| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eloppf2 | Structured version Visualization version GIF version | ||
| Description: Both components of a pre-image of a non-empty opposite functor exist; and the second component is a relation on triples. (Contributed by Zhi Wang, 18-Nov-2025.) |
| Ref | Expression |
|---|---|
| eloppf2.k | ⊢ (𝐹 oppFunc 𝐺) = 𝐾 |
| eloppf2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
| Ref | Expression |
|---|---|
| eloppf2 | ⊢ (𝜑 → ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Rel 𝐺 ∧ Rel dom 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloppf2.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
| 2 | eloppf2.k | . . . 4 ⊢ (𝐹 oppFunc 𝐺) = 𝐾 | |
| 3 | 1, 2 | eleqtrrdi 2844 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐹 oppFunc 𝐺)) |
| 4 | df-oppf 49284 | . . . 4 ⊢ oppFunc = (𝑓 ∈ V, 𝑔 ∈ V ↦ if((Rel 𝑔 ∧ Rel dom 𝑔), 〈𝑓, tpos 𝑔〉, ∅)) | |
| 5 | 4 | elmpocl 7596 | . . 3 ⊢ (𝑋 ∈ (𝐹 oppFunc 𝐺) → (𝐹 ∈ V ∧ 𝐺 ∈ V)) |
| 6 | 3, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝐹 ∈ V ∧ 𝐺 ∈ V)) |
| 7 | oppfvalg 49287 | . . . . . 6 ⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹 oppFunc 𝐺) = if((Rel 𝐺 ∧ Rel dom 𝐺), 〈𝐹, tpos 𝐺〉, ∅)) | |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐹 oppFunc 𝐺) = if((Rel 𝐺 ∧ Rel dom 𝐺), 〈𝐹, tpos 𝐺〉, ∅)) |
| 9 | 3, 8 | eleqtrd 2835 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ if((Rel 𝐺 ∧ Rel dom 𝐺), 〈𝐹, tpos 𝐺〉, ∅)) |
| 10 | 9 | ne0d 4291 | . . 3 ⊢ (𝜑 → if((Rel 𝐺 ∧ Rel dom 𝐺), 〈𝐹, tpos 𝐺〉, ∅) ≠ ∅) |
| 11 | iffalse 4485 | . . . 4 ⊢ (¬ (Rel 𝐺 ∧ Rel dom 𝐺) → if((Rel 𝐺 ∧ Rel dom 𝐺), 〈𝐹, tpos 𝐺〉, ∅) = ∅) | |
| 12 | 11 | necon1ai 2956 | . . 3 ⊢ (if((Rel 𝐺 ∧ Rel dom 𝐺), 〈𝐹, tpos 𝐺〉, ∅) ≠ ∅ → (Rel 𝐺 ∧ Rel dom 𝐺)) |
| 13 | 10, 12 | syl 17 | . 2 ⊢ (𝜑 → (Rel 𝐺 ∧ Rel dom 𝐺)) |
| 14 | 6, 13 | jca 511 | 1 ⊢ (𝜑 → ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Rel 𝐺 ∧ Rel dom 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 Vcvv 3437 ∅c0 4282 ifcif 4476 〈cop 4583 dom cdm 5621 Rel wrel 5626 (class class class)co 7355 tpos ctpos 8164 oppFunc coppf 49283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-res 5633 df-iota 6445 df-fun 6491 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-tpos 8165 df-oppf 49284 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |