Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppfvalg Structured version   Visualization version   GIF version

Theorem oppfvalg 49108
Description: Value of the opposite functor. (Contributed by Zhi Wang, 13-Nov-2025.)
Assertion
Ref Expression
oppfvalg ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹 oppFunc 𝐺) = if((Rel 𝐺 ∧ Rel dom 𝐺), ⟨𝐹, tpos 𝐺⟩, ∅))

Proof of Theorem oppfvalg
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → 𝑔 = 𝐺)
21releqd 5733 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (Rel 𝑔 ↔ Rel 𝐺))
31dmeqd 5859 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → dom 𝑔 = dom 𝐺)
43releqd 5733 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (Rel dom 𝑔 ↔ Rel dom 𝐺))
52, 4anbi12d 632 . . 3 ((𝑓 = 𝐹𝑔 = 𝐺) → ((Rel 𝑔 ∧ Rel dom 𝑔) ↔ (Rel 𝐺 ∧ Rel dom 𝐺)))
6 simpl 482 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → 𝑓 = 𝐹)
71tposeqd 8185 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → tpos 𝑔 = tpos 𝐺)
86, 7opeq12d 4841 . . 3 ((𝑓 = 𝐹𝑔 = 𝐺) → ⟨𝑓, tpos 𝑔⟩ = ⟨𝐹, tpos 𝐺⟩)
95, 8ifbieq1d 4509 . 2 ((𝑓 = 𝐹𝑔 = 𝐺) → if((Rel 𝑔 ∧ Rel dom 𝑔), ⟨𝑓, tpos 𝑔⟩, ∅) = if((Rel 𝐺 ∧ Rel dom 𝐺), ⟨𝐹, tpos 𝐺⟩, ∅))
10 df-oppf 49105 . 2 oppFunc = (𝑓 ∈ V, 𝑔 ∈ V ↦ if((Rel 𝑔 ∧ Rel dom 𝑔), ⟨𝑓, tpos 𝑔⟩, ∅))
11 opex 5419 . . 3 𝐹, tpos 𝐺⟩ ∈ V
12 0ex 5257 . . 3 ∅ ∈ V
1311, 12ifex 4535 . 2 if((Rel 𝐺 ∧ Rel dom 𝐺), ⟨𝐹, tpos 𝐺⟩, ∅) ∈ V
149, 10, 13ovmpoa 7524 1 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹 oppFunc 𝐺) = if((Rel 𝐺 ∧ Rel dom 𝐺), ⟨𝐹, tpos 𝐺⟩, ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  c0 4292  ifcif 4484  cop 4591  dom cdm 5631  Rel wrel 5636  (class class class)co 7369  tpos ctpos 8181   oppFunc coppf 49104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-res 5643  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-tpos 8182  df-oppf 49105
This theorem is referenced by:  oppfrcl3  49112  oppf1st2nd  49113  2oppf  49114  eloppf  49115  eloppf2  49116  oppfval  49118
  Copyright terms: Public domain W3C validator