| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eloppf2 | Structured version Visualization version GIF version | ||
| Description: Both components of a pre-image of a non-empty opposite functor exist; and the second component is a relation on triples. (Contributed by Zhi Wang, 18-Nov-2025.) |
| Ref | Expression |
|---|---|
| eloppf2.k | ⊢ (𝐹 oppFunc 𝐺) = 𝐾 |
| eloppf2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
| Ref | Expression |
|---|---|
| eloppf2 | ⊢ (𝜑 → ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Rel 𝐺 ∧ Rel dom 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloppf2.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
| 2 | eloppf2.k | . . . 4 ⊢ (𝐹 oppFunc 𝐺) = 𝐾 | |
| 3 | 1, 2 | eleqtrrdi 2842 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐹 oppFunc 𝐺)) |
| 4 | df-oppf 49155 | . . . 4 ⊢ oppFunc = (𝑓 ∈ V, 𝑔 ∈ V ↦ if((Rel 𝑔 ∧ Rel dom 𝑔), 〈𝑓, tpos 𝑔〉, ∅)) | |
| 5 | 4 | elmpocl 7582 | . . 3 ⊢ (𝑋 ∈ (𝐹 oppFunc 𝐺) → (𝐹 ∈ V ∧ 𝐺 ∈ V)) |
| 6 | 3, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝐹 ∈ V ∧ 𝐺 ∈ V)) |
| 7 | oppfvalg 49158 | . . . . . 6 ⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹 oppFunc 𝐺) = if((Rel 𝐺 ∧ Rel dom 𝐺), 〈𝐹, tpos 𝐺〉, ∅)) | |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐹 oppFunc 𝐺) = if((Rel 𝐺 ∧ Rel dom 𝐺), 〈𝐹, tpos 𝐺〉, ∅)) |
| 9 | 3, 8 | eleqtrd 2833 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ if((Rel 𝐺 ∧ Rel dom 𝐺), 〈𝐹, tpos 𝐺〉, ∅)) |
| 10 | 9 | ne0d 4287 | . . 3 ⊢ (𝜑 → if((Rel 𝐺 ∧ Rel dom 𝐺), 〈𝐹, tpos 𝐺〉, ∅) ≠ ∅) |
| 11 | iffalse 4479 | . . . 4 ⊢ (¬ (Rel 𝐺 ∧ Rel dom 𝐺) → if((Rel 𝐺 ∧ Rel dom 𝐺), 〈𝐹, tpos 𝐺〉, ∅) = ∅) | |
| 12 | 11 | necon1ai 2955 | . . 3 ⊢ (if((Rel 𝐺 ∧ Rel dom 𝐺), 〈𝐹, tpos 𝐺〉, ∅) ≠ ∅ → (Rel 𝐺 ∧ Rel dom 𝐺)) |
| 13 | 10, 12 | syl 17 | . 2 ⊢ (𝜑 → (Rel 𝐺 ∧ Rel dom 𝐺)) |
| 14 | 6, 13 | jca 511 | 1 ⊢ (𝜑 → ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Rel 𝐺 ∧ Rel dom 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∅c0 4278 ifcif 4470 〈cop 4577 dom cdm 5611 Rel wrel 5616 (class class class)co 7341 tpos ctpos 8150 oppFunc coppf 49154 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-res 5623 df-iota 6432 df-fun 6478 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-tpos 8151 df-oppf 49155 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |