Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppfvalg Structured version   Visualization version   GIF version

Theorem oppfvalg 49022
Description: Value of the opposite functor. (Contributed by Zhi Wang, 13-Nov-2025.)
Assertion
Ref Expression
oppfvalg ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹oppFunc𝐺) = if((Rel 𝐺 ∧ Rel dom 𝐺), ⟨𝐹, tpos 𝐺⟩, ∅))

Proof of Theorem oppfvalg
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → 𝑔 = 𝐺)
21releqd 5757 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (Rel 𝑔 ↔ Rel 𝐺))
31dmeqd 5885 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → dom 𝑔 = dom 𝐺)
43releqd 5757 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (Rel dom 𝑔 ↔ Rel dom 𝐺))
52, 4anbi12d 632 . . 3 ((𝑓 = 𝐹𝑔 = 𝐺) → ((Rel 𝑔 ∧ Rel dom 𝑔) ↔ (Rel 𝐺 ∧ Rel dom 𝐺)))
6 simpl 482 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → 𝑓 = 𝐹)
71tposeqd 8226 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → tpos 𝑔 = tpos 𝐺)
86, 7opeq12d 4857 . . 3 ((𝑓 = 𝐹𝑔 = 𝐺) → ⟨𝑓, tpos 𝑔⟩ = ⟨𝐹, tpos 𝐺⟩)
95, 8ifbieq1d 4525 . 2 ((𝑓 = 𝐹𝑔 = 𝐺) → if((Rel 𝑔 ∧ Rel dom 𝑔), ⟨𝑓, tpos 𝑔⟩, ∅) = if((Rel 𝐺 ∧ Rel dom 𝐺), ⟨𝐹, tpos 𝐺⟩, ∅))
10 df-oppf 49020 . 2 oppFunc = (𝑓 ∈ V, 𝑔 ∈ V ↦ if((Rel 𝑔 ∧ Rel dom 𝑔), ⟨𝑓, tpos 𝑔⟩, ∅))
11 opex 5439 . . 3 𝐹, tpos 𝐺⟩ ∈ V
12 0ex 5277 . . 3 ∅ ∈ V
1311, 12ifex 4551 . 2 if((Rel 𝐺 ∧ Rel dom 𝐺), ⟨𝐹, tpos 𝐺⟩, ∅) ∈ V
149, 10, 13ovmpoa 7560 1 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹oppFunc𝐺) = if((Rel 𝐺 ∧ Rel dom 𝐺), ⟨𝐹, tpos 𝐺⟩, ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  c0 4308  ifcif 4500  cop 4607  dom cdm 5654  Rel wrel 5659  (class class class)co 7403  tpos ctpos 8222  oppFunccoppf 49019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-res 5666  df-iota 6483  df-fun 6532  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-tpos 8223  df-oppf 49020
This theorem is referenced by:  oppfrcl3  49026  oppf1st2nd  49027  2oppf  49028  oppfval  49030
  Copyright terms: Public domain W3C validator