| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eloppf2 | Structured version Visualization version GIF version | ||
| Description: Both components of a pre-image of a non-empty opposite functor exist; and the second component is a relation on triples. (Contributed by Zhi Wang, 18-Nov-2025.) |
| Ref | Expression |
|---|---|
| eloppf2.k | ⊢ (𝐹 oppFunc 𝐺) = 𝐾 |
| eloppf2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
| Ref | Expression |
|---|---|
| eloppf2 | ⊢ (𝜑 → ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Rel 𝐺 ∧ Rel dom 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloppf2.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
| 2 | eloppf2.k | . . . 4 ⊢ (𝐹 oppFunc 𝐺) = 𝐾 | |
| 3 | 1, 2 | eleqtrrdi 2839 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐹 oppFunc 𝐺)) |
| 4 | df-oppf 49085 | . . . 4 ⊢ oppFunc = (𝑓 ∈ V, 𝑔 ∈ V ↦ if((Rel 𝑔 ∧ Rel dom 𝑔), 〈𝑓, tpos 𝑔〉, ∅)) | |
| 5 | 4 | elmpocl 7610 | . . 3 ⊢ (𝑋 ∈ (𝐹 oppFunc 𝐺) → (𝐹 ∈ V ∧ 𝐺 ∈ V)) |
| 6 | 3, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝐹 ∈ V ∧ 𝐺 ∈ V)) |
| 7 | oppfvalg 49088 | . . . . . 6 ⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹 oppFunc 𝐺) = if((Rel 𝐺 ∧ Rel dom 𝐺), 〈𝐹, tpos 𝐺〉, ∅)) | |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐹 oppFunc 𝐺) = if((Rel 𝐺 ∧ Rel dom 𝐺), 〈𝐹, tpos 𝐺〉, ∅)) |
| 9 | 3, 8 | eleqtrd 2830 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ if((Rel 𝐺 ∧ Rel dom 𝐺), 〈𝐹, tpos 𝐺〉, ∅)) |
| 10 | 9 | ne0d 4301 | . . 3 ⊢ (𝜑 → if((Rel 𝐺 ∧ Rel dom 𝐺), 〈𝐹, tpos 𝐺〉, ∅) ≠ ∅) |
| 11 | iffalse 4493 | . . . 4 ⊢ (¬ (Rel 𝐺 ∧ Rel dom 𝐺) → if((Rel 𝐺 ∧ Rel dom 𝐺), 〈𝐹, tpos 𝐺〉, ∅) = ∅) | |
| 12 | 11 | necon1ai 2952 | . . 3 ⊢ (if((Rel 𝐺 ∧ Rel dom 𝐺), 〈𝐹, tpos 𝐺〉, ∅) ≠ ∅ → (Rel 𝐺 ∧ Rel dom 𝐺)) |
| 13 | 10, 12 | syl 17 | . 2 ⊢ (𝜑 → (Rel 𝐺 ∧ Rel dom 𝐺)) |
| 14 | 6, 13 | jca 511 | 1 ⊢ (𝜑 → ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Rel 𝐺 ∧ Rel dom 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3444 ∅c0 4292 ifcif 4484 〈cop 4591 dom cdm 5631 Rel wrel 5636 (class class class)co 7369 tpos ctpos 8181 oppFunc coppf 49084 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-res 5643 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-tpos 8182 df-oppf 49085 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |