Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppfvalg Structured version   Visualization version   GIF version

Theorem oppfvalg 49226
Description: Value of the opposite functor. (Contributed by Zhi Wang, 13-Nov-2025.)
Assertion
Ref Expression
oppfvalg ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹 oppFunc 𝐺) = if((Rel 𝐺 ∧ Rel dom 𝐺), ⟨𝐹, tpos 𝐺⟩, ∅))

Proof of Theorem oppfvalg
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → 𝑔 = 𝐺)
21releqd 5718 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (Rel 𝑔 ↔ Rel 𝐺))
31dmeqd 5844 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → dom 𝑔 = dom 𝐺)
43releqd 5718 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (Rel dom 𝑔 ↔ Rel dom 𝐺))
52, 4anbi12d 632 . . 3 ((𝑓 = 𝐹𝑔 = 𝐺) → ((Rel 𝑔 ∧ Rel dom 𝑔) ↔ (Rel 𝐺 ∧ Rel dom 𝐺)))
6 simpl 482 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → 𝑓 = 𝐹)
71tposeqd 8159 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → tpos 𝑔 = tpos 𝐺)
86, 7opeq12d 4830 . . 3 ((𝑓 = 𝐹𝑔 = 𝐺) → ⟨𝑓, tpos 𝑔⟩ = ⟨𝐹, tpos 𝐺⟩)
95, 8ifbieq1d 4497 . 2 ((𝑓 = 𝐹𝑔 = 𝐺) → if((Rel 𝑔 ∧ Rel dom 𝑔), ⟨𝑓, tpos 𝑔⟩, ∅) = if((Rel 𝐺 ∧ Rel dom 𝐺), ⟨𝐹, tpos 𝐺⟩, ∅))
10 df-oppf 49223 . 2 oppFunc = (𝑓 ∈ V, 𝑔 ∈ V ↦ if((Rel 𝑔 ∧ Rel dom 𝑔), ⟨𝑓, tpos 𝑔⟩, ∅))
11 opex 5402 . . 3 𝐹, tpos 𝐺⟩ ∈ V
12 0ex 5243 . . 3 ∅ ∈ V
1311, 12ifex 4523 . 2 if((Rel 𝐺 ∧ Rel dom 𝐺), ⟨𝐹, tpos 𝐺⟩, ∅) ∈ V
149, 10, 13ovmpoa 7501 1 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹 oppFunc 𝐺) = if((Rel 𝐺 ∧ Rel dom 𝐺), ⟨𝐹, tpos 𝐺⟩, ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  c0 4280  ifcif 4472  cop 4579  dom cdm 5614  Rel wrel 5619  (class class class)co 7346  tpos ctpos 8155   oppFunc coppf 49222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-res 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-tpos 8156  df-oppf 49223
This theorem is referenced by:  oppfrcl3  49230  oppf1st2nd  49231  2oppf  49232  eloppf  49233  eloppf2  49234  oppfval  49236
  Copyright terms: Public domain W3C validator