Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reldmoppf Structured version   Visualization version   GIF version

Theorem reldmoppf 49118
Description: The domain of oppFunc is a relation. (Contributed by Zhi Wang, 13-Nov-2025.)
Assertion
Ref Expression
reldmoppf Rel dom oppFunc

Proof of Theorem reldmoppf
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-oppf 49116 . 2 oppFunc = (𝑓 ∈ V, 𝑔 ∈ V ↦ if((Rel 𝑔 ∧ Rel dom 𝑔), ⟨𝑓, tpos 𝑔⟩, ∅))
21reldmmpo 7526 1 Rel dom oppFunc
Colors of variables: wff setvar class
Syntax hints:  wa 395  Vcvv 3450  c0 4299  ifcif 4491  cop 4598  dom cdm 5641  Rel wrel 5646  tpos ctpos 8207   oppFunc coppf 49115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-dm 5651  df-oprab 7394  df-mpo 7395  df-oppf 49116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator