Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eloppf2 Structured version   Visualization version   GIF version

Theorem eloppf2 49166
Description: Both components of a pre-image of a non-empty opposite functor exist; and the second component is a relation on triples. (Contributed by Zhi Wang, 18-Nov-2025.)
Hypotheses
Ref Expression
eloppf2.k (𝐹 oppFunc 𝐺) = 𝐾
eloppf2.x (𝜑𝑋𝐾)
Assertion
Ref Expression
eloppf2 (𝜑 → ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Rel 𝐺 ∧ Rel dom 𝐺)))

Proof of Theorem eloppf2
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eloppf2.x . . . 4 (𝜑𝑋𝐾)
2 eloppf2.k . . . 4 (𝐹 oppFunc 𝐺) = 𝐾
31, 2eleqtrrdi 2842 . . 3 (𝜑𝑋 ∈ (𝐹 oppFunc 𝐺))
4 df-oppf 49155 . . . 4 oppFunc = (𝑓 ∈ V, 𝑔 ∈ V ↦ if((Rel 𝑔 ∧ Rel dom 𝑔), ⟨𝑓, tpos 𝑔⟩, ∅))
54elmpocl 7582 . . 3 (𝑋 ∈ (𝐹 oppFunc 𝐺) → (𝐹 ∈ V ∧ 𝐺 ∈ V))
63, 5syl 17 . 2 (𝜑 → (𝐹 ∈ V ∧ 𝐺 ∈ V))
7 oppfvalg 49158 . . . . . 6 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹 oppFunc 𝐺) = if((Rel 𝐺 ∧ Rel dom 𝐺), ⟨𝐹, tpos 𝐺⟩, ∅))
86, 7syl 17 . . . . 5 (𝜑 → (𝐹 oppFunc 𝐺) = if((Rel 𝐺 ∧ Rel dom 𝐺), ⟨𝐹, tpos 𝐺⟩, ∅))
93, 8eleqtrd 2833 . . . 4 (𝜑𝑋 ∈ if((Rel 𝐺 ∧ Rel dom 𝐺), ⟨𝐹, tpos 𝐺⟩, ∅))
109ne0d 4287 . . 3 (𝜑 → if((Rel 𝐺 ∧ Rel dom 𝐺), ⟨𝐹, tpos 𝐺⟩, ∅) ≠ ∅)
11 iffalse 4479 . . . 4 (¬ (Rel 𝐺 ∧ Rel dom 𝐺) → if((Rel 𝐺 ∧ Rel dom 𝐺), ⟨𝐹, tpos 𝐺⟩, ∅) = ∅)
1211necon1ai 2955 . . 3 (if((Rel 𝐺 ∧ Rel dom 𝐺), ⟨𝐹, tpos 𝐺⟩, ∅) ≠ ∅ → (Rel 𝐺 ∧ Rel dom 𝐺))
1310, 12syl 17 . 2 (𝜑 → (Rel 𝐺 ∧ Rel dom 𝐺))
146, 13jca 511 1 (𝜑 → ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Rel 𝐺 ∧ Rel dom 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  c0 4278  ifcif 4470  cop 4577  dom cdm 5611  Rel wrel 5616  (class class class)co 7341  tpos ctpos 8150   oppFunc coppf 49154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-res 5623  df-iota 6432  df-fun 6478  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-tpos 8151  df-oppf 49155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator