| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppfvalg | Structured version Visualization version GIF version | ||
| Description: Value of the opposite functor. (Contributed by Zhi Wang, 13-Nov-2025.) |
| Ref | Expression |
|---|---|
| oppfvalg | ⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹 oppFunc 𝐺) = if((Rel 𝐺 ∧ Rel dom 𝐺), 〈𝐹, tpos 𝐺〉, ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → 𝑔 = 𝐺) | |
| 2 | 1 | releqd 5718 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (Rel 𝑔 ↔ Rel 𝐺)) |
| 3 | 1 | dmeqd 5844 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → dom 𝑔 = dom 𝐺) |
| 4 | 3 | releqd 5718 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (Rel dom 𝑔 ↔ Rel dom 𝐺)) |
| 5 | 2, 4 | anbi12d 632 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((Rel 𝑔 ∧ Rel dom 𝑔) ↔ (Rel 𝐺 ∧ Rel dom 𝐺))) |
| 6 | simpl 482 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → 𝑓 = 𝐹) | |
| 7 | 1 | tposeqd 8159 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → tpos 𝑔 = tpos 𝐺) |
| 8 | 6, 7 | opeq12d 4830 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → 〈𝑓, tpos 𝑔〉 = 〈𝐹, tpos 𝐺〉) |
| 9 | 5, 8 | ifbieq1d 4497 | . 2 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → if((Rel 𝑔 ∧ Rel dom 𝑔), 〈𝑓, tpos 𝑔〉, ∅) = if((Rel 𝐺 ∧ Rel dom 𝐺), 〈𝐹, tpos 𝐺〉, ∅)) |
| 10 | df-oppf 49223 | . 2 ⊢ oppFunc = (𝑓 ∈ V, 𝑔 ∈ V ↦ if((Rel 𝑔 ∧ Rel dom 𝑔), 〈𝑓, tpos 𝑔〉, ∅)) | |
| 11 | opex 5402 | . . 3 ⊢ 〈𝐹, tpos 𝐺〉 ∈ V | |
| 12 | 0ex 5243 | . . 3 ⊢ ∅ ∈ V | |
| 13 | 11, 12 | ifex 4523 | . 2 ⊢ if((Rel 𝐺 ∧ Rel dom 𝐺), 〈𝐹, tpos 𝐺〉, ∅) ∈ V |
| 14 | 9, 10, 13 | ovmpoa 7501 | 1 ⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹 oppFunc 𝐺) = if((Rel 𝐺 ∧ Rel dom 𝐺), 〈𝐹, tpos 𝐺〉, ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4280 ifcif 4472 〈cop 4579 dom cdm 5614 Rel wrel 5619 (class class class)co 7346 tpos ctpos 8155 oppFunc coppf 49222 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-res 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-tpos 8156 df-oppf 49223 |
| This theorem is referenced by: oppfrcl3 49230 oppf1st2nd 49231 2oppf 49232 eloppf 49233 eloppf2 49234 oppfval 49236 |
| Copyright terms: Public domain | W3C validator |