| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppfvalg | Structured version Visualization version GIF version | ||
| Description: Value of the opposite functor. (Contributed by Zhi Wang, 13-Nov-2025.) |
| Ref | Expression |
|---|---|
| oppfvalg | ⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹 oppFunc 𝐺) = if((Rel 𝐺 ∧ Rel dom 𝐺), 〈𝐹, tpos 𝐺〉, ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → 𝑔 = 𝐺) | |
| 2 | 1 | releqd 5744 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (Rel 𝑔 ↔ Rel 𝐺)) |
| 3 | 1 | dmeqd 5872 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → dom 𝑔 = dom 𝐺) |
| 4 | 3 | releqd 5744 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (Rel dom 𝑔 ↔ Rel dom 𝐺)) |
| 5 | 2, 4 | anbi12d 632 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((Rel 𝑔 ∧ Rel dom 𝑔) ↔ (Rel 𝐺 ∧ Rel dom 𝐺))) |
| 6 | simpl 482 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → 𝑓 = 𝐹) | |
| 7 | 1 | tposeqd 8211 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → tpos 𝑔 = tpos 𝐺) |
| 8 | 6, 7 | opeq12d 4848 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → 〈𝑓, tpos 𝑔〉 = 〈𝐹, tpos 𝐺〉) |
| 9 | 5, 8 | ifbieq1d 4516 | . 2 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → if((Rel 𝑔 ∧ Rel dom 𝑔), 〈𝑓, tpos 𝑔〉, ∅) = if((Rel 𝐺 ∧ Rel dom 𝐺), 〈𝐹, tpos 𝐺〉, ∅)) |
| 10 | df-oppf 49116 | . 2 ⊢ oppFunc = (𝑓 ∈ V, 𝑔 ∈ V ↦ if((Rel 𝑔 ∧ Rel dom 𝑔), 〈𝑓, tpos 𝑔〉, ∅)) | |
| 11 | opex 5427 | . . 3 ⊢ 〈𝐹, tpos 𝐺〉 ∈ V | |
| 12 | 0ex 5265 | . . 3 ⊢ ∅ ∈ V | |
| 13 | 11, 12 | ifex 4542 | . 2 ⊢ if((Rel 𝐺 ∧ Rel dom 𝐺), 〈𝐹, tpos 𝐺〉, ∅) ∈ V |
| 14 | 9, 10, 13 | ovmpoa 7547 | 1 ⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹 oppFunc 𝐺) = if((Rel 𝐺 ∧ Rel dom 𝐺), 〈𝐹, tpos 𝐺〉, ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 ifcif 4491 〈cop 4598 dom cdm 5641 Rel wrel 5646 (class class class)co 7390 tpos ctpos 8207 oppFunc coppf 49115 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-res 5653 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-tpos 8208 df-oppf 49116 |
| This theorem is referenced by: oppfrcl3 49123 oppf1st2nd 49124 2oppf 49125 eloppf 49126 eloppf2 49127 oppfval 49129 |
| Copyright terms: Public domain | W3C validator |