Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppfvalg Structured version   Visualization version   GIF version

Theorem oppfvalg 49119
Description: Value of the opposite functor. (Contributed by Zhi Wang, 13-Nov-2025.)
Assertion
Ref Expression
oppfvalg ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹 oppFunc 𝐺) = if((Rel 𝐺 ∧ Rel dom 𝐺), ⟨𝐹, tpos 𝐺⟩, ∅))

Proof of Theorem oppfvalg
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → 𝑔 = 𝐺)
21releqd 5744 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (Rel 𝑔 ↔ Rel 𝐺))
31dmeqd 5872 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → dom 𝑔 = dom 𝐺)
43releqd 5744 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (Rel dom 𝑔 ↔ Rel dom 𝐺))
52, 4anbi12d 632 . . 3 ((𝑓 = 𝐹𝑔 = 𝐺) → ((Rel 𝑔 ∧ Rel dom 𝑔) ↔ (Rel 𝐺 ∧ Rel dom 𝐺)))
6 simpl 482 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → 𝑓 = 𝐹)
71tposeqd 8211 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → tpos 𝑔 = tpos 𝐺)
86, 7opeq12d 4848 . . 3 ((𝑓 = 𝐹𝑔 = 𝐺) → ⟨𝑓, tpos 𝑔⟩ = ⟨𝐹, tpos 𝐺⟩)
95, 8ifbieq1d 4516 . 2 ((𝑓 = 𝐹𝑔 = 𝐺) → if((Rel 𝑔 ∧ Rel dom 𝑔), ⟨𝑓, tpos 𝑔⟩, ∅) = if((Rel 𝐺 ∧ Rel dom 𝐺), ⟨𝐹, tpos 𝐺⟩, ∅))
10 df-oppf 49116 . 2 oppFunc = (𝑓 ∈ V, 𝑔 ∈ V ↦ if((Rel 𝑔 ∧ Rel dom 𝑔), ⟨𝑓, tpos 𝑔⟩, ∅))
11 opex 5427 . . 3 𝐹, tpos 𝐺⟩ ∈ V
12 0ex 5265 . . 3 ∅ ∈ V
1311, 12ifex 4542 . 2 if((Rel 𝐺 ∧ Rel dom 𝐺), ⟨𝐹, tpos 𝐺⟩, ∅) ∈ V
149, 10, 13ovmpoa 7547 1 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹 oppFunc 𝐺) = if((Rel 𝐺 ∧ Rel dom 𝐺), ⟨𝐹, tpos 𝐺⟩, ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  c0 4299  ifcif 4491  cop 4598  dom cdm 5641  Rel wrel 5646  (class class class)co 7390  tpos ctpos 8207   oppFunc coppf 49115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-res 5653  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-tpos 8208  df-oppf 49116
This theorem is referenced by:  oppfrcl3  49123  oppf1st2nd  49124  2oppf  49125  eloppf  49126  eloppf2  49127  oppfval  49129
  Copyright terms: Public domain W3C validator