Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eloppf2 Structured version   Visualization version   GIF version

Theorem eloppf2 49119
Description: Both components of a pre-image of a non-empty opposite functor exist; and the second component is a relation on triples. (Contributed by Zhi Wang, 18-Nov-2025.)
Hypotheses
Ref Expression
eloppf2.k (𝐹 oppFunc 𝐺) = 𝐾
eloppf2.x (𝜑𝑋𝐾)
Assertion
Ref Expression
eloppf2 (𝜑 → ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Rel 𝐺 ∧ Rel dom 𝐺)))

Proof of Theorem eloppf2
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eloppf2.x . . . 4 (𝜑𝑋𝐾)
2 eloppf2.k . . . 4 (𝐹 oppFunc 𝐺) = 𝐾
31, 2eleqtrrdi 2839 . . 3 (𝜑𝑋 ∈ (𝐹 oppFunc 𝐺))
4 df-oppf 49108 . . . 4 oppFunc = (𝑓 ∈ V, 𝑔 ∈ V ↦ if((Rel 𝑔 ∧ Rel dom 𝑔), ⟨𝑓, tpos 𝑔⟩, ∅))
54elmpocl 7590 . . 3 (𝑋 ∈ (𝐹 oppFunc 𝐺) → (𝐹 ∈ V ∧ 𝐺 ∈ V))
63, 5syl 17 . 2 (𝜑 → (𝐹 ∈ V ∧ 𝐺 ∈ V))
7 oppfvalg 49111 . . . . . 6 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹 oppFunc 𝐺) = if((Rel 𝐺 ∧ Rel dom 𝐺), ⟨𝐹, tpos 𝐺⟩, ∅))
86, 7syl 17 . . . . 5 (𝜑 → (𝐹 oppFunc 𝐺) = if((Rel 𝐺 ∧ Rel dom 𝐺), ⟨𝐹, tpos 𝐺⟩, ∅))
93, 8eleqtrd 2830 . . . 4 (𝜑𝑋 ∈ if((Rel 𝐺 ∧ Rel dom 𝐺), ⟨𝐹, tpos 𝐺⟩, ∅))
109ne0d 4293 . . 3 (𝜑 → if((Rel 𝐺 ∧ Rel dom 𝐺), ⟨𝐹, tpos 𝐺⟩, ∅) ≠ ∅)
11 iffalse 4485 . . . 4 (¬ (Rel 𝐺 ∧ Rel dom 𝐺) → if((Rel 𝐺 ∧ Rel dom 𝐺), ⟨𝐹, tpos 𝐺⟩, ∅) = ∅)
1211necon1ai 2952 . . 3 (if((Rel 𝐺 ∧ Rel dom 𝐺), ⟨𝐹, tpos 𝐺⟩, ∅) ≠ ∅ → (Rel 𝐺 ∧ Rel dom 𝐺))
1310, 12syl 17 . 2 (𝜑 → (Rel 𝐺 ∧ Rel dom 𝐺))
146, 13jca 511 1 (𝜑 → ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Rel 𝐺 ∧ Rel dom 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3436  c0 4284  ifcif 4476  cop 4583  dom cdm 5619  Rel wrel 5624  (class class class)co 7349  tpos ctpos 8158   oppFunc coppf 49107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-res 5631  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-tpos 8159  df-oppf 49108
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator