Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reldmoppf Structured version   Visualization version   GIF version

Theorem reldmoppf 49120
Description: The domain of oppFunc is a relation. (Contributed by Zhi Wang, 13-Nov-2025.)
Assertion
Ref Expression
reldmoppf Rel dom oppFunc

Proof of Theorem reldmoppf
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-oppf 49118 . 2 oppFunc = (𝑓 ∈ V, 𝑔 ∈ V ↦ if((Rel 𝑔 ∧ Rel dom 𝑔), ⟨𝑓, tpos 𝑔⟩, ∅))
21reldmmpo 7483 1 Rel dom oppFunc
Colors of variables: wff setvar class
Syntax hints:  wa 395  Vcvv 3436  c0 4284  ifcif 4476  cop 4583  dom cdm 5619  Rel wrel 5624  tpos ctpos 8158   oppFunc coppf 49117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-dm 5629  df-oprab 7353  df-mpo 7354  df-oppf 49118
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator