Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eloppf2 Structured version   Visualization version   GIF version

Theorem eloppf2 49111
Description: Both components of a pre-image of a non-empty opposite functor exist; and the second component is a relation on triples. (Contributed by Zhi Wang, 18-Nov-2025.)
Hypotheses
Ref Expression
eloppf2.k (𝐹oppFunc𝐺) = 𝐾
eloppf2.x (𝜑𝑋𝐾)
Assertion
Ref Expression
eloppf2 (𝜑 → ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Rel 𝐺 ∧ Rel dom 𝐺)))

Proof of Theorem eloppf2
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eloppf2.x . . . 4 (𝜑𝑋𝐾)
2 eloppf2.k . . . 4 (𝐹oppFunc𝐺) = 𝐾
31, 2eleqtrrdi 2840 . . 3 (𝜑𝑋 ∈ (𝐹oppFunc𝐺))
4 df-oppf 49100 . . . 4 oppFunc = (𝑓 ∈ V, 𝑔 ∈ V ↦ if((Rel 𝑔 ∧ Rel dom 𝑔), ⟨𝑓, tpos 𝑔⟩, ∅))
54elmpocl 7632 . . 3 (𝑋 ∈ (𝐹oppFunc𝐺) → (𝐹 ∈ V ∧ 𝐺 ∈ V))
63, 5syl 17 . 2 (𝜑 → (𝐹 ∈ V ∧ 𝐺 ∈ V))
7 oppfvalg 49103 . . . . . 6 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹oppFunc𝐺) = if((Rel 𝐺 ∧ Rel dom 𝐺), ⟨𝐹, tpos 𝐺⟩, ∅))
86, 7syl 17 . . . . 5 (𝜑 → (𝐹oppFunc𝐺) = if((Rel 𝐺 ∧ Rel dom 𝐺), ⟨𝐹, tpos 𝐺⟩, ∅))
93, 8eleqtrd 2831 . . . 4 (𝜑𝑋 ∈ if((Rel 𝐺 ∧ Rel dom 𝐺), ⟨𝐹, tpos 𝐺⟩, ∅))
109ne0d 4307 . . 3 (𝜑 → if((Rel 𝐺 ∧ Rel dom 𝐺), ⟨𝐹, tpos 𝐺⟩, ∅) ≠ ∅)
11 iffalse 4499 . . . 4 (¬ (Rel 𝐺 ∧ Rel dom 𝐺) → if((Rel 𝐺 ∧ Rel dom 𝐺), ⟨𝐹, tpos 𝐺⟩, ∅) = ∅)
1211necon1ai 2953 . . 3 (if((Rel 𝐺 ∧ Rel dom 𝐺), ⟨𝐹, tpos 𝐺⟩, ∅) ≠ ∅ → (Rel 𝐺 ∧ Rel dom 𝐺))
1310, 12syl 17 . 2 (𝜑 → (Rel 𝐺 ∧ Rel dom 𝐺))
146, 13jca 511 1 (𝜑 → ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Rel 𝐺 ∧ Rel dom 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450  c0 4298  ifcif 4490  cop 4597  dom cdm 5640  Rel wrel 5645  (class class class)co 7389  tpos ctpos 8206  oppFunccoppf 49099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-res 5652  df-iota 6466  df-fun 6515  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-tpos 8207  df-oppf 49100
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator