | The source category of an inclusion functor is a subcategory of the target category. See also Remark 4.4 in [Adamek] p. 49. (Contributed by Zhi Wang, 10-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐶) & ⊢ 𝐻 = (Homf ‘𝐷) ⇒ ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → 𝐻 ∈ (Subcat‘𝐸)) | ||
| Theorem | idfullsubc 49172 | The source category of an inclusion functor is a full subcategory of the target category if the inclusion functor is full. Remark 4.4(2) in [Adamek] p. 49. See also ressffth 17839. (Contributed by Zhi Wang, 11-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐶) & ⊢ 𝐻 = (Homf ‘𝐷) & ⊢ 𝐽 = (Homf ‘𝐸) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) ⇒ ⊢ (𝐼 ∈ (𝐷 Full 𝐸) → (𝐵 ⊆ 𝐶 ∧ (𝐽 ↾ (𝐵 × 𝐵)) = 𝐻)) | ||
| Theorem | cofidfth 49173 | If "𝐹 is a section of 𝐺 " in a category of small categories (in a universe), then 𝐹 is faithful. Combined with cofidf1 49132, this theorem proves that 𝐹 is an embedding (a faithful functor injective on objects, remark 3.28(1) of [Adamek] p. 34). (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐷) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝐾(𝐸 Func 𝐷)𝐿) & ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 𝐼) ⇒ ⊢ (𝜑 → 𝐹(𝐷 Faith 𝐸)𝐺) | ||
| Theorem | fulloppf 49174 | The opposite functor of a full functor is also full. Proposition 3.43(d) in [Adamek] p. 39. (Contributed by Zhi Wang, 26-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Full 𝐷)) ⇒ ⊢ (𝜑 → ( oppFunc ‘𝐹) ∈ (𝑂 Full 𝑃)) | ||
| Theorem | fthoppf 49175 | The opposite functor of a faithful functor is also faithful. Proposition 3.43(c) in [Adamek] p. 39. (Contributed by Zhi Wang, 26-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Faith 𝐷)) ⇒ ⊢ (𝜑 → ( oppFunc ‘𝐹) ∈ (𝑂 Faith 𝑃)) | ||
| Theorem | ffthoppf 49176 | The opposite functor of a fully faithful functor is also full and faithful. (Contributed by Zhi Wang, 26-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ (𝜑 → 𝐹 ∈ ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))) ⇒ ⊢ (𝜑 → ( oppFunc ‘𝐹) ∈ ((𝑂 Full 𝑃) ∩ (𝑂 Faith 𝑃))) | ||
| Theorem | upciclem1 49177* | Lemma for upcic 49181, upeu 49182, and upeu2 49183. (Contributed by Zhi Wang, 16-Sep-2025.) (Proof shortened by Zhi Wang, 5-Nov-2025.) |
| ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ∀𝑛 ∈ (𝑍𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑛 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑀)) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑁 ∈ (𝑍𝐽(𝐹‘𝑌))) ⇒ ⊢ (𝜑 → ∃!𝑙 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑙)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) | ||
| Theorem | upciclem2 49178 | Lemma for upciclem3 49179 and upeu2 49183. (Contributed by Zhi Wang, 19-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝑂 = (comp‘𝐸) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑊 ∈ 𝐶) & ⊢ (𝜑 → 𝑀 ∈ (𝑊𝐽(𝐹‘𝑋))) & ⊢ · = (comp‘𝐷) & ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (𝑌𝐻𝑍)) & ⊢ (𝜑 → 𝑁 = (((𝑋𝐺𝑌)‘𝐾)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) ⇒ ⊢ (𝜑 → (((𝑋𝐺𝑍)‘(𝐿(〈𝑋, 𝑌〉 · 𝑍)𝐾))(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑍))𝑀) = (((𝑌𝐺𝑍)‘𝐿)(〈𝑊, (𝐹‘𝑌)〉𝑂(𝐹‘𝑍))𝑁)) | ||
| Theorem | upciclem3 49179* | Lemma for upciclem4 49180. (Contributed by Zhi Wang, 17-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝑂 = (comp‘𝐸) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐶) & ⊢ (𝜑 → 𝑀 ∈ (𝑍𝐽(𝐹‘𝑋))) & ⊢ (𝜑 → ∀𝑤 ∈ 𝐵 ∀𝑓 ∈ (𝑍𝐽(𝐹‘𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑤))𝑀)) & ⊢ · = (comp‘𝐷) & ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (𝑌𝐻𝑋)) & ⊢ (𝜑 → 𝑀 = (((𝑌𝐺𝑋)‘𝐿)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑋))𝑁)) & ⊢ (𝜑 → 𝑁 = (((𝑋𝐺𝑌)‘𝐾)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) ⇒ ⊢ (𝜑 → (𝐿(〈𝑋, 𝑌〉 · 𝑋)𝐾) = ((Id‘𝐷)‘𝑋)) | ||
| Theorem | upciclem4 49180* | Lemma for upcic 49181 and upeu 49182. (Contributed by Zhi Wang, 19-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝑂 = (comp‘𝐸) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐶) & ⊢ (𝜑 → 𝑀 ∈ (𝑍𝐽(𝐹‘𝑋))) & ⊢ (𝜑 → ∀𝑤 ∈ 𝐵 ∀𝑓 ∈ (𝑍𝐽(𝐹‘𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑤))𝑀)) & ⊢ (𝜑 → 𝑁 ∈ (𝑍𝐽(𝐹‘𝑌))) & ⊢ (𝜑 → ∀𝑣 ∈ 𝐵 ∀𝑔 ∈ (𝑍𝐽(𝐹‘𝑣))∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑣))𝑁)) ⇒ ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐷)𝑌 ∧ ∃𝑟 ∈ (𝑋(Iso‘𝐷)𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) | ||
| Theorem | upcic 49181* | A universal property defines an object up to isomorphism given its existence. (Contributed by Zhi Wang, 17-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝑂 = (comp‘𝐸) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐶) & ⊢ (𝜑 → 𝑀 ∈ (𝑍𝐽(𝐹‘𝑋))) & ⊢ (𝜑 → ∀𝑤 ∈ 𝐵 ∀𝑓 ∈ (𝑍𝐽(𝐹‘𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑤))𝑀)) & ⊢ (𝜑 → 𝑁 ∈ (𝑍𝐽(𝐹‘𝑌))) & ⊢ (𝜑 → ∀𝑣 ∈ 𝐵 ∀𝑔 ∈ (𝑍𝐽(𝐹‘𝑣))∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑣))𝑁)) ⇒ ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐷)𝑌) | ||
| Theorem | upeu 49182* | A universal property defines an essentially unique (strong form) pair of object 𝑋 and morphism 𝑀 if it exists. (Contributed by Zhi Wang, 19-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝑂 = (comp‘𝐸) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐶) & ⊢ (𝜑 → 𝑀 ∈ (𝑍𝐽(𝐹‘𝑋))) & ⊢ (𝜑 → ∀𝑤 ∈ 𝐵 ∀𝑓 ∈ (𝑍𝐽(𝐹‘𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑤))𝑀)) & ⊢ (𝜑 → 𝑁 ∈ (𝑍𝐽(𝐹‘𝑌))) & ⊢ (𝜑 → ∀𝑣 ∈ 𝐵 ∀𝑔 ∈ (𝑍𝐽(𝐹‘𝑣))∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑣))𝑁)) ⇒ ⊢ (𝜑 → ∃!𝑟 ∈ (𝑋(Iso‘𝐷)𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) | ||
| Theorem | upeu2 49183* | Generate new universal morphism through isomorphism from existing universal object. (Contributed by Zhi Wang, 20-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝑂 = (comp‘𝐸) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐶) & ⊢ (𝜑 → 𝑀 ∈ (𝑍𝐽(𝐹‘𝑋))) & ⊢ (𝜑 → ∀𝑤 ∈ 𝐵 ∀𝑓 ∈ (𝑍𝐽(𝐹‘𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑤))𝑀)) & ⊢ 𝐼 = (Iso‘𝐷) & ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐼𝑌)) & ⊢ (𝜑 → 𝑁 = (((𝑋𝐺𝑌)‘𝐾)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) ⇒ ⊢ (𝜑 → (𝑁 ∈ (𝑍𝐽(𝐹‘𝑌)) ∧ ∀𝑣 ∈ 𝐵 ∀𝑔 ∈ (𝑍𝐽(𝐹‘𝑣))∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑣))𝑁))) | ||
| Syntax | cup 49184 | Extend class notation with the class of universal properties. |
| class UP | ||
| Definition | df-up 49185* |
Definition of the class of universal properties.
Given categories 𝐷 and 𝐸, if 𝐹:𝐷⟶𝐸 is a functor and 𝑊 an object of 𝐸, a universal pair from 𝑊 to 𝐹 is a pair 〈𝑋, 𝑀〉 consisting of an object 𝑋 of 𝐷 and a morphism 𝑀:𝑊⟶𝐹𝑋 of 𝐸, such that to every pair 〈𝑦, 𝑔〉 with 𝑦 an object of 𝐷 and 𝑔:𝑊⟶𝐹𝑦 a morphism of 𝐸, there is a unique morphism 𝑘:𝑋⟶𝑦 of 𝐷 with 𝐹𝑘 ⚬ 𝑀 = 𝑔. Such property is commonly referred to as a universal property. In our definition, it is denoted as 𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑀. Note that the universal pair is termed differently as "universal arrow" in p. 55 of Mac Lane, Saunders, Categories for the Working Mathematician, 2nd Edition, Springer Science+Business Media, New York, (1998) [QA169.M33 1998]; available at https://math.mit.edu/~hrm/palestine/maclane-categories.pdf (retrieved 6 Oct 2025). Interestingly, the "universal arrow" is referring to the morphism 𝑀 instead of the pair near the end of the same piece of the text, causing name collision. The name "universal arrow" is also adopted in papers such as https://arxiv.org/pdf/2212.08981. Alternatively, the universal pair is called the "universal morphism" in Wikipedia (https://en.wikipedia.org/wiki/Universal_property) as well as published works, e.g., https://arxiv.org/pdf/2412.12179. But the pair 〈𝑋, 𝑀〉 should be named differently as the morphism 𝑀, and thus we call 𝑋 the universal object, 𝑀 the universal morphism, and 〈𝑋, 𝑀〉 the universal pair. Given its existence, such universal pair is essentially unique (upeu3 49206), and can be generated from an existing universal pair by isomorphisms (upeu4 49207). See also oppcup 49218 for the dual concept. (Contributed by Zhi Wang, 24-Sep-2025.) |
| ⊢ UP = (𝑑 ∈ V, 𝑒 ∈ V ↦ ⦋(Base‘𝑑) / 𝑏⦌⦋(Base‘𝑒) / 𝑐⦌⦋(Hom ‘𝑑) / ℎ⦌⦋(Hom ‘𝑒) / 𝑗⦌⦋(comp‘𝑒) / 𝑜⦌(𝑓 ∈ (𝑑 Func 𝑒), 𝑤 ∈ 𝑐 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝑏 ∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚))})) | ||
| Theorem | reldmup 49186 | The domain of UP is a relation. (Contributed by Zhi Wang, 25-Sep-2025.) |
| ⊢ Rel dom UP | ||
| Theorem | upfval 49187* | Function value of the class of universal properties. (Contributed by Zhi Wang, 24-Sep-2025.) (Proof shortened by Zhi Wang, 12-Nov-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝑂 = (comp‘𝐸) ⇒ ⊢ (𝐷 UP 𝐸) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤 ∈ 𝐶 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑚 ∈ (𝑤𝐽((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑤𝐽((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑂((1st ‘𝑓)‘𝑦))𝑚))}) | ||
| Theorem | upfval2 49188* | Function value of the class of universal properties. (Contributed by Zhi Wang, 24-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝑂 = (comp‘𝐸) & ⊢ (𝜑 → 𝑊 ∈ 𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) ⇒ ⊢ (𝜑 → (𝐹(𝐷 UP 𝐸)𝑊) = {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑚 ∈ (𝑊𝐽((1st ‘𝐹)‘𝑥))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽((1st ‘𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘𝐹)𝑦)‘𝑘)(〈𝑊, ((1st ‘𝐹)‘𝑥)〉𝑂((1st ‘𝐹)‘𝑦))𝑚))}) | ||
| Theorem | upfval3 49189* | Function value of the class of universal properties. (Contributed by Zhi Wang, 24-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝑂 = (comp‘𝐸) & ⊢ (𝜑 → 𝑊 ∈ 𝐶) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) ⇒ ⊢ (𝜑 → (〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊) = {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑚 ∈ (𝑊𝐽(𝐹‘𝑥))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑥)〉𝑂(𝐹‘𝑦))𝑚))}) | ||
| Theorem | isuplem 49190* | Lemma for isup 49191 and other theorems. (Contributed by Zhi Wang, 25-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝑂 = (comp‘𝐸) & ⊢ (𝜑 → 𝑊 ∈ 𝐶) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) ⇒ ⊢ (𝜑 → (𝑋(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑀 ↔ ((𝑋 ∈ 𝐵 ∧ 𝑀 ∈ (𝑊𝐽(𝐹‘𝑋))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑀)))) | ||
| Theorem | isup 49191* | The predicate "is a universal pair". (Contributed by Zhi Wang, 24-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝑂 = (comp‘𝐸) & ⊢ (𝜑 → 𝑊 ∈ 𝐶) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ (𝑊𝐽(𝐹‘𝑋))) ⇒ ⊢ (𝜑 → (𝑋(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑀 ↔ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑀))) | ||
| Theorem | uppropd 49192 | If two categories have the same set of objects, morphisms, and compositions, then they have the same universal pairs. (Contributed by Zhi Wang, 20-Nov-2025.) |
| ⊢ (𝜑 → (Homf ‘𝐴) = (Homf ‘𝐵)) & ⊢ (𝜑 → (compf‘𝐴) = (compf‘𝐵)) & ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐴 UP 𝐶) = (𝐵 UP 𝐷)) | ||
| Theorem | reldmup2 49193 | The domain of (𝐷 UP 𝐸) is a relation. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ Rel dom (𝐷 UP 𝐸) | ||
| Theorem | relup 49194 | The set of universal pairs is a relation. (Contributed by Zhi Wang, 25-Sep-2025.) |
| ⊢ Rel (𝐹(𝐷 UP 𝐸)𝑊) | ||
| Theorem | uprcl 49195 | Reverse closure for the class of universal property. (Contributed by Zhi Wang, 25-Sep-2025.) |
| ⊢ 𝐶 = (Base‘𝐸) ⇒ ⊢ (𝑋 ∈ (𝐹(𝐷 UP 𝐸)𝑊) → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝑊 ∈ 𝐶)) | ||
| Theorem | up1st2nd 49196 | Rewrite the universal property predicate with separated parts. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ (𝜑 → 𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑀) ⇒ ⊢ (𝜑 → 𝑋(〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐷 UP 𝐸)𝑊)𝑀) | ||
| Theorem | up1st2ndr 49197 | Combine separated parts in the universal property predicate. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝑋(〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐷 UP 𝐸)𝑊)𝑀) ⇒ ⊢ (𝜑 → 𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑀) | ||
| Theorem | up1st2ndb 49198 | Combine/separate parts in the universal property predicate. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) ⇒ ⊢ (𝜑 → (𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑀 ↔ 𝑋(〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐷 UP 𝐸)𝑊)𝑀)) | ||
| Theorem | up1st2nd2 49199 | Rewrite the universal property predicate with separated parts. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ (𝐹(𝐷 UP 𝐸)𝑊)) ⇒ ⊢ (𝜑 → (1st ‘𝑋)(𝐹(𝐷 UP 𝐸)𝑊)(2nd ‘𝑋)) | ||
| Theorem | uprcl2 49200 | Reverse closure for the class of universal property. (Contributed by Zhi Wang, 25-Sep-2025.) |
| ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑀) ⇒ ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |