| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eloppf2 | Structured version Visualization version GIF version | ||
| Description: Both components of a pre-image of a non-empty opposite functor exist; and the second component is a relation on triples. (Contributed by Zhi Wang, 18-Nov-2025.) |
| Ref | Expression |
|---|---|
| eloppf2.k | ⊢ (𝐹oppFunc𝐺) = 𝐾 |
| eloppf2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
| Ref | Expression |
|---|---|
| eloppf2 | ⊢ (𝜑 → ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Rel 𝐺 ∧ Rel dom 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloppf2.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
| 2 | eloppf2.k | . . . 4 ⊢ (𝐹oppFunc𝐺) = 𝐾 | |
| 3 | 1, 2 | eleqtrrdi 2840 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐹oppFunc𝐺)) |
| 4 | df-oppf 49100 | . . . 4 ⊢ oppFunc = (𝑓 ∈ V, 𝑔 ∈ V ↦ if((Rel 𝑔 ∧ Rel dom 𝑔), 〈𝑓, tpos 𝑔〉, ∅)) | |
| 5 | 4 | elmpocl 7632 | . . 3 ⊢ (𝑋 ∈ (𝐹oppFunc𝐺) → (𝐹 ∈ V ∧ 𝐺 ∈ V)) |
| 6 | 3, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝐹 ∈ V ∧ 𝐺 ∈ V)) |
| 7 | oppfvalg 49103 | . . . . . 6 ⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹oppFunc𝐺) = if((Rel 𝐺 ∧ Rel dom 𝐺), 〈𝐹, tpos 𝐺〉, ∅)) | |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐹oppFunc𝐺) = if((Rel 𝐺 ∧ Rel dom 𝐺), 〈𝐹, tpos 𝐺〉, ∅)) |
| 9 | 3, 8 | eleqtrd 2831 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ if((Rel 𝐺 ∧ Rel dom 𝐺), 〈𝐹, tpos 𝐺〉, ∅)) |
| 10 | 9 | ne0d 4307 | . . 3 ⊢ (𝜑 → if((Rel 𝐺 ∧ Rel dom 𝐺), 〈𝐹, tpos 𝐺〉, ∅) ≠ ∅) |
| 11 | iffalse 4499 | . . . 4 ⊢ (¬ (Rel 𝐺 ∧ Rel dom 𝐺) → if((Rel 𝐺 ∧ Rel dom 𝐺), 〈𝐹, tpos 𝐺〉, ∅) = ∅) | |
| 12 | 11 | necon1ai 2953 | . . 3 ⊢ (if((Rel 𝐺 ∧ Rel dom 𝐺), 〈𝐹, tpos 𝐺〉, ∅) ≠ ∅ → (Rel 𝐺 ∧ Rel dom 𝐺)) |
| 13 | 10, 12 | syl 17 | . 2 ⊢ (𝜑 → (Rel 𝐺 ∧ Rel dom 𝐺)) |
| 14 | 6, 13 | jca 511 | 1 ⊢ (𝜑 → ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Rel 𝐺 ∧ Rel dom 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ∅c0 4298 ifcif 4490 〈cop 4597 dom cdm 5640 Rel wrel 5645 (class class class)co 7389 tpos ctpos 8206 oppFunccoppf 49099 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-res 5652 df-iota 6466 df-fun 6515 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-tpos 8207 df-oppf 49100 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |